diff options
author | Daniel Mueller <deso@posteo.net> | 2020-01-02 08:32:06 -0800 |
---|---|---|
committer | Daniel Mueller <deso@posteo.net> | 2020-01-02 08:32:06 -0800 |
commit | fd091b04316db9dc5fafadbd6bdbe60b127408a9 (patch) | |
tree | f202270f7ae5cedc513be03833a26148d9b5e219 /rand/src/rngs | |
parent | 8161cdb26f98e65b39c603ddf7a614cc87c77a1c (diff) | |
download | nitrocli-fd091b04316db9dc5fafadbd6bdbe60b127408a9.tar.gz nitrocli-fd091b04316db9dc5fafadbd6bdbe60b127408a9.tar.bz2 |
Update nitrokey crate to 0.4.0
This change finally updates the version of the nitrokey crate that we
consume to 0.4.0. Along with that we update rand_core, one of its
dependencies, to 0.5.1. Further more we add cfg-if in version 0.1.10 and
getrandom in version 0.1.13, both of which are now new (non-development)
dependencies.
Import subrepo nitrokey/:nitrokey at e81057037e9b4f370b64c0a030a725bc6bdfb870
Import subrepo cfg-if/:cfg-if at 4484a6faf816ff8058088ad857b0c6bb2f4b02b2
Import subrepo getrandom/:getrandom at d661aa7e1b8cc80b47dabe3d2135b3b47d2858af
Import subrepo rand/:rand at d877ed528248b52d947e0484364a4e1ae59ca502
Diffstat (limited to 'rand/src/rngs')
-rw-r--r-- | rand/src/rngs/adapter/mod.rs | 4 | ||||
-rw-r--r-- | rand/src/rngs/adapter/read.rs | 53 | ||||
-rw-r--r-- | rand/src/rngs/adapter/reseeding.rs | 89 | ||||
-rw-r--r-- | rand/src/rngs/entropy.rs | 201 | ||||
-rw-r--r-- | rand/src/rngs/jitter.rs | 885 | ||||
-rw-r--r-- | rand/src/rngs/mock.rs | 7 | ||||
-rw-r--r-- | rand/src/rngs/mod.rs | 253 | ||||
-rw-r--r-- | rand/src/rngs/small.rs | 60 | ||||
-rw-r--r-- | rand/src/rngs/std.rs | 59 | ||||
-rw-r--r-- | rand/src/rngs/thread.rs | 91 |
10 files changed, 298 insertions, 1404 deletions
diff --git a/rand/src/rngs/adapter/mod.rs b/rand/src/rngs/adapter/mod.rs index 60b832e..659ff26 100644 --- a/rand/src/rngs/adapter/mod.rs +++ b/rand/src/rngs/adapter/mod.rs @@ -8,8 +8,8 @@ //! Wrappers / adapters forming RNGs -#[cfg(feature="std")] #[doc(hidden)] pub mod read; +#[cfg(feature="std")] mod read; mod reseeding; -#[cfg(feature="std")] pub use self::read::ReadRng; +#[cfg(feature="std")] pub use self::read::{ReadRng, ReadError}; pub use self::reseeding::ReseedingRng; diff --git a/rand/src/rngs/adapter/read.rs b/rand/src/rngs/adapter/read.rs index 30b6de6..901462e 100644 --- a/rand/src/rngs/adapter/read.rs +++ b/rand/src/rngs/adapter/read.rs @@ -10,12 +10,13 @@ //! A wrapper around any Read to treat it as an RNG. use std::io::Read; +use std::fmt; -use rand_core::{RngCore, Error, ErrorKind, impls}; +use rand_core::{RngCore, Error, impls}; /// An RNG that reads random bytes straight from any type supporting -/// `std::io::Read`, for example files. +/// [`std::io::Read`], for example files. /// /// This will work best with an infinite reader, but that is not required. /// @@ -24,10 +25,10 @@ use rand_core::{RngCore, Error, ErrorKind, impls}; /// /// # Panics /// -/// `ReadRng` uses `std::io::read_exact`, which retries on interrupts. All other -/// errors from the underlying reader, including when it does not have enough -/// data, will only be reported through [`try_fill_bytes`]. The other -/// [`RngCore`] methods will panic in case of an error. +/// `ReadRng` uses [`std::io::Read::read_exact`], which retries on interrupts. +/// All other errors from the underlying reader, including when it does not +/// have enough data, will only be reported through [`try_fill_bytes`]. +/// The other [`RngCore`] methods will panic in case of an error. /// /// # Example /// @@ -40,9 +41,8 @@ use rand_core::{RngCore, Error, ErrorKind, impls}; /// println!