aboutsummaryrefslogtreecommitdiff
path: root/rand/src/distributions/binomial.rs
diff options
context:
space:
mode:
Diffstat (limited to 'rand/src/distributions/binomial.rs')
-rw-r--r--rand/src/distributions/binomial.rs177
1 files changed, 0 insertions, 177 deletions
diff --git a/rand/src/distributions/binomial.rs b/rand/src/distributions/binomial.rs
deleted file mode 100644
index 2df393e..0000000
--- a/rand/src/distributions/binomial.rs
+++ /dev/null
@@ -1,177 +0,0 @@
-// Copyright 2018 Developers of the Rand project.
-// Copyright 2016-2017 The Rust Project Developers.
-//
-// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
-// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
-// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
-// option. This file may not be copied, modified, or distributed
-// except according to those terms.
-
-//! The binomial distribution.
-
-use Rng;
-use distributions::{Distribution, Bernoulli, Cauchy};
-use distributions::utils::log_gamma;
-
-/// The binomial distribution `Binomial(n, p)`.
-///
-/// This distribution has density function:
-/// `f(k) = n!/(k! (n-k)!) p^k (1-p)^(n-k)` for `k >= 0`.
-///
-/// # Example
-///
-/// ```
-/// use rand::distributions::{Binomial, Distribution};
-///
-/// let bin = Binomial::new(20, 0.3);
-/// let v = bin.sample(&mut rand::thread_rng());
-/// println!("{} is from a binomial distribution", v);
-/// ```
-#[derive(Clone, Copy, Debug)]
-pub struct Binomial {
- /// Number of trials.
- n: u64,
- /// Probability of success.
- p: f64,
-}
-
-impl Binomial {
- /// Construct a new `Binomial` with the given shape parameters `n` (number
- /// of trials) and `p` (probability of success).
- ///
- /// Panics if `p < 0` or `p > 1`.
- pub fn new(n: u64, p: f64) -> Binomial {
- assert!(p >= 0.0, "Binomial::new called with p < 0");
- assert!(p <= 1.0, "Binomial::new called with p > 1");
- Binomial { n, p }
- }
-}
-
-impl Distribution<u64> for Binomial {
- fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u64 {
- // Handle these values directly.
- if self.p == 0.0 {
- return 0;
- } else if self.p == 1.0 {
- return self.n;
- }
-
- // For low n, it is faster to sample directly. For both methods,
- // performance is independent of p. On Intel Haswell CPU this method
- // appears to be faster for approx n < 300.
- if self.n < 300 {
- let mut result = 0;
- let d = Bernoulli::new(self.p);
- for _ in 0 .. self.n {
- result += rng.sample(d) as u32;
- }
- return result as u64;
- }
-
- // binomial distribution is symmetrical with respect to p -> 1-p, k -> n-k
- // switch p so that it is less than 0.5 - this allows for lower expected values
- // we will just invert the result at the end
- let p = if self.p <= 0.5 {
- self.p
- } else {
- 1.0 - self.p
- };
-
- // prepare some cached values
- let float_n = self.n as f64;
- let ln_fact_n = log_gamma(float_n + 1.0);
- let pc = 1.0 - p;
- let log_p = p.ln();
- let log_pc = pc.ln();
- let expected = self.n as f64 * p;
- let sq = (expected * (2.0 * pc)).sqrt();
-
- let mut lresult;
-
- // we use the Cauchy distribution as the comparison distribution
- // f(x) ~ 1/(1+x^2)
- let cauchy = Cauchy::new(0.0, 1.0);
- loop {
- let mut comp_dev: f64;
- loop {
- // draw from the Cauchy distribution
- comp_dev = rng.sample(cauchy);
- // shift the peak of the comparison ditribution
- lresult = expected + sq * comp_dev;
- // repeat the drawing until we are in the range of possible values
- if lresult >= 0.0 && lresult < float_n + 1.0 {
- break;
- }
- }
-
- // the result should be discrete
- lresult = lresult.floor();
-
- let log_binomial_dist = ln_fact_n - log_gamma(lresult+1.0) -
- log_gamma(float_n - lresult + 1.0) + lresult*log_p + (float_n - lresult)*log_pc;
- // this is the binomial probability divided by the comparison probability
- // we will generate a uniform random value and if it is larger than this,
- // we interpret it as a value falling out of the distribution and repeat
- let comparison_coeff = (log_binomial_dist.exp() * sq) * (1.2 * (1.0 + comp_dev*comp_dev));
-
- if comparison_coeff >= rng.gen() {
- break;
- }
- }
-
- // invert the result for p < 0.5
- if p != self.p {
- self.n - lresult as u64
- } else {
- lresult as u64
- }
- }
-}
-
-#[cfg(test)]
-mod test {
- use Rng;
- use distributions::Distribution;
- use super::Binomial;
-
- fn test_binomial_mean_and_variance<R: Rng>(n: u64, p: f64, rng: &mut R) {
- let binomial = Binomial::new(n, p);
-
- let expected_mean = n as f64 * p;
- let expected_variance = n as f64 * p * (1.0 - p);
-
- let mut results = [0.0; 1000];
- for i in results.iter_mut() { *i = binomial.sample(rng) as f64; }
-
- let mean = results.iter().sum::<f64>() / results.len() as f64;
- assert!((mean as f64 - expected_mean).abs() < expected_mean / 50.0);
-
- let variance =
- results.iter().map(|x| (x - mean) * (x - mean)).sum::<f64>()
- / results.len() as f64;
- assert!((variance - expected_variance).abs() < expected_variance / 10.0);
- }
-
- #[test]
- fn test_binomial() {
- let mut rng = ::test::rng(351);
- test_binomial_mean_and_variance(150, 0.1, &mut rng);
- test_binomial_mean_and_variance(70, 0.6, &mut rng);
- test_binomial_mean_and_variance(40, 0.5, &mut rng);
- test_binomial_mean_and_variance(20, 0.7, &mut rng);
- test_binomial_mean_and_variance(20, 0.5, &mut rng);
- }
-
- #[test]
- fn test_binomial_end_points() {
- let mut rng = ::test::rng(352);
- assert_eq!(rng.sample(Binomial::new(20, 0.0)), 0);
- assert_eq!(rng.sample(Binomial::new(20, 1.0)), 20);
- }
-
- #[test]
- #[should_panic]
- fn test_binomial_invalid_lambda_neg() {
- Binomial::new(20, -10.0);
- }
-}