aboutsummaryrefslogtreecommitdiff
path: root/rand/src/seq/mod.rs
diff options
context:
space:
mode:
Diffstat (limited to 'rand/src/seq/mod.rs')
-rw-r--r--rand/src/seq/mod.rs836
1 files changed, 0 insertions, 836 deletions
diff --git a/rand/src/seq/mod.rs b/rand/src/seq/mod.rs
deleted file mode 100644
index 9959602..0000000
--- a/rand/src/seq/mod.rs
+++ /dev/null
@@ -1,836 +0,0 @@
-// Copyright 2018 Developers of the Rand project.
-//
-// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
-// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
-// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
-// option. This file may not be copied, modified, or distributed
-// except according to those terms.
-
-//! Functions for randomly accessing and sampling sequences.
-//!
-//! TODO: module doc
-
-
-#[cfg(feature="alloc")] pub mod index;
-
-#[cfg(feature="alloc")] use core::ops::Index;
-
-#[cfg(all(feature="alloc", not(feature="std")))] use alloc::vec::Vec;
-
-use Rng;
-#[cfg(feature="alloc")] use distributions::WeightedError;
-#[cfg(feature="alloc")] use distributions::uniform::{SampleUniform, SampleBorrow};
-
-/// Extension trait on slices, providing random mutation and sampling methods.
-///
-/// An implementation is provided for slices. This may also be implementable for
-/// other types.
-pub trait SliceRandom {
- /// The element type.
- type Item;
-
- /// Returns a reference to one random element of the slice, or `None` if the
- /// slice is empty.
- ///
- /// Depending on the implementation, complexity is expected to be `O(1)`.
- ///
- /// # Example
- ///
- /// ```
- /// use rand::thread_rng;
- /// use rand::seq::SliceRandom;
- ///
- /// let choices = [1, 2, 4, 8, 16, 32];
- /// let mut rng = thread_rng();
- /// println!("{:?}", choices.choose(&mut rng));
- /// assert_eq!(choices[..0].choose(&mut rng), None);
- /// ```
- fn choose<R>(&self, rng: &mut R) -> Option<&Self::Item>
- where R: Rng + ?Sized;
-
- /// Returns a mutable reference to one random element of the slice, or
- /// `None` if the slice is empty.
- ///
- /// Depending on the implementation, complexity is expected to be `O(1)`.
- fn choose_mut<R>(&mut self, rng: &mut R) -> Option<&mut Self::Item>
- where R: Rng + ?Sized;
-
- /// Produces an iterator that chooses `amount` elements from the slice at
- /// random without repeating any, and returns them in random order.
- ///
- /// In case this API is not sufficiently flexible, use `index::sample` then
- /// apply the indices to the slice.
- ///
- /// Complexity is expected to be the same as `index::sample`.
- ///
- /// # Example
- /// ```
- /// use rand::seq::SliceRandom;
- ///
- /// let mut rng = &mut rand::thread_rng();
- /// let sample = "Hello, audience!".as_bytes();
- ///
- /// // collect the results into a vector:
- /// let v: Vec<u8> = sample.choose_multiple(&mut rng, 3).cloned().collect();
- ///
- /// // store in a buffer:
- /// let mut buf = [0u8; 5];
- /// for (b, slot) in sample.choose_multiple(&mut rng, buf.len()).zip(buf.iter_mut()) {
- /// *slot = *b;
- /// }
- /// ```
- #[cfg(feature = "alloc")]
- fn choose_multiple<R>(&self, rng: &mut R, amount: usize) -> SliceChooseIter<Self, Self::Item>
- where R: Rng + ?Sized;
-
- /// Similar to [`choose`], where the likelihood of each outcome may be
- /// specified. The specified function `weight` maps items `x` to a relative
- /// likelihood `weight(x)`. The probability of each item being selected is
- /// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`.