("{:x}", rng.gen::<u32>()); /// ``` /// -/// [`OsRng`]: ../struct.OsRng.html -/// [`RngCore`]: ../../trait.RngCore.html -/// [`try_fill_bytes`]: ../../trait.RngCore.html#method.tymethod.try_fill_bytes +/// [`OsRng`]: crate::rngs::OsRng +/// [`try_fill_bytes`]: RngCore::try_fill_bytes #[derive(Debug)] pub struct ReadRng<R> { reader: R @@ -72,24 +72,33 @@ impl<R: Read> RngCore for ReadRng<R> { } fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { - if dest.len() == 0 { return Ok(()); } + if dest.is_empty() { return Ok(()); } // Use `std::io::read_exact`, which retries on `ErrorKind::Interrupted`. - self.reader.read_exact(dest).map_err(|err| { - match err.kind() { - ::std::io::ErrorKind::UnexpectedEof => Error::with_cause( - ErrorKind::Unavailable, - "not enough bytes available, reached end of source", err), - _ => Error::with_cause(ErrorKind::Unavailable, - "error reading from Read source", err) - } - }) + self.reader.read_exact(dest).map_err(|e| Error::new(ReadError(e))) } } +/// `ReadRng` error type +#[derive(Debug)] +pub struct ReadError(std::io::Error); + +impl fmt::Display for ReadError { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + write!(f, "ReadError: {}", self.0) + } +} + +impl std::error::Error for ReadError { + fn source(&self) -> Option<&(dyn std::error::Error + 'static)> { + Some(&self.0) + } +} + + #[cfg(test)] mod test { use super::ReadRng; - use {RngCore, ErrorKind}; + use crate::RngCore; #[test] fn test_reader_rng_u64() { @@ -132,6 +141,8 @@ mod test { let mut rng = ReadRng::new(&v[..]); - assert!(rng.try_fill_bytes(&mut w).err().unwrap().kind == ErrorKind::Unavailable); + let result = rng.try_fill_bytes(&mut w); + assert!(result.is_err()); + println!("Error: {}", result.unwrap_err()); } } diff --git a/rand/src/rngs/adapter/reseeding.rs b/rand/src/rngs/adapter/reseeding.rs index 016afab..ec88efe 100644 --- a/rand/src/rngs/adapter/reseeding.rs +++ b/rand/src/rngs/adapter/reseeding.rs @@ -12,7 +12,7 @@ use core::mem::size_of; -use rand_core::{RngCore, CryptoRng, SeedableRng, Error, ErrorKind}; +use rand_core::{RngCore, CryptoRng, SeedableRng, Error}; use rand_core::block::{BlockRngCore, BlockRng}; /// A wrapper around any PRNG that implements [`BlockRngCore`], that adds the @@ -24,7 +24,7 @@ use rand_core::block::{BlockRngCore, BlockRng}; /// - After `clone()`, the clone will be reseeded on first use. /// - After a process is forked, the RNG in the child process is reseeded within /// the next few generated values, depending on the block size of the -/// underlying PRNG. For [`ChaChaCore`] and [`Hc128Core`] this is a maximum of +/// underlying PRNG. For ChaCha and Hc128 this is a maximum of /// 15 `u32` values before reseeding. /// - After the PRNG has generated a configurable number of random bytes. /// @@ -57,33 +57,24 @@ use rand_core::block::{BlockRngCore, BlockRng}; /// # Example /// /// ``` -/// # extern crate rand; -/// # extern crate rand_chacha; -/// # fn main() { /// use rand::prelude::*; -/// use rand_chacha::ChaChaCore; // Internal part of ChaChaRng that +/// use rand_chacha::ChaCha20Core; // Internal part of ChaChaRng that /// // implements BlockRngCore /// use rand::rngs::OsRng; /// use rand::rngs::adapter::ReseedingRng; /// -/// let prng = ChaChaCore::from_entropy(); -// FIXME: it is better to use EntropyRng as reseeder, but that doesn't implement -// clone yet. -/// let reseeder = OsRng::new().unwrap(); -/// let mut reseeding_rng = ReseedingRng::new(prng, 0, reseeder); +/// let prng = ChaCha20Core::from_entropy(); +/// let mut reseeding_rng = ReseedingRng::new(prng, 0, OsRng); /// /// println!("{}", reseeding_rng.gen::<u64>()); /// /// let mut cloned_rng = reseeding_rng.clone(); /// assert!(reseeding_rng.gen::<u64>() != cloned_rng.gen::<u64>()); -/// # } /// ``` /// -/// [`ChaChaCore`]: ../../../rand_chacha/struct.ChaChaCore.html -/// [`Hc128Core`]: ../../../rand_hc/struct.Hc128Core.html -/// [`BlockRngCore`]: ../../../rand_core/block/trait.BlockRngCore.html -/// [`ReseedingRng::new`]: struct.ReseedingRng.html#method.new -/// [`reseed()`]: struct.ReseedingRng.html#method.reseed +/// [`BlockRngCore`]: rand_core::block::BlockRngCore +/// [`ReseedingRng::new`]: ReseedingRng::new +/// [`reseed()`]: ReseedingRng::reseed #[derive(Debug)] pub struct ReseedingRng<R, Rsdr>(BlockRng<ReseedingCore<R, Rsdr>>) where R: BlockRngCore + SeedableRng, @@ -234,6 +225,7 @@ where R: BlockRngCore + SeedableRng, results: &mut <Self as BlockRngCore>::Results, global_fork_counter: usize) { + #![allow(clippy::if_same_then_else)] // false positive if self.is_forked(global_fork_counter) { info!