aboutsummaryrefslogtreecommitdiff
path: root/rand/src/distributions/mod.rs
diff options
context:
space:
mode:
Diffstat (limited to 'rand/src/distributions/mod.rs')
-rw-r--r--rand/src/distributions/mod.rs621
1 files changed, 0 insertions, 621 deletions
diff --git a/rand/src/distributions/mod.rs b/rand/src/distributions/mod.rs
deleted file mode 100644
index 5e879cb..0000000
--- a/rand/src/distributions/mod.rs
+++ /dev/null
@@ -1,621 +0,0 @@
-// Copyright 2018 Developers of the Rand project.
-// Copyright 2013-2017 The Rust Project Developers.
-//
-// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
-// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
-// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
-// option. This file may not be copied, modified, or distributed
-// except according to those terms.
-
-//! Generating random samples from probability distributions.
-//!
-//! This module is the home of the [`Distribution`] trait and several of its
-//! implementations. It is the workhorse behind some of the convenient
-//! functionality of the [`Rng`] trait, including [`gen`], [`gen_range`] and
-//! of course [`sample`].
-//!
-//! Abstractly, a [probability distribution] describes the probability of
-//! occurance of each value in its sample space.
-//!
-//! More concretely, an implementation of `Distribution<T>` for type `X` is an
-//! algorithm for choosing values from the sample space (a subset of `T`)
-//! according to the distribution `X` represents, using an external source of
-//! randomness (an RNG supplied to the `sample` function).
-//!
-//! A type `X` may implement `Distribution<T>` for multiple types `T`.
-//! Any type implementing [`Distribution`] is stateless (i.e. immutable),
-//! but it may have internal parameters set at construction time (for example,
-//! [`Uniform`] allows specification of its sample space as a range within `T`).
-//!
-//!
-//! # The `Standard` distribution
-//!
-//! The [`Standard`] distribution is important to mention. This is the
-//! distribution used by [`Rng::gen()`] and represents the "default" way to
-//! produce a random value for many different types, including most primitive
-//! types, tuples, arrays, and a few derived types. See the documentation of
-//! [`Standard`] for more details.
-//!
-//! Implementing `Distribution<T>` for [`Standard`] for user types `T` makes it
-//! possible to generate type `T` with [`Rng::gen()`], and by extension also
-//! with the [`random()`] function.
-//!
-//!
-//! # Distribution to sample from a `Uniform` range
-//!
-//! The [`Uniform`] distribution is more flexible than [`Standard`], but also
-//! more specialised: it supports fewer target types, but allows the sample
-//! space to be specified as an arbitrary range within its target type `T`.
-//! Both [`Standard`] and [`Uniform`] are in some sense uniform distributions.
-//!
-//! Values may be sampled from this distribution using [`Rng::gen_range`] or
-//! by creating a distribution object with [`Uniform::new`],
-//! [`Uniform::new_inclusive`] or `From<Range>`. When the range limits are not
-//! known at compile time it is typically faster to reuse an existing
-//! distribution object than to call [`Rng::gen_range`].
-//!
-//! User types `T` may also implement `Distribution<T>` for [`Uniform`],
-//! although this is less straightforward than for [`Standard`] (see the
-//! documentation in the [`uniform` module]. Doing so enables generation of
-//! values of type `T` with [`Rng::gen_range`].
-//!
-//!
-//! # Other distributions
-//!
-//! There are surprisingly many ways to uniformly generate random floats. A
-//! range between 0 and 1 is standard, but the exact bounds (open vs closed)
-//! and accuracy differ. In addition to the [`Standard`] distribution Rand offers
-//! [`Open01`] and [`OpenClosed01`]. See [Floating point implementation] for
-//! more details.
-//!
-//! [`Alphanumeric`] is a simple distribution to sample random letters and
-//! numbers of the `char` type; in contrast [`Standard`] may sample any valid
-//! `char`.
-//!
-//! [`WeightedIndex`] can be used to do weighted sampling from a set of items,
-//! such as from an array.
-//!
-//! # Non-uniform probability distributions
-//!
-//! Rand currently provides the following probability distributions:
-//!
-//! - Related to real-valued quantities that grow linearly
-//! (e.g. errors, offsets):
-//! - [`Normal`] distribution, and [`StandardNormal`] as a primitive
-//! - [`Cauchy`] distribution
-//! - Related to Bernoulli trials (yes/no events, with a given probability):
-//! - [`Binomial`] distribution
-//! - [`Bernoulli`] distribution, similar to [`Rng::gen_bool`].
