aboutsummaryrefslogtreecommitdiff
path: root/rand/rand_core/src/lib.rs
diff options
context:
space:
mode:
Diffstat (limited to 'rand/rand_core/src/lib.rs')
-rw-r--r--rand/rand_core/src/lib.rs246
1 files changed, 126 insertions, 120 deletions
diff --git a/rand/rand_core/src/lib.rs b/rand/rand_core/src/lib.rs
index a65db93..d8e0189 100644
--- a/rand/rand_core/src/lib.rs
+++ b/rand/rand_core/src/lib.rs
@@ -8,29 +8,24 @@
// except according to those terms.
//! Random number generation traits
-//!
+//!
//! This crate is mainly of interest to crates publishing implementations of
-//! [`RngCore`]. Other users are encouraged to use the [rand] crate instead
+//! [`RngCore`]. Other users are encouraged to use the [`rand`] crate instead
//! which re-exports the main traits and error types.
//!
//! [`RngCore`] is the core trait implemented by algorithmic pseudo-random number
//! generators and external random-number sources.
-//!
+//!
//! [`SeedableRng`] is an extension trait for construction from fixed seeds and
//! other random number generators.
-//!
+//!
//! [`Error`] is provided for error-handling. It is safe to use in `no_std`
//! environments.
-//!
+//!
//! The [`impls`] and [`le`] sub-modules include a few small functions to assist
//! implementation of [`RngCore`].
-//!
-//! [rand]: https://crates.io/crates/rand
-//! [`RngCore`]: trait.RngCore.html
-//! [`SeedableRng`]: trait.SeedableRng.html
-//! [`Error`]: struct.Error.html
-//! [`impls`]: impls/index.html
-//! [`le`]: le/index.html
+//!
+//! [`rand`]: https://docs.rs/rand
#![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk.png",
html_favicon_url = "https://www.rust-lang.org/favicon.ico",
@@ -40,59 +35,58 @@
#![deny(missing_debug_implementations)]
#![doc(test(attr(allow(unused_variables), deny(warnings))))]
-#![cfg_attr(not(feature="std"), no_std)]
-#![cfg_attr(all(feature="alloc", not(feature="std")), feature(alloc))]
+#![allow(clippy::unreadable_literal)]
-#[cfg(feature="std")] extern crate core;
-#[cfg(all(feature = "alloc", not(feature="std")))] extern crate alloc;
-#[cfg(feature="serde1")] extern crate serde;
-#[cfg(feature="serde1")] #[macro_use] extern crate serde_derive;
+#![cfg_attr(not(feature="std"), no_std)]
use core::default::Default;
use core::convert::AsMut;
use core::ptr::copy_nonoverlapping;
+#[cfg(all(feature="alloc", not(feature="std")))] extern crate alloc;
#[cfg(all(feature="alloc", not(feature="std")))] use alloc::boxed::Box;
-pub use error::{ErrorKind, Error};
+pub use error::Error;
+#[cfg(feature="getrandom")] pub use os::OsRng;
mod error;
pub mod block;
pub mod impls;
pub mod le;
+#[cfg(feature="getrandom")] mod os;
/// The core of a random number generator.
-///
+///
/// This trait encapsulates the low-level functionality common to all
/// generators, and is the "back end", to be implemented by generators.
-/// End users should normally use [`Rng`] from the [rand] crate, which is
-/// automatically implemented for every type implementing `RngCore`.
-///
+/// End users should normally use the `Rng` trait from the [`rand`] crate,
+/// which is automatically implemented for every type implementing `RngCore`.
+///
/// Three different methods for generating random data are provided since the
/// optimal implementation of each is dependent on the type of generator. There
/// is no required relationship between the output of each; e.g. many
/// implementations of [`fill_bytes`] consume a whole number of `u32` or `u64`
/// values and drop any remaining unused bytes.
-///
+///
/// The [`try_fill_bytes`] method is a variant of [`fill_bytes`] allowing error
/// handling; it is not deemed sufficiently useful to add equivalents for
/// [`next_u32`] or [`next_u64`] since the latter methods are almost always used
/// with algorithmic generators (PRNGs), which are normally infallible.