- ///
- /// # Example
- ///
- /// ```
- /// use rand::prelude::*;
- ///
- /// let choices = [('a', 2), ('b', 1), ('c', 1)];
- /// let mut rng = thread_rng();
- /// // 50% chance to print 'a', 25% chance to print 'b', 25% chance to print 'c'
- /// println!("{:?}", choices.choose_weighted(&mut rng, |item| item.1).unwrap().0);
- /// ```
- /// [`choose`]: trait.SliceRandom.html#method.choose
- #[cfg(feature = "alloc")]
- fn choose_weighted<R, F, B, X>(&self, rng: &mut R, weight: F) -> Result<&Self::Item, WeightedError>
- where R: Rng + ?Sized,
- F: Fn(&Self::Item) -> B,
- B: SampleBorrow<X>,
- X: SampleUniform +
- for<'a> ::core::ops::AddAssign<&'a X> +
- ::core::cmp::PartialOrd<X> +
- Clone +
- Default;
-
- /// Similar to [`choose_mut`], where the likelihood of each outcome may be
- /// specified. The specified function `weight` maps items `x` to a relative
- /// likelihood `weight(x)`. The probability of each item being selected is
- /// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`.
- ///
- /// See also [`choose_weighted`].
- ///
- /// [`choose_mut`]: trait.SliceRandom.html#method.choose_mut
- /// [`choose_weighted`]: trait.SliceRandom.html#method.choose_weighted
- #[cfg(feature = "alloc")]
- fn choose_weighted_mut<R, F, B, X>(&mut self, rng: &mut R, weight: F) -> Result<&mut Self::Item, WeightedError>
- where R: Rng + ?Sized,
- F: Fn(&Self::Item) -> B,
- B: SampleBorrow<X>,
- X: SampleUniform +
- for<'a> ::core::ops::AddAssign<&'a X> +
- ::core::cmp::PartialOrd<X> +
- Clone +
- Default;
-
- /// Shuffle a mutable slice in place.
- ///
- /// Depending on the implementation, complexity is expected to be `O(1)`.
- ///
- /// # Example
- ///
- /// ```
- /// use rand::thread_rng;
- /// use rand::seq::SliceRandom;
- ///
- /// let mut rng = thread_rng();
- /// let mut y = [1, 2, 3, 4, 5];
- /// println!("Unshuffled: {:?}", y);
- /// y.shuffle(&mut rng);
- /// println!("Shuffled: {:?}", y);
- /// ```
- fn shuffle<R>(&mut self, rng: &mut R) where R: Rng + ?Sized;
-
- /// Shuffle a slice in place, but exit early.
- ///
- /// Returns two mutable slices from the source slice. The first contains
- /// `amount` elements randomly permuted. The second has the remaining
- /// elements that are not fully shuffled.
- ///
- /// This is an efficient method to select `amount` elements at random from
- /// the slice, provided the slice may be mutated.
- ///
- /// If you only need to choose elements randomly and `amount > self.len()/2`
- /// then you may improve performance by taking
- /// `amount = values.len() - amount` and using only the second slice.
- ///
- /// If `amount` is greater than the number of elements in the slice, this
- /// will perform a full shuffle.
- ///
- /// Complexity is expected to be `O(m)` where `m = amount`.
- fn partial_shuffle<R>(&mut self, rng: &mut R, amount: usize)
- -> (&mut [Self::Item], &mut [Self::Item]) where R: Rng + ?Sized;
-}
-
-/// Extension trait on iterators, providing random sampling methods.
-pub trait IteratorRandom: Iterator + Sized {
- /// Choose one element at random from the iterator. If you have a slice,
- /// it's significantly faster to call the [`choose`] or [`choose_mut`]
- /// functions using the slice instead.
- ///
- /// Returns `None` if and only if the iterator is empty.
- ///
- /// Complexity is `O(n)`, where `n` is the length of the iterator.
- /// This likely consumes multiple random numbers, but the exact number
- /// is unspecified.