-//! - Related to positive real-valued quantities that grow exponentially
-//! (e.g. prices, incomes, populations):
-//! - [`LogNormal`] distribution
-//! - Related to the occurrence of independent events at a given rate:
-//! - [`Pareto`] distribution
-//! - [`Poisson`] distribution
-//! - [`Exp`]onential distribution, and [`Exp1`] as a primitive
-//! - [`Weibull`] distribution
-//! - Gamma and derived distributions:
-//! - [`Gamma`] distribution
-//! - [`ChiSquared`] distribution
-//! - [`StudentT`] distribution
-//! - [`FisherF`] distribution
-//! - Triangular distribution:
-//! - [`Beta`] distribution
-//! - [`Triangular`] distribution
-//! - Multivariate probability distributions
-//! - [`Dirichlet`] distribution
-//! - [`UnitSphereSurface`] distribution
-//! - [`UnitCircle`] distribution
-//!
-//! # Examples
-//!
-//! Sampling from a distribution:
-//!
-//! ```
-//! use rand::{thread_rng, Rng};
-//! use rand::distributions::Exp;
-//!
-//! let exp = Exp::new(2.0);
-//! let v = thread_rng().sample(exp);
-//! println!("{} is from an Exp(2) distribution", v);
-//! ```
-//!
-//! Implementing the [`Standard`] distribution for a user type:
-//!
-//! ```
-//! # #![allow(dead_code)]
-//! use rand::Rng;
-//! use rand::distributions::{Distribution, Standard};
-//!
-//! struct MyF32 {
-//! x: f32,
-//! }
-//!
-//! impl Distribution<MyF32> for Standard {
-//! fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> MyF32 {
-//! MyF32 { x: rng.gen() }
-//! }
-//! }
-//! ```
-//!
-//!
-//! [probability distribution]: https://en.wikipedia.org/wiki/Probability_distribution
-//! [`Distribution`]: trait.Distribution.html
-//! [`gen_range`]: ../trait.Rng.html#method.gen_range
-//! [`gen`]: ../trait.Rng.html#method.gen
-//! [`sample`]: ../trait.Rng.html#method.sample
-//! [`new_inclusive`]: struct.Uniform.html#method.new_inclusive
-//! [`random()`]: ../fn.random.html
-//! [`Rng::gen_bool`]: ../trait.Rng.html#method.gen_bool
-//! [`Rng::gen_range`]: ../trait.Rng.html#method.gen_range
-//! [`Rng::gen()`]: ../trait.Rng.html#method.gen
-//! [`Rng`]: ../trait.Rng.html
-//! [`uniform` module]: uniform/index.html
-//! [Floating point implementation]: struct.Standard.html#floating-point-implementation
-// distributions
-//! [`Alphanumeric`]: struct.Alphanumeric.html
-//! [`Bernoulli`]: struct.Bernoulli.html
-//! [`Beta`]: struct.Beta.html
-//! [`Binomial`]: struct.Binomial.html
-//! [`Cauchy`]: struct.Cauchy.html
-//! [`ChiSquared`]: struct.ChiSquared.html
-//! [`Dirichlet`]: struct.Dirichlet.html
-//! [`Exp`]: struct.Exp.html
-//! [`Exp1`]: struct.Exp1.html
-//! [`FisherF`]: struct.FisherF.html
-//! [`Gamma`]: struct.Gamma.html
-//! [`LogNormal`]: struct.LogNormal.html
-//! [`Normal`]: struct.Normal.html
-//! [`Open01`]: struct.Open01.html
-//! [`OpenClosed01`]: struct.OpenClosed01.html
-//! [`Pareto`]: struct.Pareto.html
-//! [`Poisson`]: struct.Poisson.html
-//! [`Standard`]: struct.Standard.html
-//! [`StandardNormal`]: struct.StandardNormal.html
-//! [`StudentT`]: struct.StudentT.html
-//! [`Triangular`]: struct.Triangular.html
-//! [`Uniform`]: struct.Uniform.html
-//! [`Uniform::new`]: struct.Uniform.html#method.new
-//! [`Uniform::new_inclusive`]: struct.Uniform.html#method.new_inclusive
-//! [`UnitSphereSurface`]: struct.UnitSphereSurface.html
-//! [`UnitCircle`]: struct.UnitCircle.html
-//! [`Weibull`]: struct.Weibull.html
-//! [`WeightedIndex`]: struct.WeightedIndex.html
-
-#[cfg(any(rustc_1_26, features="nightly"))]
-use core::iter;
-use Rng;
-
-pub use self::other::Alphanumeric;
-#[doc(inline)] pub use self::uniform::Uniform;
-pub use self::float::{OpenClosed01, Open01};