-///
+///
/// Algorithmic generators implementing [`SeedableRng`] should normally have
/// *portable, reproducible* output, i.e. fix Endianness when converting values
/// to avoid platform differences, and avoid making any changes which affect
/// output (except by communicating that the release has breaking changes).
-///
+///
/// Typically implementators will implement only one of the methods available
/// in this trait directly, then use the helper functions from the
-/// [`rand_core::impls`] module to implement the other methods.
-///
+/// [`impls`] module to implement the other methods.
+///
/// It is recommended that implementations also implement:
-///
+///
/// - `Debug` with a custom implementation which *does not* print any internal
/// state (at least, [`CryptoRng`]s should not risk leaking state through
/// `Debug`).
@@ -104,72 +98,69 @@ pub mod le;
/// implement [`SeedableRng`], to guide users towards proper seeding.
/// External / hardware RNGs can choose to implement `Default`.
/// - `Eq` and `PartialEq` could be implemented, but are probably not useful.
-///
+///
/// # Example
-///
+///
/// A simple example, obviously not generating very *random* output:
-///
+///
/// ```
/// #![allow(dead_code)]
/// use rand_core::{RngCore, Error, impls};
-///
+///
/// struct CountingRng(u64);
-///
+///
/// impl RngCore for CountingRng {
/// fn next_u32(&mut self) -> u32 {
/// self.next_u64() as u32
/// }
-///
+///
/// fn next_u64(&mut self) -> u64 {
/// self.0 += 1;
/// self.0
/// }
-///
+///
/// fn fill_bytes(&mut self, dest: &mut [u8]) {
/// impls::fill_bytes_via_next(self, dest)
/// }
-///
+///
/// fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
/// Ok(self.fill_bytes(dest))
/// }
/// }
/// ```
-///
-/// [rand]: https://crates.io/crates/rand
-/// [`Rng`]: ../rand/trait.Rng.html
-/// [`SeedableRng`]: trait.SeedableRng.html
-/// [`rand_core::impls`]: ../rand_core/impls/index.html
-/// [`try_fill_bytes`]: trait.RngCore.html#tymethod.try_fill_bytes
-/// [`fill_bytes`]: trait.RngCore.html#tymethod.fill_bytes
-/// [`next_u32`]: trait.RngCore.html#tymethod.next_u32
-/// [`next_u64`]: trait.RngCore.html#tymethod.next_u64
-/// [`CryptoRng`]: trait.CryptoRng.html
+///
+/// [`rand`]: https://docs.rs/rand
+/// [`try_fill_bytes`]: RngCore::try_fill_bytes
+/// [`fill_bytes`]: RngCore::fill_bytes
+/// [`next_u32`]: RngCore::next_u32
+/// [`next_u64`]: RngCore::next_u64
pub trait RngCore {
/// Return the next random `u32`.
///
/// RNGs must implement at least one method from this trait directly. In
/// the case this method is not implemented directly, it can be implemented
- /// using `self.next_u64() as u32` or
- /// [via `fill_bytes`](../rand_core/impls/fn.next_u32_via_fill.html).
+ /// using `self.next_u64() as u32` or via
+ /// [`fill_bytes`](impls::next_u32_via_fill).
fn next_u32(&mut self) -> u32;
/// Return the next random `u64`.
///
/// RNGs must implement at least one method from this trait directly. In
/// the case this method is not implemented directly, it can be implemented
- /// [via `next_u32`](../rand_core/impls/fn.next_u64_via_u32.html) or
- /// [via `fill_bytes`](../rand_core/impls/fn.next_u64_via_fill.html).
+ /// via [`next_u32`](impls::next_u64_via_u32) or via
+ /// [`fill_bytes`](impls::next_u64_via_fill).
fn next_u64(&mut self) -> u64;
/// Fill `dest` with random data.
///
/// RNGs must implement at least one method from this trait directly. In
/// the case this method is not implemented directly, it can be implemented
- /// [via `next_u*`](../rand_core/impls/fn.fill_bytes_via_next.html) or
- /// via `try_fill_bytes`; if this generator can fail the implementation
- /// must choose how best to handle errors here (e.g. panic with a
- /// descriptive message or log a warning and retry a few times).