- ///
- /// [`choose`]: trait.SliceRandom.html#method.choose
- /// [`choose_mut`]: trait.SliceRandom.html#method.choose_mut
- fn choose<R>(mut self, rng: &mut R) -> Option<Self::Item>
- where R: Rng + ?Sized
- {
- let (mut lower, mut upper) = self.size_hint();
- let mut consumed = 0;
- let mut result = None;
-
- if upper == Some(lower) {
- return if lower == 0 { None } else { self.nth(rng.gen_range(0, lower)) };
- }
-
- // Continue until the iterator is exhausted
- loop {
- if lower > 1 {
- let ix = rng.gen_range(0, lower + consumed);
- let skip;
- if ix < lower {
- result = self.nth(ix);
- skip = lower - (ix + 1);
- } else {
- skip = lower;
- }
- if upper == Some(lower) {
- return result;
- }
- consumed += lower;
- if skip > 0 {
- self.nth(skip - 1);
- }
- } else {
- let elem = self.next();
- if elem.is_none() {
- return result;
- }
- consumed += 1;
- let denom = consumed as f64; // accurate to 2^53 elements
- if rng.gen_bool(1.0 / denom) {
- result = elem;
- }
- }
-
- let hint = self.size_hint();
- lower = hint.0;
- upper = hint.1;
- }
- }
-
- /// Collects `amount` values at random from the iterator into a supplied
- /// buffer.
- ///
- /// Although the elements are selected randomly, the order of elements in
- /// the buffer is neither stable nor fully random. If random ordering is
- /// desired, shuffle the result.
- ///
- /// Returns the number of elements added to the buffer. This equals `amount`
- /// unless the iterator contains insufficient elements, in which case this
- /// equals the number of elements available.
- ///
- /// Complexity is `O(n)` where `n` is the length of the iterator.
- fn choose_multiple_fill<R>(mut self, rng: &mut R, buf: &mut [Self::Item])
- -> usize where R: Rng + ?Sized
- {
- let amount = buf.len();
- let mut len = 0;
- while len < amount {
- if let Some(elem) = self.next() {
- buf[len] = elem;
- len += 1;
- } else {
- // Iterator exhausted; stop early
- return len;
- }
- }
-
- // Continue, since the iterator was not exhausted
- for (i, elem) in self.enumerate() {
- let k = rng.gen_range(0, i + 1 + amount);
- if let Some(slot) = buf.get_mut(k) {
- *slot = elem;
- }
- }
- len
- }
-
- /// Collects `amount` values at random from the iterator into a vector.
- ///
- /// This is equivalent to `choose_multiple_fill` except for the result type.
- ///
- /// Although the elements are selected randomly, the order of elements in
- /// the buffer is neither stable nor fully random. If random ordering is
- /// desired, shuffle the result.
- ///
- /// The length of the returned vector equals `amount` unless the iterator
- /// contains insufficient elements, in which case it equals the number of
- /// elements available.
- ///
- /// Complexity is `O(n)` where `n` is the length of the iterator.
- #[cfg(feature = "alloc")]
- fn choose_multiple<R>(mut self, rng: &mut R, amount: usize) -> Vec<Self::Item>
- where R: Rng + ?Sized
- {
- let mut reservoir = Vec::with_capacity(amount);
- reservoir.extend(self.by_ref().take(amount));
-
- // Continue unless the iterator was exhausted
- //
- // note: this prevents iterators that "restart" from causing problems.
- // If the iterator stops once, then so do we.
- if reservoir.len() == amount {
- for (i, elem) in self.enumerate() {
- let k = rng.gen_range(0, i + 1 + amount);
- if let Some(slot) = reservoir.get_mut(k) {
- *slot = elem;
- }
- }
- } else {
- // Don't hang onto extra memory. There is a corner case where
- // `amount` was much less than `self.len()`.