-pub use self::bernoulli::Bernoulli;
-#[cfg(feature="alloc")] pub use self::weighted::{WeightedIndex, WeightedError};
-#[cfg(feature="std")] pub use self::unit_sphere::UnitSphereSurface;
-#[cfg(feature="std")] pub use self::unit_circle::UnitCircle;
-#[cfg(feature="std")] pub use self::gamma::{Gamma, ChiSquared, FisherF,
- StudentT, Beta};
-#[cfg(feature="std")] pub use self::normal::{Normal, LogNormal, StandardNormal};
-#[cfg(feature="std")] pub use self::exponential::{Exp, Exp1};
-#[cfg(feature="std")] pub use self::pareto::Pareto;
-#[cfg(feature="std")] pub use self::poisson::Poisson;
-#[cfg(feature="std")] pub use self::binomial::Binomial;
-#[cfg(feature="std")] pub use self::cauchy::Cauchy;
-#[cfg(feature="std")] pub use self::dirichlet::Dirichlet;
-#[cfg(feature="std")] pub use self::triangular::Triangular;
-#[cfg(feature="std")] pub use self::weibull::Weibull;
-
-pub mod uniform;
-mod bernoulli;
-#[cfg(feature="alloc")] mod weighted;
-#[cfg(feature="std")] mod unit_sphere;
-#[cfg(feature="std")] mod unit_circle;
-#[cfg(feature="std")] mod gamma;
-#[cfg(feature="std")] mod normal;
-#[cfg(feature="std")] mod exponential;
-#[cfg(feature="std")] mod pareto;
-#[cfg(feature="std")] mod poisson;
-#[cfg(feature="std")] mod binomial;
-#[cfg(feature="std")] mod cauchy;
-#[cfg(feature="std")] mod dirichlet;
-#[cfg(feature="std")] mod triangular;
-#[cfg(feature="std")] mod weibull;
-
-mod float;
-mod integer;
-mod other;
-mod utils;
-#[cfg(feature="std")] mod ziggurat_tables;
-
-/// Types (distributions) that can be used to create a random instance of `T`.
-///
-/// It is possible to sample from a distribution through both the
-/// `Distribution` and [`Rng`] traits, via `distr.sample(&mut rng)` and
-/// `rng.sample(distr)`. They also both offer the [`sample_iter`] method, which
-/// produces an iterator that samples from the distribution.
-///
-/// All implementations are expected to be immutable; this has the significant
-/// advantage of not needing to consider thread safety, and for most
-/// distributions efficient state-less sampling algorithms are available.
-///
-/// [`Rng`]: ../trait.Rng.html
-/// [`sample_iter`]: trait.Distribution.html#method.sample_iter
-pub trait Distribution<T> {
- /// Generate a random value of `T`, using `rng` as the source of randomness.
- fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> T;
-
- /// Create an iterator that generates random values of `T`, using `rng` as
- /// the source of randomness.
- ///
- /// # Example
- ///
- /// ```
- /// use rand::thread_rng;
- /// use rand::distributions::{Distribution, Alphanumeric, Uniform, Standard};
- ///
- /// let mut rng = thread_rng();
- ///
- /// // Vec of 16 x f32:
- /// let v: Vec<f32> = Standard.sample_iter(&mut rng).take(16).collect();
- ///
- /// // String:
- /// let s: String = Alphanumeric.sample_iter(&mut rng).take(7).collect();
- ///
- /// // Dice-rolling:
- /// let die_range = Uniform::new_inclusive(1, 6);
- /// let mut roll_die = die_range.sample_iter(&mut rng);
- /// while roll_die.next().unwrap() != 6 {
- /// println!("Not a 6; rolling again!");
- /// }
- /// ```
- fn sample_iter<'a, R>(&'a self, rng: &'a mut R) -> DistIter<'a, Self, R, T>
- where Self: Sized, R: Rng
- {
- DistIter {
- distr: self,
- rng: rng,
- phantom: ::core::marker::PhantomData,
- }
- }
-}
-
-impl<'a, T, D: Distribution<T>> Distribution<T> for &'a D {
- fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> T {
- (*self).sample(rng)
- }
-}
-
-
-/// An iterator that generates random values of `T` with distribution `D`,
-/// using `R` as the source of randomness.