- ///
+ /// via [`next_u*`](impls::fill_bytes_via_next) or
+ /// via [`try_fill_bytes`](RngCore::try_fill_bytes); if this generator can
+ /// fail the implementation must choose how best to handle errors here
+ /// (e.g. panic with a descriptive message or log a warning and retry a few
+ /// times).
+ ///
/// This method should guarantee that `dest` is entirely filled
/// with new data, and may panic if this is impossible
/// (e.g. reading past the end of a file that is being used as the
@@ -182,51 +173,46 @@ pub trait RngCore {
/// generating random data thus making this the primary method implemented
/// by external (true) RNGs (e.g. `OsRng`) which can fail. It may be used
/// directly to generate keys and to seed (infallible) PRNGs.
- ///
+ ///
/// Other than error handling, this method is identical to [`fill_bytes`];
/// thus this may be implemented using `Ok(self.fill_bytes(dest))` or
/// `fill_bytes` may be implemented with
/// `self.try_fill_bytes(dest).unwrap()` or more specific error handling.
- ///
- /// [`fill_bytes`]: trait.RngCore.html#method.fill_bytes
+ ///
+ /// [`fill_bytes`]: RngCore::fill_bytes
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error>;
}
/// A marker trait used to indicate that an [`RngCore`] or [`BlockRngCore`]
/// implementation is supposed to be cryptographically secure.
-///
+///
/// *Cryptographically secure generators*, also known as *CSPRNGs*, should
/// satisfy an additional properties over other generators: given the first
/// *k* bits of an algorithm's output
/// sequence, it should not be possible using polynomial-time algorithms to
/// predict the next bit with probability significantly greater than 50%.
-///
+///
/// Some generators may satisfy an additional property, however this is not
/// required by this trait: if the CSPRNG's state is revealed, it should not be
/// computationally-feasible to reconstruct output prior to this. Some other
/// generators allow backwards-computation and are consided *reversible*.
-///
+///
/// Note that this trait is provided for guidance only and cannot guarantee
/// suitability for cryptographic applications. In general it should only be
/// implemented for well-reviewed code implementing well-regarded algorithms.
-///
+///
/// Note also that use of a `CryptoRng` does not protect against other
/// weaknesses such as seeding from a weak entropy source or leaking state.
-///
-/// [`RngCore`]: trait.RngCore.html
-/// [`BlockRngCore`]: ../rand_core/block/trait.BlockRngCore.html
+///
+/// [`BlockRngCore`]: block::BlockRngCore
pub trait CryptoRng {}
/// A random number generator that can be explicitly seeded.
///
/// This trait encapsulates the low-level functionality common to all
/// pseudo-random number generators (PRNGs, or algorithmic generators).
-///
-/// The [`rand::FromEntropy`] trait is automatically implemented for every type
-/// implementing `SeedableRng`, providing a convenient `from_entropy()`
-/// constructor.
-///
-/// [`rand::FromEntropy`]: ../rand/trait.FromEntropy.html
+///
+/// [`rand`]: https://docs.rs/rand
pub trait SeedableRng: Sized {
/// Seed type, which is restricted to types mutably-dereferencable as `u8`
/// arrays (we recommend `[u8; N]` for some `N`).
@@ -279,14 +265,18 @@ pub trait SeedableRng: Sized {
///
/// PRNG implementations are allowed to assume that bits in the seed are
/// well distributed. That means usually that the number of one and zero
- /// bits are about equal, and values like 0, 1 and (size - 1) are unlikely.
+ /// bits are roughly equal, and values like 0, 1 and (size - 1) are unlikely.
+ /// Note that many non-cryptographic PRNGs will show poor quality output
+ /// if this is not adhered to. If you wish to seed from simple numbers, use
+ /// `seed_from_u64` instead.
///
- /// PRNG implementations are recommended to be reproducible. A PRNG seeded
- /// using this function with a fixed seed should produce the same sequence
- /// of output in the future and on different architectures (with for example
- /// different endianness).