("Fork detected, reseeding RNG"); } else { @@ -243,21 +235,13 @@ where R: BlockRngCore + SeedableRng, let num_bytes = results.as_ref().len() * size_of::<<R as BlockRngCore>::Item>(); - let threshold = if let Err(e) = self.reseed() { - let delay = match e.kind { - ErrorKind::Transient => num_bytes as i64, - kind @ _ if kind.should_retry() => self.threshold >> 8, - _ => self.threshold, - }; - warn!("Reseeding RNG delayed reseeding by {} bytes due to \ - error from source: {}", delay, e); - delay - } else { - self.fork_counter = global_fork_counter; - self.threshold - }; + if let Err(e) = self.reseed() { + warn!("Reseeding RNG failed: {}", e); + let _ = e; + } + self.fork_counter = global_fork_counter; - self.bytes_until_reseed = threshold - num_bytes as i64; + self.bytes_until_reseed = self.threshold - num_bytes as i64; self.inner.generate(results); } } @@ -282,12 +266,11 @@ where R: BlockRngCore + SeedableRng + CryptoRng, Rsdr: RngCore + CryptoRng {} -#[cfg(all(feature="std", unix, not(target_os="emscripten")))] +#[cfg(all(unix, not(target_os="emscripten")))] mod fork { - extern crate libc; - - use std::sync::atomic::{AtomicUsize, ATOMIC_USIZE_INIT, Ordering}; - use std::sync::atomic::{AtomicBool, ATOMIC_BOOL_INIT}; + use core::sync::atomic::{AtomicUsize, AtomicBool, Ordering}; + #[allow(deprecated)] // Required for compatibility with Rust < 1.24. + use core::sync::atomic::{ATOMIC_USIZE_INIT, ATOMIC_BOOL_INIT}; // Fork protection // @@ -301,12 +284,14 @@ mod fork { // don't update `fork_counter`, so a reseed is attempted as soon as // possible. + #[allow(deprecated)] static RESEEDING_RNG_FORK_COUNTER: AtomicUsize = ATOMIC_USIZE_INIT; pub fn get_fork_counter() -> usize { RESEEDING_RNG_FORK_COUNTER.load(Ordering::Relaxed) } + #[allow(deprecated)] static FORK_HANDLER_REGISTERED: AtomicBool = ATOMIC_BOOL_INIT; extern fn fork_handler() { @@ -316,14 +301,14 @@ mod fork { } pub fn register_fork_handler() { - if FORK_HANDLER_REGISTERED.load(Ordering::Relaxed) == false { + if !FORK_HANDLER_REGISTERED.load(Ordering::Relaxed) { unsafe { libc::pthread_atfork(None, None, Some(fork_handler)) }; FORK_HANDLER_REGISTERED.store(true, Ordering::Relaxed); } } } -#[cfg(not(all(feature="std", unix, not(target_os="emscripten"))))] +#[cfg(not(all(unix, not(target_os="emscripten"))))] mod fork { pub fn get_fork_counter() -> usize { 0 } pub fn register_fork_handler() {} @@ -332,25 +317,27 @@ mod fork { #[cfg(test)] mod test { - use {Rng, SeedableRng}; - use rand_chacha::ChaChaCore; - use rngs::mock::StepRng; + use crate::{Rng, SeedableRng}; + use crate::rngs::std::Core; + use crate::rngs::mock::StepRng; use super::ReseedingRng; #[test] fn test_reseeding() { let mut zero = StepRng::new(0, 0); - let rng = ChaChaCore::from_rng(&mut zero).unwrap(); - let mut reseeding = ReseedingRng::new(rng, 32*4, zero); - - // Currently we only support for arrays up to length 32. - // TODO: cannot generate seq via Rng::gen because it uses different alg - let mut buf = [0u32; 32]; // Needs to be a multiple of the RNGs result - // size to test exactly. - reseeding.fill(&mut buf); + let rng = Core::from_rng(&mut zero).unwrap(); + let thresh = 1; // reseed every time the buffer is exhausted + let mut reseeding = ReseedingRng::new(rng, thresh, zero); + + // RNG buffer size is [u32; 64] + // Debug is only implemented up to length 32 so use two arrays + let mut buf = ([0u32; 32], [0u32; 32]); + reseeding.fill(&mut buf.0); + reseeding.fill(&mut buf.1); let seq = buf; for _ in 0..10 { - reseeding.fill(&mut buf); + reseeding.fill(&mut buf.0); + reseeding.fill(&mut buf.1); assert_eq!