-///
-/// This `struct` is created by the [`sample_iter`] method on [`Distribution`].
-/// See its documentation for more.
-///
-/// [`Distribution`]: trait.Distribution.html
-/// [`sample_iter`]: trait.Distribution.html#method.sample_iter
-#[derive(Debug)]
-pub struct DistIter<'a, D: 'a, R: 'a, T> {
- distr: &'a D,
- rng: &'a mut R,
- phantom: ::core::marker::PhantomData<T>,
-}
-
-impl<'a, D, R, T> Iterator for DistIter<'a, D, R, T>
- where D: Distribution<T>, R: Rng + 'a
-{
- type Item = T;
-
- #[inline(always)]
- fn next(&mut self) -> Option<T> {
- Some(self.distr.sample(self.rng))
- }
-
- fn size_hint(&self) -> (usize, Option<usize>) {
- (usize::max_value(), None)
- }
-}
-
-#[cfg(rustc_1_26)]
-impl<'a, D, R, T> iter::FusedIterator for DistIter<'a, D, R, T>
- where D: Distribution<T>, R: Rng + 'a {}
-
-#[cfg(features = "nightly")]
-impl<'a, D, R, T> iter::TrustedLen for DistIter<'a, D, R, T>
- where D: Distribution<T>, R: Rng + 'a {}
-
-
-/// A generic random value distribution, implemented for many primitive types.
-/// Usually generates values with a numerically uniform distribution, and with a
-/// range appropriate to the type.
-///
-/// ## Built-in Implementations
-///
-/// Assuming the provided `Rng` is well-behaved, these implementations
-/// generate values with the following ranges and distributions:
-///
-/// * Integers (`i32`, `u32`, `isize`, `usize`, etc.): Uniformly distributed
-/// over all values of the type.
-/// * `char`: Uniformly distributed over all Unicode scalar values, i.e. all
-/// code points in the range `0...0x10_FFFF`, except for the range
-/// `0xD800...0xDFFF` (the surrogate code points). This includes
-/// unassigned/reserved code points.
-/// * `bool`: Generates `false` or `true`, each with probability 0.5.
-/// * Floating point types (`f32` and `f64`): Uniformly distributed in the
-/// half-open range `[0, 1)`. See notes below.
-/// * Wrapping integers (`Wrapping<T>`), besides the type identical to their
-/// normal integer variants.
-///
-/// The following aggregate types also implement the distribution `Standard` as
-/// long as their component types implement it:
-///
-/// * Tuples and arrays: Each element of the tuple or array is generated
-/// independently, using the `Standard` distribution recursively.
-/// * `Option<T>` where `Standard` is implemented for `T`: Returns `None` with
-/// probability 0.5; otherwise generates a random `x: T` and returns `Some(x)`.
-///
-/// # Example
-/// ```
-/// use rand::prelude::*;
-/// use rand::distributions::Standard;
-///
-/// let val: f32 = SmallRng::from_entropy().sample(Standard);
-/// println!("f32 from [0, 1): {}", val);
-/// ```
-///
-/// # Floating point implementation
-/// The floating point implementations for `Standard` generate a random value in
-/// the half-open interval `[0, 1)`, i.e. including 0 but not 1.
-///
-/// All values that can be generated are of the form `n * ε/2`. For `f32`
-/// the 23 most significant random bits of a `u32` are used and for `f64` the
-/// 53 most significant bits of a `u64` are used. The conversion uses the
-/// multiplicative method: `(rng.gen::<$uty>() >> N) as $ty * (ε/2)`.
-///
-/// See also: [`Open01`] which samples from `(0, 1)`, [`OpenClosed01`] which
-/// samples from `(0, 1]` and `Rng::gen_range(0, 1)` which also samples from
-/// `[0, 1)`. Note that `Open01` and `gen_range` (which uses [`Uniform`]) use
-/// transmute-based methods which yield 1 bit less precision but may perform
-/// faster on some architectures (on modern Intel CPUs all methods have
-/// approximately equal performance).