+ /// All PRNG implementations should be reproducible unless otherwise noted:
+ /// given a fixed `seed`, the same sequence of output should be produced
+ /// on all runs, library versions and architectures (e.g. check endianness).
+ /// Any "value-breaking" changes to the generator should require bumping at
+ /// least the minor version and documentation of the change.
///
- /// It is however not required that this function yield the same state as a
+ /// It is not required that this function yield the same state as a
/// reference implementation of the PRNG given equivalent seed; if necessary
/// another constructor replicating behaviour from a reference
/// implementation can be added.
@@ -297,17 +287,17 @@ pub trait SeedableRng: Sized {
/// for example `0xBAD5EEDu32` or `0x0DDB1A5E5BAD5EEDu64` ("odd biases? bad
/// seed"). This is assuming only a small number of values must be rejected.
fn from_seed(seed: Self::Seed) -> Self;
-
+
/// Create a new PRNG using a `u64` seed.
- ///
+ ///
/// This is a convenience-wrapper around `from_seed` to allow construction
/// of any `SeedableRng` from a simple `u64` value. It is designed such that
/// low Hamming Weight numbers like 0 and 1 can be used and should still
/// result in good, independent seeds to the PRNG which is returned.
- ///
+ ///
/// This **is not suitable for cryptography**, as should be clear given that
/// the input size is only 64 bits.
- ///
+ ///
/// Implementations for PRNGs *may* provide their own implementations of
/// this function, but the default implementation should be good enough for
/// all purposes. *Changing* the implementation of this function should be
@@ -316,64 +306,80 @@ pub trait SeedableRng: Sized {
// We use PCG32 to generate a u32 sequence, and copy to the seed
const MUL: u64 = 6364136223846793005;
const INC: u64 = 11634580027462260723;
-
+
let mut seed = Self::Seed::default();
for chunk in seed.as_mut().chunks_mut(4) {
// We advance the state first (to get away from the input value,
// in case it has low Hamming Weight).
state = state.wrapping_mul(MUL).wrapping_add(INC);
-
+
// Use PCG output function with to_le to generate x:
let xorshifted = (((state >> 18) ^ state) >> 27) as u32;
let rot = (state >> 59) as u32;
let x = xorshifted.rotate_right(rot).to_le();
-
+
unsafe {
let p = &x as *const u32 as *const u8;
copy_nonoverlapping(p, chunk.as_mut_ptr(), chunk.len());
}
}
-
+
Self::from_seed(seed)
}
-
+
/// Create a new PRNG seeded from another `Rng`.
///
- /// This is the recommended way to initialize PRNGs with fresh entropy. The
- /// [`FromEntropy`] trait provides a convenient `from_entropy` method
- /// based on `from_rng`.
- ///
- /// Usage of this method is not recommended when reproducibility is required
- /// since implementing PRNGs are not required to fix Endianness and are
- /// allowed to modify implementations in new releases.
- ///
- /// It is important to use a good source of randomness to initialize the
- /// PRNG. Cryptographic PRNG may be rendered insecure when seeded from a
- /// non-cryptographic PRNG or with insufficient entropy.
- /// Many non-cryptographic PRNGs will show statistical bias in their first
- /// results if their seed numbers are small or if there is a simple pattern
- /// between them.
- ///
- /// Prefer to seed from a strong external entropy source like [`OsRng`] or
- /// from a cryptographic PRNG; if creating a new generator for cryptographic
- /// uses you *must* seed from a strong source.
- ///
- /// Seeding a small PRNG from another small PRNG is possible, but
- /// something to be careful with. An extreme example of how this can go
- /// wrong is seeding an Xorshift RNG from another Xorshift RNG, which
- /// will effectively clone the generator. In general seeding from a
- /// generator which is hard to predict is probably okay.
+ /// This may be useful when needing to rapidly seed many PRNGs from a master
+ /// PRNG, and to allow forking of PRNGs. It may be considered deterministic.
+ ///
+ /// The master PRNG should be at least as high quality as the child PRNGs.