(buf, seq); } } @@ -358,7 +345,7 @@ mod test { #[test] fn test_clone_reseeding() { let mut zero = StepRng::new(0, 0); - let rng = ChaChaCore::from_rng(&mut zero).unwrap(); + let rng = Core::from_rng(&mut zero).unwrap(); let mut rng1 = ReseedingRng::new(rng, 32*4, zero); let first: u32 = rng1.gen(); diff --git a/rand/src/rngs/entropy.rs b/rand/src/rngs/entropy.rs index 372b4d7..1ed59ab 100644 --- a/rand/src/rngs/entropy.rs +++ b/rand/src/rngs/entropy.rs @@ -8,52 +8,21 @@ //! Entropy generator, or wrapper around external generators -use rand_core::{RngCore, CryptoRng, Error, ErrorKind, impls}; -#[allow(unused)] -use rngs; +#![allow(deprecated)] // whole module is deprecated + +use rand_core::{RngCore, CryptoRng, Error}; +use crate::rngs::OsRng; /// An interface returning random data from external source(s), provided /// specifically for securely seeding algorithmic generators (PRNGs). /// -/// Where possible, `EntropyRng` retrieves random data from the operating -/// system's interface for random numbers ([`OsRng`]); if that fails it will -/// fall back to the [`JitterRng`] entropy collector. In the latter case it will -/// still try to use [`OsRng`] on the next usage. -/// -/// If no secure source of entropy is available `EntropyRng` will panic on use; -/// i.e. it should never output predictable data. -/// -/// This is either a little slow ([`OsRng`] requires a system call) or extremely -/// slow ([`JitterRng`] must use significant CPU time to generate sufficient -/// jitter); for better performance it is common to seed a local PRNG from -/// external entropy then primarily use the local PRNG ([`thread_rng`] is -/// provided as a convenient, local, automatically-seeded CSPRNG). -/// -/// # Panics -/// -/// On most systems, like Windows, Linux, macOS and *BSD on common hardware, it -/// is highly unlikely for both [`OsRng`] and [`JitterRng`] to fail. But on -/// combinations like webassembly without Emscripten or stdweb both sources are -/// unavailable. If both sources fail, only [`try_fill_bytes`] is able to -/// report the error, and only the one from `OsRng`. The other [`RngCore`] -/// methods will panic in case of an error. -/// -/// [`OsRng`]: struct.OsRng.html -/// [`JitterRng`]: jitter/struct.JitterRng.html -/// [`thread_rng`]: ../fn.thread_rng.html -/// [`RngCore`]: ../trait.RngCore.html -/// [`try_fill_bytes`]: ../trait.RngCore.html#method.tymethod.try_fill_bytes +/// This is deprecated. It is suggested you use [`rngs::OsRng`] instead. +/// +/// [`rngs::OsRng`]: crate::rngs::OsRng #[derive(Debug)] +#[deprecated(since="0.7.0", note="use rngs::OsRng instead")] pub struct EntropyRng { - source: Source, -} - -#[derive(Debug)] -enum Source { - Os(Os), - Custom(Custom), - Jitter(Jitter), - None, + source: OsRng, } impl EntropyRng { @@ -63,7 +32,7 @@ impl EntropyRng { /// those are done on first use. This is done to make `new` infallible, /// and `try_fill_bytes` the only place to report errors. pub fn new() -> Self { - EntropyRng { source: Source::None } + EntropyRng { source: OsRng } } } @@ -75,167 +44,25 @@ impl Default for EntropyRng { impl RngCore for EntropyRng { fn next_u32(&mut self) -> u32 { - impls::next_u32_via_fill(self) + self.source.next_u32() } fn next_u64(&mut self) -> u64 { - impls::next_u64_via_fill(self) + self.source.next_u64() } fn fill_bytes(&mut self, dest: &mut [u8]) { - self.try_fill_bytes(dest).unwrap_or_else(|err| - panic!("all entropy sources failed; first error: {}", err)) + self.source.fill_bytes(dest) } fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { - let mut reported_error = None; - - if let Source::Os(ref mut os_rng) = self.source { - match os_rng.fill(dest) { - Ok(()) => return Ok(()), - Err(err) => { - warn!("EntropyRng: OsRng failed \ - [trying other entropy sources]: {}", err); - reported_error = Some(err); - }, - } - } else if Os::is_supported() { - match Os::new_and_fill(dest) { - Ok(os_rng) => { - debug!