-///
-/// [`Open01`]: struct.Open01.html
-/// [`OpenClosed01`]: struct.OpenClosed01.html
-/// [`Uniform`]: uniform/struct.Uniform.html
-#[derive(Clone, Copy, Debug)]
-pub struct Standard;
-
-
-/// A value with a particular weight for use with `WeightedChoice`.
-#[deprecated(since="0.6.0", note="use WeightedIndex instead")]
-#[allow(deprecated)]
-#[derive(Copy, Clone, Debug)]
-pub struct Weighted<T> {
- /// The numerical weight of this item
- pub weight: u32,
- /// The actual item which is being weighted
- pub item: T,
-}
-
-/// A distribution that selects from a finite collection of weighted items.
-///
-/// Deprecated: use [`WeightedIndex`] instead.
-///
-/// [`WeightedIndex`]: struct.WeightedIndex.html
-#[deprecated(since="0.6.0", note="use WeightedIndex instead")]
-#[allow(deprecated)]
-#[derive(Debug)]
-pub struct WeightedChoice<'a, T:'a> {
- items: &'a mut [Weighted<T>],
- weight_range: Uniform<u32>,
-}
-
-#[deprecated(since="0.6.0", note="use WeightedIndex instead")]
-#[allow(deprecated)]
-impl<'a, T: Clone> WeightedChoice<'a, T> {
- /// Create a new `WeightedChoice`.
- ///
- /// Panics if:
- ///
- /// - `items` is empty
- /// - the total weight is 0
- /// - the total weight is larger than a `u32` can contain.
- pub fn new(items: &'a mut [Weighted<T>]) -> WeightedChoice<'a, T> {
- // strictly speaking, this is subsumed by the total weight == 0 case
- assert!(!items.is_empty(), "WeightedChoice::new called with no items");
-
- let mut running_total: u32 = 0;
-
- // we convert the list from individual weights to cumulative
- // weights so we can binary search. This *could* drop elements
- // with weight == 0 as an optimisation.
- for item in items.iter_mut() {
- running_total = match running_total.checked_add(item.weight) {
- Some(n) => n,
- None => panic!("WeightedChoice::new called with a total weight \
- larger than a u32 can contain")
- };
-
- item.weight = running_total;
- }
- assert!(running_total != 0, "WeightedChoice::new called with a total weight of 0");
-
- WeightedChoice {
- items,
- // we're likely to be generating numbers in this range
- // relatively often, so might as well cache it
- weight_range: Uniform::new(0, running_total)
- }
- }
-}
-
-#[deprecated(since="0.6.0", note="use WeightedIndex instead")]
-#[allow(deprecated)]
-impl<'a, T: Clone> Distribution<T> for WeightedChoice<'a, T> {
- fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> T {
- // we want to find the first element that has cumulative
- // weight > sample_weight, which we do by binary since the
- // cumulative weights of self.items are sorted.
-
- // choose a weight in [0, total_weight)
- let sample_weight = self.weight_range.sample(rng);
-
- // short circuit when it's the first item
- if sample_weight < self.items[0].weight {
- return self.items[0].item.clone();
- }
-
- let mut idx = 0;
- let mut modifier = self.items.len();
-
- // now we know that every possibility has an element to the
- // left, so we can just search for the last element that has
- // cumulative weight <= sample_weight, then the next one will
- // be "it". (Note that this greatest element will never be the
- // last element of the vector, since sample_weight is chosen
- // in [0, total_weight) and the cumulative weight of the last
- // one is exactly the total weight.)
- while modifier > 1 {
- let i = idx + modifier / 2;
- if self.items[i].weight <= sample_weight {
- // we're small, so look to the right, but allow this
- // exact element still.
- idx = i;
- // we need the `/ 2` to round up otherwise we'll drop
- // the trailing elements when `modifier` is odd.
- modifier += 1;
- } else {
- // otherwise we're too big, so go left. (i.e. do
- // nothing)
- }
- modifier /= 2;
- }
- self.items[idx + 1].item.clone()
- }
-}
-
-#[cfg(test)]
-mod tests {
- use rngs::mock::StepRng;
- #[allow(deprecated)]
- use super::{WeightedChoice, Weighted, Distribution};
-
- #[test]
- #[allow(deprecated)]
- fn test_weighted_choice() {
- // this makes assumptions about the internal implementation of
- // WeightedChoice. It may fail when the implementation in
- // `distributions::uniform::UniformInt` changes.