- reservoir.shrink_to_fit();
- }
- reservoir
- }
-}
-
-
-impl<T> SliceRandom for [T] {
- type Item = T;
-
- fn choose<R>(&self, rng: &mut R) -> Option<&Self::Item>
- where R: Rng + ?Sized
- {
- if self.is_empty() {
- None
- } else {
- Some(&self[rng.gen_range(0, self.len())])
- }
- }
-
- fn choose_mut<R>(&mut self, rng: &mut R) -> Option<&mut Self::Item>
- where R: Rng + ?Sized
- {
- if self.is_empty() {
- None
- } else {
- let len = self.len();
- Some(&mut self[rng.gen_range(0, len)])
- }
- }
-
- #[cfg(feature = "alloc")]
- fn choose_multiple<R>(&self, rng: &mut R, amount: usize)
- -> SliceChooseIter<Self, Self::Item>
- where R: Rng + ?Sized
- {
- let amount = ::core::cmp::min(amount, self.len());
- SliceChooseIter {
- slice: self,
- _phantom: Default::default(),
- indices: index::sample(rng, self.len(), amount).into_iter(),
- }
- }
-
- #[cfg(feature = "alloc")]
- fn choose_weighted<R, F, B, X>(&self, rng: &mut R, weight: F) -> Result<&Self::Item, WeightedError>
- where R: Rng + ?Sized,
- F: Fn(&Self::Item) -> B,
- B: SampleBorrow<X>,
- X: SampleUniform +
- for<'a> ::core::ops::AddAssign<&'a X> +
- ::core::cmp::PartialOrd<X> +
- Clone +
- Default {
- use distributions::{Distribution, WeightedIndex};
- let distr = WeightedIndex::new(self.iter().map(weight))?;
- Ok(&self[distr.sample(rng)])
- }
-
- #[cfg(feature = "alloc")]
- fn choose_weighted_mut<R, F, B, X>(&mut self, rng: &mut R, weight: F) -> Result<&mut Self::Item, WeightedError>
- where R: Rng + ?Sized,
- F: Fn(&Self::Item) -> B,
- B: SampleBorrow<X>,
- X: SampleUniform +
- for<'a> ::core::ops::AddAssign<&'a X> +
- ::core::cmp::PartialOrd<X> +
- Clone +
- Default {
- use distributions::{Distribution, WeightedIndex};
- let distr = WeightedIndex::new(self.iter().map(weight))?;
- Ok(&mut self[distr.sample(rng)])
- }
-
- fn shuffle<R>(&mut self, rng: &mut R) where R: Rng + ?Sized
- {
- for i in (1..self.len()).rev() {
- // invariant: elements with index > i have been locked in place.
- self.swap(i, rng.gen_range(0, i + 1));
- }
- }
-
- fn partial_shuffle<R>(&mut self, rng: &mut R, amount: usize)
- -> (&mut [Self::Item], &mut [Self::Item]) where R: Rng + ?Sized
- {
- // This applies Durstenfeld's algorithm for the
- // [Fisher–Yates shuffle](https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle#The_modern_algorithm)
- // for an unbiased permutation, but exits early after choosing `amount`
- // elements.
-
- let len = self.len();
- let end = if amount >= len { 0 } else { len - amount };
-
- for i in (end..len).rev() {
- // invariant: elements with index > i have been locked in place.
- self.swap(i, rng.gen_range(0, i + 1));
- }
- let r = self.split_at_mut(end);
- (r.1, r.0)
- }
-}
-
-impl<I> IteratorRandom for I where I: Iterator + Sized {}
-
-
-/// Iterator over multiple choices, as returned by [`SliceRandom::choose_multiple](
-/// trait.SliceRandom.html#method.choose_multiple).
-#[cfg(feature = "alloc")]
-#[derive(Debug)]
-pub struct SliceChooseIter<'a, S: ?Sized + 'a, T: 'a> {
- slice: &'a S,
- _phantom: ::core::marker::PhantomData<T>,
- indices: index::IndexVecIntoIter,
-}
-
-#[cfg(feature = "alloc")]
-impl<'a, S: Index<usize, Output = T> + ?Sized + 'a, T: 'a> Iterator for SliceChooseIter<'a, S, T> {
- type Item = &'a T;
-
- fn next(&mut self) -> Option<Self::Item> {
- // TODO: investigate using SliceIndex::get_unchecked when stable
- self.indices.next().map(|i| &self.slice[i as usize])
- }
-
- fn size_hint(&self) -> (usize, Option<usize>) {
- (self.indices.len(), Some(self.indices.len()))
- }
-}
-
-#[cfg(feature = "alloc")]
-impl<'a, S: Index<usize, Output = T> + ?Sized + 'a, T: 'a> ExactSizeIterator
- for SliceChooseIter<'a, S, T>
-{
- fn len(&self) -> usize {
- self.indices.len()
- }
-}
-
-
-/// Randomly sample `amount` elements from a finite iterator.