("EntropyRng: using OsRng"); - self.source = Source::Os(os_rng); - return Ok(()); - }, - Err(err) => { reported_error = reported_error.or(Some(err)) }, - } - } - - if let Source::Custom(ref mut rng) = self.source { - match rng.fill(dest) { - Ok(()) => return Ok(()), - Err(err) => { - warn!("EntropyRng: custom entropy source failed \ - [trying other entropy sources]: {}", err); - reported_error = Some(err); - }, - } - } else if Custom::is_supported() { - match Custom::new_and_fill(dest) { - Ok(custom) => { - debug!("EntropyRng: using custom entropy source"); - self.source = Source::Custom(custom); - return Ok(()); - }, - Err(err) => { reported_error = reported_error.or(Some(err)) }, - } - } - - if let Source::Jitter(ref mut jitter_rng) = self.source { - match jitter_rng.fill(dest) { - Ok(()) => return Ok(()), - Err(err) => { - warn!("EntropyRng: JitterRng failed: {}", err); - reported_error = Some(err); - }, - } - } else if Jitter::is_supported() { - match Jitter::new_and_fill(dest) { - Ok(jitter_rng) => { - debug!("EntropyRng: using JitterRng"); - self.source = Source::Jitter(jitter_rng); - return Ok(()); - }, - Err(err) => { reported_error = reported_error.or(Some(err)) }, - } - } - - if let Some(err) = reported_error { - Err(Error::with_cause(ErrorKind::Unavailable, - "All entropy sources failed", - err)) - } else { - Err(Error::new(ErrorKind::Unavailable, - "No entropy sources available")) - } + self.source.try_fill_bytes(dest) } } impl CryptoRng for EntropyRng {} - -trait EntropySource { - fn new_and_fill(dest: &mut [u8]) -> Result<Self, Error> - where Self: Sized; - - fn fill(&mut self, dest: &mut [u8]) -> Result<(), Error>; - - fn is_supported() -> bool { true } -} - -#[allow(unused)] -#[derive(Clone, Debug)] -struct NoSource; - -#[allow(unused)] -impl EntropySource for NoSource { - fn new_and_fill(dest: &mut [u8]) -> Result<Self, Error> { - Err(Error::new(ErrorKind::Unavailable, "Source not supported")) - } - - fn fill(&mut self, dest: &mut [u8]) -> Result<(), Error> { - unreachable!() - } - - fn is_supported() -> bool { false } -} - - -#[cfg(feature="rand_os")] -#[derive(Clone, Debug)] -pub struct Os(rngs::OsRng); - -#[cfg(feature="rand_os")] -impl EntropySource for Os { - fn new_and_fill(dest: &mut [u8]) -> Result<Self, Error> { - let mut rng = rngs::OsRng::new()?; - rng.try_fill_bytes(dest)?; - Ok(Os(rng)) - } - - fn fill(&mut self, dest: &mut [u8]) -> Result<(), Error> { - self.0.try_fill_bytes(dest) - } -} - -#[cfg(not(feature="std"))] -type Os = NoSource; - - -type Custom = NoSource; - - -#[cfg(not(target_arch = "wasm32"))] -#[derive(Clone, Debug)] -pub struct Jitter(rngs::JitterRng); - -#[cfg(not(target_arch = "wasm32"))] -impl EntropySource for Jitter { - fn new_and_fill(dest: &mut [u8]) -> Result<Self, Error> { - let mut rng = rngs::JitterRng::new()?; - rng.try_fill_bytes(dest)?; - Ok(Jitter(rng)) - } - - fn fill(&mut self, dest: &mut [u8]) -> Result<(), Error> { - self.0.try_fill_bytes(dest) - } -} - -#[cfg(target_arch = "wasm32")] -type Jitter = NoSource; - - #[cfg(test)] mod test { use super::*; diff --git a/rand/src/rngs/jitter.rs b/rand/src/rngs/jitter.rs deleted file mode 100644 index 3e93477..0000000 --- a/rand/src/rngs/jitter.rs +++ /dev/null @@ -1,885 +0,0 @@ -// Copyright 2018 Developers of the Rand project. -// -// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or -// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license -// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your -// option. This file may not be copied, modified, or distributed -// except according to those terms. -// -// Based on jitterentropy-library, http://www.chronox.de/jent.html. -// Copyright Stephan Mueller <smueller@chronox.de>, 2014 - 2017. -// -// With permission from Stephan Mueller to relicense the Rust translation under -// the MIT license. - -//! Non-physical true random number generator based on timing jitter. - -// Note: the C implementation of `Jitterentropy` relies on being compiled -// without optimizations. This implementation goes through lengths to make the -// compiler