aboutsummaryrefslogtreecommitdiff
path: root/rand/src/rngs/thread.rs
diff options
context:
space:
mode:
Diffstat (limited to 'rand/src/rngs/thread.rs')
-rw-r--r--rand/src/rngs/thread.rs141
1 files changed, 0 insertions, 141 deletions
diff --git a/rand/src/rngs/thread.rs b/rand/src/rngs/thread.rs
deleted file mode 100644
index 7977d85..0000000
--- a/rand/src/rngs/thread.rs
+++ /dev/null
@@ -1,141 +0,0 @@
-// Copyright 2018 Developers of the Rand project.
-//
-// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
-// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
-// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
-// option. This file may not be copied, modified, or distributed
-// except according to those terms.
-
-//! Thread-local random number generator
-
-use std::cell::UnsafeCell;
-
-use {RngCore, CryptoRng, SeedableRng, Error};
-use rngs::adapter::ReseedingRng;
-use rngs::EntropyRng;
-use rand_hc::Hc128Core;
-
-// Rationale for using `UnsafeCell` in `ThreadRng`:
-//
-// Previously we used a `RefCell`, with an overhead of ~15%. There will only
-// ever be one mutable reference to the interior of the `UnsafeCell`, because
-// we only have such a reference inside `next_u32`, `next_u64`, etc. Within a
-// single thread (which is the definition of `ThreadRng`), there will only ever
-// be one of these methods active at a time.
-//
-// A possible scenario where there could be multiple mutable references is if
-// `ThreadRng` is used inside `next_u32` and co. But the implementation is
-// completely under our control. We just have to ensure none of them use
-// `ThreadRng` internally, which is nonsensical anyway. We should also never run
-// `ThreadRng` in destructors of its implementation, which is also nonsensical.
-//
-// The additional `Rc` is not strictly neccesary, and could be removed. For now
-// it ensures `ThreadRng` stays `!Send` and `!Sync`, and implements `Clone`.
-
-
-// Number of generated bytes after which to reseed `TreadRng`.
-//
-// The time it takes to reseed HC-128 is roughly equivalent to generating 7 KiB.
-// We pick a treshold here that is large enough to not reduce the average
-// performance too much, but also small enough to not make reseeding something
-// that basically never happens.
-const THREAD_RNG_RESEED_THRESHOLD: u64 = 32*1024*1024; // 32 MiB
-
-/// The type returned by [`thread_rng`], essentially just a reference to the
-/// PRNG in thread-local memory.
-///
-/// `ThreadRng` uses [`ReseedingRng`] wrapping the same PRNG as [`StdRng`],
-/// which is reseeded after generating 32 MiB of random data. A single instance
-/// is cached per thread and the returned `ThreadRng` is a reference to this
-/// instance — hence `ThreadRng` is neither `Send` nor `Sync` but is safe to use
-/// within a single thread. This RNG is seeded and reseeded via [`EntropyRng`]
-/// as required.
-///
-/// Note that the reseeding is done as an extra precaution against entropy
-/// leaks and is in theory unnecessary — to predict `ThreadRng`'s output, an
-/// attacker would have to either determine most of the RNG's seed or internal
-/// state, or crack the algorithm used.
-///
-/// Like [`StdRng`], `ThreadRng` is a cryptographically secure PRNG. The current
-/// algorithm used is [HC-128], which is an array-based PRNG that trades memory
-/// usage for better performance. This makes it similar to ISAAC, the algorithm
-/// used in `ThreadRng` before rand 0.5.
-///
-/// Cloning this handle just produces a new reference to the same thread-local
-/// generator.
-///
-/// [`thread_rng`]: ../fn.thread_rng.html
-/// [`ReseedingRng`]: adapter/struct.ReseedingRng.html
-/// [`StdRng`]: struct.StdRng.html
-/// [`EntropyRng`]: struct.EntropyRng.html
-/// [HC-128]: ../../rand_hc/struct.Hc128Rng.html
-#[derive(Clone, Debug)]
-pub struct ThreadRng {
- // use of raw pointer implies type is neither Send nor Sync
- rng: *mut ReseedingRng<Hc128Core, EntropyRng>,
-}
-
-thread_local!(
- static THREAD_RNG_KEY: UnsafeCell<ReseedingRng<Hc128Core, EntropyRng>> = {
- let mut entropy_source = EntropyRng::new();
- let r = Hc128Core::from_rng(&mut entropy_source).unwrap_or_else(|err|
- panic!("could not initialize thread_rng: {}", err));
- let rng = ReseedingRng::new(r,
- THREAD_RNG_RESEED_THRESHOLD,
- entropy_source);
- UnsafeCell::new(rng)
- }
-);
-
-/// Retrieve the lazily-initialized thread-local random number generator,
-/// seeded by the system. Intended to be used in method chaining style,
-/// e.g. `thread_rng().gen::<i32>()`, or cached locally, e.g.
-/// `let mut rng = thread_rng();`. Invoked by the `Default` trait, making
-/// `ThreadRng::default()` equivelent.
-///
-/// For more information see [`ThreadRng`].
-///
-/// [`ThreadRng`]: rngs/struct.ThreadRng.html
-pub fn thread_rng() -> ThreadRng {
- ThreadRng { rng: THREAD_RNG_KEY.with(|t| t.get()) }
-}
-
-impl Default for ThreadRng {
- fn default() -> ThreadRng {
- ::prelude::thread_rng()
- }
-}
-
-impl RngCore for ThreadRng {
- #[inline(always)]
- fn next_u32(&mut self) -> u32 {
- unsafe { (*self.rng).next_u32() }
- }
-
- #[inline(always)]
- fn next_u64(&mut self) -> u64 {
- unsafe { (*self.rng).next_u64() }
- }
-
- fn fill_bytes(&mut self, dest: &mut [u8]) {
- unsafe { (*self.rng).fill_bytes(dest) }
- }
-
- fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
- unsafe { (*self.rng).try_fill_bytes(dest) }
- }
-}
-
-impl CryptoRng for ThreadRng {}
-
-
-#[cfg(test)]
-mod test {
- #[test]
- fn test_thread_rng() {
- use Rng;
- let mut r = ::thread_rng();
- r.gen::<i32>();
- assert_eq!(r.gen_range(0, 1), 0);
- }
-}