-///
-/// Deprecated: use [`IteratorRandom::choose_multiple`] instead.
-///
-/// [`IteratorRandom::choose_multiple`]: trait.IteratorRandom.html#method.choose_multiple
-#[cfg(feature = "alloc")]
-#[deprecated(since="0.6.0", note="use IteratorRandom::choose_multiple instead")]
-pub fn sample_iter<T, I, R>(rng: &mut R, iterable: I, amount: usize) -> Result<Vec<T>, Vec<T>>
- where I: IntoIterator<Item=T>,
- R: Rng + ?Sized,
-{
- use seq::IteratorRandom;
- let iter = iterable.into_iter();
- let result = iter.choose_multiple(rng, amount);
- if result.len() == amount {
- Ok(result)
- } else {
- Err(result)
- }
-}
-
-/// Randomly sample exactly `amount` values from `slice`.
-///
-/// The values are non-repeating and in random order.
-///
-/// This implementation uses `O(amount)` time and memory.
-///
-/// Panics if `amount > slice.len()`
-///
-/// Deprecated: use [`SliceRandom::choose_multiple`] instead.
-///
-/// [`SliceRandom::choose_multiple`]: trait.SliceRandom.html#method.choose_multiple
-#[cfg(feature = "alloc")]
-#[deprecated(since="0.6.0", note="use SliceRandom::choose_multiple instead")]
-pub fn sample_slice<R, T>(rng: &mut R, slice: &[T], amount: usize) -> Vec<T>
- where R: Rng + ?Sized,
- T: Clone
-{
- let indices = index::sample(rng, slice.len(), amount).into_iter();
-
- let mut out = Vec::with_capacity(amount);
- out.extend(indices.map(|i| slice[i].clone()));
- out
-}
-
-/// Randomly sample exactly `amount` references from `slice`.
-///
-/// The references are non-repeating and in random order.
-///
-/// This implementation uses `O(amount)` time and memory.
-///
-/// Panics if `amount > slice.len()`
-///
-/// Deprecated: use [`SliceRandom::choose_multiple`] instead.
-///
-/// [`SliceRandom::choose_multiple`]: trait.SliceRandom.html#method.choose_multiple
-#[cfg(feature = "alloc")]
-#[deprecated(since="0.6.0", note="use SliceRandom::choose_multiple instead")]
-pub fn sample_slice_ref<'a, R, T>(rng: &mut R, slice: &'a [T], amount: usize) -> Vec<&'a T>
- where R: Rng + ?Sized
-{
- let indices = index::sample(rng, slice.len(), amount).into_iter();
-
- let mut out = Vec::with_capacity(amount);
- out.extend(indices.map(|i| &slice[i]));
- out
-}
-
-#[cfg(test)]
-mod test {
- use super::*;
- #[cfg(feature = "alloc")] use {Rng, SeedableRng};
- #[cfg(feature = "alloc")] use rngs::SmallRng;
- #[cfg(all(feature="alloc", not(feature="std")))]
- use alloc::vec::Vec;
-
- #[test]
- fn test_slice_choose() {
- let mut r = ::test::rng(107);
- let chars = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n'];
- let mut chosen = [0i32; 14];