not optimize out code which does influence timing jitter, but is -// technically dead code. - -use rand_core::{RngCore, CryptoRng, Error, ErrorKind, impls}; - -use core::{fmt, mem, ptr}; -#[cfg(all(feature="std", not(target_arch = "wasm32")))] -use std::sync::atomic::{AtomicUsize, ATOMIC_USIZE_INIT, Ordering}; - -const MEMORY_BLOCKS: usize = 64; -const MEMORY_BLOCKSIZE: usize = 32; -const MEMORY_SIZE: usize = MEMORY_BLOCKS * MEMORY_BLOCKSIZE; - -/// A true random number generator based on jitter in the CPU execution time, -/// and jitter in memory access time. -/// -/// This is a true random number generator, as opposed to pseudo-random -/// generators. Random numbers generated by `JitterRng` can be seen as fresh -/// entropy. A consequence is that is orders of magnitude slower than [`OsRng`] -/// and PRNGs (about 10<sup>3</sup>..10<sup>6</sup> slower). -/// -/// There are very few situations where using this RNG is appropriate. Only very -/// few applications require true entropy. A normal PRNG can be statistically -/// indistinguishable, and a cryptographic PRNG should also be as impossible to -/// predict. -/// -/// Use of `JitterRng` is recommended for initializing cryptographic PRNGs when -/// [`OsRng`] is not available. -/// -/// `JitterRng` can be used without the standard library, but not conveniently, -/// you must provide a high-precision timer and carefully have to follow the -/// instructions of [`new_with_timer`]. -/// -/// This implementation is based on -/// [Jitterentropy](http://www.chronox.de/jent.html) version 2.1.0. -/// -/// Note: There is no accurate timer available on Wasm platforms, to help -/// prevent fingerprinting or timing side-channel attacks. Therefore -/// [`JitterRng::new()`] is not available on Wasm. -/// -/// # Quality testing -/// -/// [`JitterRng::new()`] has build-in, but limited, quality testing, however -/// before using `JitterRng` on untested hardware, or after changes that could -/// effect how the code is optimized (such as a new LLVM version), it is -/// recommend to run the much more stringent -/// [NIST SP 800-90B Entropy Estimation Suite]( -/// https://github.com/usnistgov/SP800-90B_EntropyAssessment). -/// -/// Use the following code using [`timer_stats`] to collect the data: -/// -/// ```no_run -/// use rand::rngs::JitterRng; -/// # -/// # use std::error::Error; -/// # use std::fs::File; -/// # use std::io::Write; -/// # -/// # fn try_main() -> Result<(), Box<Error>> { -/// let mut rng = JitterRng::new()?; -/// -/// // 1_000_000 results are required for the -/// // NIST SP 800-90B Entropy Estimation Suite -/// const ROUNDS: usize = 1_000_000; -/// let mut deltas_variable: Vec<u8> = Vec::with_capacity(ROUNDS); -/// let mut deltas_minimal: Vec<u8> = Vec::with_capacity(ROUNDS); -/// -/// for _ in 0..ROUNDS { -/// deltas_variable.push(rng.timer_stats(true) as u8); -/// deltas_minimal.push(rng.timer_stats(false) as u8); -/// } -/// -/// // Write out after the statistics collection loop, to not disturb the -/// // test results. -/// File::create("jitter_rng_var.bin")?.write(&deltas_variable)?; -/// File::create("jitter_rng_min.bin")?.write(&deltas_minimal)?; -/// # -/// # Ok(()) -/// # } -/// # -/// # fn main() { -/// # try_main().unwrap(); -/// # } -/// ``` -/// -/// This will produce two files: `jitter_rng_var.bin` and `jitter_rng_min.bin`. -/// Run the Entropy Estimation Suite in three configurations, as outlined below. -/// Every run has two steps. One step to produce an estimation, another to -/// validate the estimation. -/// -/// 1. Estimate the expected amount of entropy that is at least available with -/// each round of the entropy collector. This number should be greater than -/// the amount estimated with `64 / test_timer()`. -/// ```sh -/// python noniid_main.py -v jitter_rng_var.bin 8 -/// restart.py -v jitter_rng_var.bin 8 <min-entropy> -/// ``` -/// 2. Estimate the expected amount of entropy that is available in the last 4 -/// bits of the timer delta after running noice sources. Note that a value of -/// `3.70` is the minimum estimated entropy for true randomness. -/// ```sh -/// python noniid_main.py -v -u 4 jitter_rng_var.bin 4 -/// restart.py -v -u 4 jitter_rng_var.bin 4 <min-entropy> -/// ``` -/// 3. Estimate the expected amount of entropy that is available to the entropy -/// collector if both noice sources only run their minimal number of times. -/// This measures the absolute worst-case, and gives a lower bound for the -/// available entropy. -/// ```sh -/// python noniid_main.py -v -u 4 jitter_rng_min.bin 4 -/// restart.py -v -u 4 jitter_rng_min.bin 4 <min-entropy> -/// ``` -/// -/// [`OsRng`]: struct.OsRng.html -/// [`JitterRng::new()`]: struct.JitterRng.html#method.new -/// [`new_with_timer`]: struct.JitterRng.html#method.new_with_timer -/// [`timer_stats`]: struct.JitterRng.html#method.timer_stats -pub struct JitterRng { - data: u64, // Actual random number - // Number of rounds to run the entropy collector per 64 bits - rounds: u8, - // Timer used by `measure_jitter` - timer: fn() -> u64, - // Memory for the Memory Access noise source - mem_prev_index: u16, - // Make `next_u32` not waste 32 bits - data_half_used: bool, -} - -// Note: `JitterRng` maintains a small 64-bit entropy pool. With every -// `generate` 64 new bits should be integrated in the pool. If a round of -// `generate` were to collect less than the expected 64 bit, then the returned -// value, and the new state of the entropy pool, would be in some way related to -// the initial state. It is therefore better if the initial state of the entropy -// pool is different on each call to `generate`. This has a few implications: -// - `generate` should be called once before using `JitterRng` to produce the -// first usable value (this is done by default in `new`); -// - We do not zero the entropy pool after generating a result. The reference -// implementation also does not support zeroing, but recommends generating a -// new value without using it if you want to protect a previously generated -// 'secret' value from someone inspecting the memory; -// - Implementing `Clone` seems acceptable, as it would not cause the systematic -// bias a constant might cause. Only instead of one value that could be -// potentially related to the same initial state, there are now two. - -// Entropy collector state. -// These values are not necessary to preserve across runs. -struct EcState { - // Previous time stamp to determine the timer delta - prev_time: u64, - // Deltas used for the stuck test - last_delta: i32, - last_delta2: i32, - // Memory for the Memory Access noise source - mem: [u8; MEMORY_SIZE], -} - -impl EcState { - // Stuck test by checking the: - // - 1st derivation of the jitter measurement (time delta) - // - 2nd derivation of the jitter measurement (delta of time deltas) - // - 3rd derivation of the jitter measurement (delta of delta of time - // deltas) - // - // All values must always be non-zero. - // This test is a heuristic to see whether the last measurement holds - // entropy. - fn stuck(&mut self, current_delta: i32) -> bool { - let delta2 = self.last_delta - current_delta; - let delta3 = delta2 - self.last_delta2; - - self.last_delta = current_delta; - self.last_delta2 = delta2; - - current_delta == 0 || delta2 == 0 || delta3 == 0 - } -} - -// Custom Debug implementation that does not expose the internal state -impl fmt::Debug for JitterRng { - fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { - write!