-
- macro_rules! t {
- ($items:expr, $expected:expr) => {{
- let mut items = $items;
- let mut total_weight = 0;
- for item in &items { total_weight += item.weight; }
-
- let wc = WeightedChoice::new(&mut items);
- let expected = $expected;
-
- // Use extremely large steps between the random numbers, because
- // we test with small ranges and `UniformInt` is designed to prefer
- // the most significant bits.
- let mut rng = StepRng::new(0, !0 / (total_weight as u64));
-
- for &val in expected.iter() {
- assert_eq!(wc.sample(&mut rng), val)
- }
- }}
- }
-
- t!([Weighted { weight: 1, item: 10}], [10]);
-
- // skip some
- t!([Weighted { weight: 0, item: 20},
- Weighted { weight: 2, item: 21},
- Weighted { weight: 0, item: 22},
- Weighted { weight: 1, item: 23}],
- [21, 21, 23]);
-
- // different weights
- t!([Weighted { weight: 4, item: 30},
- Weighted { weight: 3, item: 31}],
- [30, 31, 30, 31, 30, 31, 30]);
-
- // check that we're binary searching
- // correctly with some vectors of odd
- // length.
- t!([Weighted { weight: 1, item: 40},
- Weighted { weight: 1, item: 41},
- Weighted { weight: 1, item: 42},
- Weighted { weight: 1, item: 43},
- Weighted { weight: 1, item: 44}],
- [40, 41, 42, 43, 44]);
- t!([Weighted { weight: 1, item: 50},
- Weighted { weight: 1, item: 51},
- Weighted { weight: 1, item: 52},
- Weighted { weight: 1, item: 53},
- Weighted { weight: 1, item: 54},
- Weighted { weight: 1, item: 55},
- Weighted { weight: 1, item: 56}],
- [50, 54, 51, 55, 52, 56, 53]);
- }
-
- #[test]
- #[allow(deprecated)]
- fn test_weighted_clone_initialization() {
- let initial : Weighted<u32> = Weighted {weight: 1, item: 1};
- let clone = initial.clone();
- assert_eq!(initial.weight, clone.weight);
- assert_eq!(initial.item, clone.item);
- }
-
- #[test] #[should_panic]
- #[allow(deprecated)]
- fn test_weighted_clone_change_weight() {
- let initial : Weighted<u32> = Weighted {weight: 1, item: 1};
- let mut clone = initial.clone();
- clone.weight = 5;
- assert_eq!(initial.weight, clone.weight);
- }
-
- #[test] #[should_panic]
- #[allow(deprecated)]
- fn test_weighted_clone_change_item() {
- let initial : Weighted<u32> = Weighted {weight: 1, item: 1};
- let mut clone = initial.clone();
- clone.item = 5;
- assert_eq!(initial.item, clone.item);
-
- }
-
- #[test] #[should_panic]
- #[allow(deprecated)]
- fn test_weighted_choice_no_items() {
- WeightedChoice::<isize>::new(&mut []);
- }
- #[test] #[should_panic]
- #[allow(deprecated)]
- fn test_weighted_choice_zero_weight() {
- WeightedChoice::new(&mut [Weighted { weight: 0, item: 0},
- Weighted { weight: 0, item: 1}]);
- }
- #[test] #[should_panic]
- #[allow(deprecated)]
- fn test_weighted_choice_weight_overflows() {
- let x = ::core::u32::MAX / 2; // x + x + 2 is the overflow
- WeightedChoice::new(&mut [Weighted { weight: x, item: 0 },
- Weighted { weight: 1, item: 1 },
- Weighted { weight: x, item: 2 },
- Weighted { weight: 1, item: 3 }]);
- }
-
- #[cfg(feature="std")]
- #[test]
- fn test_distributions_iter() {
- use distributions::Normal;
- let mut rng = ::test::rng(210);
- let distr = Normal::new(10.0, 10.0);
- let results: Vec<_> = distr.sample_iter(&mut rng).take(100).collect();
- println!("{:?}", results);
- }
-}