- for _ in 0..1000 {
- let picked = *chars.choose(&mut r).unwrap();
- chosen[(picked as usize) - ('a' as usize)] += 1;
- }
- for count in chosen.iter() {
- let err = *count - (1000 / (chars.len() as i32));
- assert!(-20 <= err && err <= 20);
- }
-
- chosen.iter_mut().for_each(|x| *x = 0);
- for _ in 0..1000 {
- *chosen.choose_mut(&mut r).unwrap() += 1;
- }
- for count in chosen.iter() {
- let err = *count - (1000 / (chosen.len() as i32));
- assert!(-20 <= err && err <= 20);
- }
-
- let mut v: [isize; 0] = [];
- assert_eq!(v.choose(&mut r), None);
- assert_eq!(v.choose_mut(&mut r), None);
- }
-
- #[derive(Clone)]
- struct UnhintedIterator<I: Iterator + Clone> {
- iter: I,
- }
- impl<I: Iterator + Clone> Iterator for UnhintedIterator<I> {
- type Item = I::Item;
- fn next(&mut self) -> Option<Self::Item> {
- self.iter.next()
- }
- }
-
- #[derive(Clone)]
- struct ChunkHintedIterator<I: ExactSizeIterator + Iterator + Clone> {
- iter: I,
- chunk_remaining: usize,
- chunk_size: usize,
- hint_total_size: bool,
- }
- impl<I: ExactSizeIterator + Iterator + Clone> Iterator for ChunkHintedIterator<I> {
- type Item = I::Item;
- fn next(&mut self) -> Option<Self::Item> {
- if self.chunk_remaining == 0 {
- self.chunk_remaining = ::core::cmp::min(self.chunk_size,
- self.iter.len());
- }
- self.chunk_remaining = self.chunk_remaining.saturating_sub(1);
-
- self.iter.next()
- }
- fn size_hint(&self) -> (usize, Option<usize>) {
- (self.chunk_remaining,
- if self.hint_total_size { Some(self.iter.len()) } else { None })
- }
- }
-
- #[derive(Clone)]
- struct WindowHintedIterator<I: ExactSizeIterator + Iterator + Clone> {
- iter: I,
- window_size: usize,
- hint_total_size: bool,
- }
- impl<I: ExactSizeIterator + Iterator + Clone> Iterator for WindowHintedIterator<I> {
- type Item = I::Item;
- fn next(&mut self) -> Option<Self::Item> {
- self.iter.next()
- }
- fn size_hint(&self) -> (usize, Option<usize>) {
- (::core::cmp::min(self.iter.len(), self.window_size),
- if self.hint_total_size { Some(self.iter.len()) } else { None })
- }
- }
-
- #[test]
- fn test_iterator_choose() {
- let r = &mut ::test::rng(109);
- fn test_iter<R: Rng + ?Sized, Iter: Iterator<Item=usize> + Clone>(r: &mut R, iter: Iter) {
- let mut chosen = [0i32; 9];
- for _ in 0..1000 {
- let picked = iter.clone().choose(r).unwrap();
- chosen[picked] += 1;
- }
- for count in chosen.iter() {
- // Samples should follow Binomial(1000, 1/9)
- // Octave: binopdf(x, 1000, 1/9) gives the prob of *count == x
- // Note: have seen 153, which is unlikely but not impossible.