+ /// When seeding non-cryptographic child PRNGs, we recommend using a
+ /// different algorithm for the master PRNG (ideally a CSPRNG) to avoid
+ /// correlations between the child PRNGs. If this is not possible (e.g.
+ /// forking using small non-crypto PRNGs) ensure that your PRNG has a good
+ /// mixing function on the output or consider use of a hash function with
+ /// `from_seed`.
+ ///
+ /// Note that seeding `XorShiftRng` from another `XorShiftRng` provides an
+ /// extreme example of what can go wrong: the new PRNG will be a clone
+ /// of the parent.
///
/// PRNG implementations are allowed to assume that a good RNG is provided
/// for seeding, and that it is cryptographically secure when appropriate.
- ///
- /// [`FromEntropy`]: ../rand/trait.FromEntropy.html
- /// [`OsRng`]: ../rand/rngs/struct.OsRng.html
+ /// As of `rand` 0.7 / `rand_core` 0.5, implementations overriding this
+ /// method should ensure the implementation satisfies reproducibility
+ /// (in prior versions this was not required).
+ ///
+ /// [`rand`]: https://docs.rs/rand
+ /// [`rand_os`]: https://docs.rs/rand_os
fn from_rng<R: RngCore>(mut rng: R) -> Result<Self, Error> {
let mut seed = Self::Seed::default();
rng.try_fill_bytes(seed.as_mut())?;
Ok(Self::from_seed(seed))
}
+
+ /// Creates a new instance of the RNG seeded via [`getrandom`].
+ ///
+ /// This method is the recommended way to construct non-deterministic PRNGs
+ /// since it is convenient and secure.
+ ///
+ /// In case the overhead of using [`getrandom`] to seed *many* PRNGs is an
+ /// issue, one may prefer to seed from a local PRNG, e.g.
+ /// `from_rng(thread_rng()).unwrap()`.
+ ///
+ /// # Panics
+ ///
+ /// If [`getrandom`] is unable to provide secure entropy this method will panic.
+ ///
+ /// [`getrandom`]: https://docs.rs/getrandom
+ #[cfg(feature="getrandom")]
+ fn from_entropy() -> Self {
+ let mut seed = Self::Seed::default();
+ if let Err(err) = getrandom::getrandom(seed.as_mut()) {
+ panic!("from_entropy failed: {}", err);
+ }
+ Self::from_seed(seed)
+ }
}
// Implement `RngCore` for references to an `RngCore`.
@@ -428,7 +434,7 @@ impl<R: RngCore + ?Sized> RngCore for Box<R> {
}
#[cfg(feature="std")]
-impl std::io::Read for RngCore {
+impl std::io::Read for dyn RngCore {
fn read(&mut self, buf: &mut [u8]) -> Result<usize, std::io::Error> {
self.try_fill_bytes(buf)?;
Ok(buf.len())
@@ -445,7 +451,7 @@ impl<R: CryptoRng + ?Sized> CryptoRng for Box<R> {}
#[cfg(test)]
mod test {
use super::*;
-
+
#[test]
fn test_seed_from_u64() {
struct SeedableNum(u64);
@@ -457,7 +463,7 @@ mod test {
SeedableNum(x[0])
}
}
-
+
const N: usize = 8;
const SEEDS: [u64; N] = [0u64, 1, 2, 3, 4, 8, 16, -1i64 as u64];
let mut results = [0u64; N];
@@ -465,21 +471,21 @@ mod test {
let SeedableNum(x) = SeedableNum::seed_from_u64(*seed);
results[i] = x;
}
-
+
for (i1, r1) in results.iter().enumerate() {
let weight = r1.count_ones();
// This is the binomial distribution B(64, 0.5), so chance of
// weight < 20 is binocdf(19, 64, 0.5) = 7.8e-4, and same for
// weight > 44.
assert!(weight >= 20 && weight <= 44);
-
+
for (i2, r2) in results.iter().enumerate() {
if i1 == i2 { continue; }
let diff_weight = (r1 ^ r2).count_ones();
assert!(diff_weight >= 20);
}
}
-
+
// value-breakage test:
assert_eq!(results[0], 5029875928683246316);
}