- assert!(72 < *count && *count < 154, "count not close to 1000/9: {}", count);
- }
- }
-
- test_iter(r, 0..9);
- test_iter(r, [0, 1, 2, 3, 4, 5, 6, 7, 8].iter().cloned());
- #[cfg(feature = "alloc")]
- test_iter(r, (0..9).collect::<Vec<_>>().into_iter());
- test_iter(r, UnhintedIterator { iter: 0..9 });
- test_iter(r, ChunkHintedIterator { iter: 0..9, chunk_size: 4, chunk_remaining: 4, hint_total_size: false });
- test_iter(r, ChunkHintedIterator { iter: 0..9, chunk_size: 4, chunk_remaining: 4, hint_total_size: true });
- test_iter(r, WindowHintedIterator { iter: 0..9, window_size: 2, hint_total_size: false });
- test_iter(r, WindowHintedIterator { iter: 0..9, window_size: 2, hint_total_size: true });
-
- assert_eq!((0..0).choose(r), None);
- assert_eq!(UnhintedIterator{ iter: 0..0 }.choose(r), None);
- }
-
- #[test]
- fn test_shuffle() {
- let mut r = ::test::rng(108);
- let empty: &mut [isize] = &mut [];
- empty.shuffle(&mut r);
- let mut one = [1];
- one.shuffle(&mut r);
- let b: &[_] = &[1];
- assert_eq!(one, b);
-
- let mut two = [1, 2];
- two.shuffle(&mut r);
- assert!(two == [1, 2] || two == [2, 1]);
-
- fn move_last(slice: &mut [usize], pos: usize) {
- // use slice[pos..].rotate_left(1); once we can use that
- let last_val = slice[pos];
- for i in pos..slice.len() - 1 {
- slice[i] = slice[i + 1];
- }
- *slice.last_mut().unwrap() = last_val;
- }
- let mut counts = [0i32; 24];
- for _ in 0..10000 {
- let mut arr: [usize; 4] = [0, 1, 2, 3];
- arr.shuffle(&mut r);
- let mut permutation = 0usize;
- let mut pos_value = counts.len();
- for i in 0..4 {
- pos_value /= 4 - i;
- let pos = arr.iter().position(|&x| x == i).unwrap();
- assert!(pos < (4 - i));
- permutation += pos * pos_value;
- move_last(&mut arr, pos);
- assert_eq!(arr[3], i);
- }
- for i in 0..4 {
- assert_eq!(arr[i], i);
- }
- counts[permutation] += 1;
- }
- for count in counts.iter() {
- let err = *count - 10000i32 / 24;
- assert!(-50 <= err && err <= 50);
- }
- }
-
- #[test]
- fn test_partial_shuffle() {
- let mut r = ::test::rng(118);
-
- let mut empty: [u32; 0] = [];
- let res = empty.partial_shuffle(&mut r, 10);
- assert_eq!((res.0.len(), res.1.len()), (0, 0));
-
- let mut v = [1, 2, 3, 4, 5];
- let res = v.partial_shuffle(&mut r, 2);
- assert_eq!((res.0.len(), res.1.len()), (2, 3));
- assert!(res.0[0] != res.0[1]);
- // First elements are only modified if selected, so at least one isn't modified:
- assert!(res.1[0] == 1 || res.1[1] == 2 || res.1[2] == 3);
- }
-
- #[test]
- #[cfg(feature = "alloc")]
- fn test_sample_iter() {
- let min_val = 1;
- let max_val = 100;
-
- let mut r = ::test::rng(401);
- let vals = (min_val..max_val).collect::<Vec<i32>>();
- let small_sample = vals.iter().choose_multiple(&mut r, 5);
- let large_sample = vals.iter().choose_multiple(&mut r, vals.len() + 5);
-
- assert_eq!(small_sample.len(), 5);
- assert_eq!(large_sample.len(), vals.len());
- // no randomization happens when amount >= len
- assert_eq!(large_sample, vals.iter().collect::<Vec<_>>());
-
- assert!(small_sample.iter().all(|e| {
- **e >= min_val && **e <= max_val
- }));
- }
-
- #[test]
- #[cfg(feature = "alloc")]
- #[allow(deprecated)]
- fn test_sample_slice_boundaries() {
- let empty: &[u8] = &[];
-
- let mut r = ::test::rng(402);
-
- // sample 0 items
- assert_eq!(&sample_slice(&mut r, empty, 0)[..], [0u8; 0]);
- assert_eq!(&sample_slice(&mut r, &[42, 2, 42], 0)[..], [0u8; 0]);
-
- // sample 1 item
- assert_eq!(&sample_slice(&mut r, &[42], 1)[..], [42]);
- let v = sample_slice(&mut r, &[1, 42], 1)[0];
- assert!(v == 1 || v == 42);
-
- // sample "all" the items
- let v = sample_slice(&mut r, &[42, 133], 2);
- assert!(&v[..] == [42, 133] || v[..] == [133, 42]);
-
- // Make sure lucky 777's aren't lucky
- let slice = &[42, 777];
- let mut num_42 = 0;
- let total = 1000;
- for _ in 0..total {
- let v = sample_slice(&mut r, slice, 1);
- assert_eq!(v.len(), 1);
- let v = v[0];
- assert!(v == 42 || v == 777);
- if v == 42 {
- num_42 += 1;
- }
- }
- let ratio_42 = num_42 as f64 / 1000 as f64;
- assert!(0.4 <= ratio_42 || ratio_42 <= 0.6, "{}", ratio_42);
- }
-
- #[test]
- #[cfg(feature = "alloc")]
- #[allow(deprecated)]
- fn test_sample_slice() {
- let seeded_rng = SmallRng::from_seed;
-
- let mut r = ::test::rng(403);
-
- for n in 1..20 {
- let length = 5*n - 4; // 1, 6, ...
- let amount = r.gen_range(0, length);
- let mut seed = [0u8; 16];
- r.fill(&mut seed);
-
- // assert the basics work
- let regular = index::sample(&mut seeded_rng(seed), length, amount);
- assert_eq!(regular.len(), amount);
- assert!(regular.iter().all(|e| e < length));
-
- // also test that sampling the slice works
- let vec: Vec<u32> = (0..(length as u32)).collect();
- let result = sample_slice(&mut seeded_rng(seed), &vec, amount);
- assert_eq!(result, regular.iter().map(|i| i as u32).collect::<Vec<_>>());
-
- let result = sample_slice_ref(&mut seeded_rng(seed), &vec, amount);
- assert!(result.iter().zip(regular.iter()).all(|(i,j)| **i == j as u32));
- }
- }
-
- #[test]
- #[cfg(feature = "alloc")]
- fn test_weighted() {
- let mut r = ::test::rng(406);
- const N_REPS: u32 = 3000;
- let weights = [1u32, 2, 3, 0, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7];
- let total_weight = weights.iter().sum::<u32>() as f32;
-
- let verify = |result: [i32; 14]| {
- for (i, count) in result.iter().enumerate() {
- let exp = (weights[i] * N_REPS) as f32 / total_weight;
- let mut err = (*count as f32 - exp).abs();
- if err != 0.0 {
- err /= exp;
- }
- assert!(err <= 0.25);
- }
- };
-
- // choose_weighted
- fn get_weight<T>(item: &(u32, T)) -> u32 {
- item.0
- }
- let mut chosen = [0i32; 14];
- let mut items = [(0u32, 0usize); 14]; // (weight, index)
- for (i, item) in items.iter_mut().enumerate() {
- *item = (weights[i], i);
- }
- for _ in 0..N_REPS {
- let item = items.choose_weighted(&mut r, get_weight).unwrap();
- chosen[item.1] += 1;
- }
- verify(chosen);
-
- // choose_weighted_mut
- let mut items = [(0u32, 0i32); 14]; // (weight, count)
- for (i, item) in items.iter_mut().enumerate() {
- *item = (weights[i], 0);
- }
- for _ in 0..N_REPS {
- items.choose_weighted_mut(&mut r, get_weight).unwrap().1 += 1;
- }
- for (ch, item) in chosen.iter_mut().zip(items.iter()) {
- *ch = item.1;
- }
- verify(chosen);
-
- // Check error cases
- let empty_slice = &mut [10][0..0];
- assert_eq!(empty_slice.choose_weighted(&mut r, |_| 1), Err(WeightedError::NoItem));
- assert_eq!(empty_slice.choose_weighted_mut(&mut r, |_| 1), Err(WeightedError::NoItem));
- assert_eq!(['x'].choose_weighted_mut(&mut r, |_| 0), Err(WeightedError::AllWeightsZero));
- assert_eq!([0, -1].choose_weighted_mut(&mut r, |x| *x), Err(WeightedError::NegativeWeight));
- assert_eq!([-1, 0].choose_weighted_mut(&mut r, |x| *x), Err(WeightedError::NegativeWeight));
- }
-}