(f, "JitterRng {{}}") - } -} - -impl Clone for JitterRng { - fn clone(&self) -> JitterRng { - JitterRng { - data: self.data, - rounds: self.rounds, - timer: self.timer, - mem_prev_index: self.mem_prev_index, - // The 32 bits that may still be unused from the previous round are - // for the original to use, not for the clone. - data_half_used: false, - } - } -} - -/// An error that can occur when [`JitterRng::test_timer`] fails. -/// -/// [`JitterRng::test_timer`]: struct.JitterRng.html#method.test_timer -#[derive(Debug, Clone, PartialEq, Eq)] -pub enum TimerError { - /// No timer available. - NoTimer, - /// Timer too coarse to use as an entropy source. - CoarseTimer, - /// Timer is not monotonically increasing. - NotMonotonic, - /// Variations of deltas of time too small. - TinyVariantions, - /// Too many stuck results (indicating no added entropy). - TooManyStuck, - #[doc(hidden)] - __Nonexhaustive, -} - -impl TimerError { - fn description(&self) -> &'static str { - match *self { - TimerError::NoTimer => "no timer available", - TimerError::CoarseTimer => "coarse timer", - TimerError::NotMonotonic => "timer not monotonic", - TimerError::TinyVariantions => "time delta variations too small", - TimerError::TooManyStuck => "too many stuck results", - TimerError::__Nonexhaustive => unreachable!(), - } - } -} - -impl fmt::Display for TimerError { - fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { - write!(f, "{}", self.description()) - } -} - -#[cfg(feature="std")] -impl ::std::error::Error for TimerError { - fn description(&self) -> &str { - self.description() - } -} - -impl From<TimerError> for Error { - fn from(err: TimerError) -> Error { - // Timer check is already quite permissive of failures so we don't - // expect false-positive failures, i.e. any error is irrecoverable. - Error::with_cause(ErrorKind::Unavailable, - "timer jitter failed basic quality tests", err) - } -} - -// Initialise to zero; must be positive -#[cfg(all(feature="std", not(target_arch = "wasm32")))] -static JITTER_ROUNDS: AtomicUsize = ATOMIC_USIZE_INIT; - -impl JitterRng { - /// Create a new `JitterRng`. Makes use of `std::time` for a timer, or a - /// platform-specific function with higher accuracy if necessary and - /// available. - /// - /// During initialization CPU execution timing jitter is measured a few - /// hundred times. If this does not pass basic quality tests, an error is - /// returned. The test result is cached to make subsequent calls faster. - #[cfg(all(feature="std", not(target_arch = "wasm32")))] - pub fn new() -> Result<JitterRng, TimerError> { - let mut state = JitterRng::new_with_timer(platform::get_nstime); - let mut rounds = JITTER_ROUNDS.load(Ordering::Relaxed) as u8; - if rounds == 0 { - // No result yet: run test. - // This allows the timer test to run multiple times; we don't care. - rounds = state.test_timer()?; - JITTER_ROUNDS.store(rounds as usize, Ordering::Relaxed); - info!("JitterRng: using {} rounds per u64 output", rounds); - } - state.set_rounds(rounds); - - // Fill `data` with a non-zero value. - state.gen_entropy(); - Ok(state) - } - - /// Create a new `JitterRng`. - /// A custom timer can be supplied, making it possible to use `JitterRng` in - /// `no_std` environments. - /// - /// The timer must have nanosecond precision. - /// - /// This method is more low-level than `new()`. It is the responsibility of - /// the caller to run [`test_timer`] before using any numbers generated with - /// `JitterRng`, and optionally call [`set_rounds`]. Also it is important to - /// consume at least one `u64` before using the first result to initialize - /// the entropy collection pool. - /// - /// # Example - /// - /// ``` - /// # use rand::{Rng, Error}; - /// use rand::rngs::JitterRng; - /// - /// # fn try_inner() -> Result<(), Error> { - /// fn get_nstime() -> u64 { - /// use std::time::{SystemTime, UNIX_EPOCH}; - /// - /// let dur = SystemTime::now().duration_since(UNIX_EPOCH).unwrap(); - /// // The correct way to calculate the current time is - /// // `dur.as_secs() * 1_000_000_000 + dur.subsec_nanos() as u64` - /// // But this is faster, and the difference in terms of entropy is - /// // negligible (log2(10^9) == 29.9). - /// dur.as_secs() << 30 | dur.subsec_nanos() as u64 - /// } - /// - /// let mut rng = JitterRng::new_with_timer(get_nstime); - /// let rounds = rng.test_timer()?; - /// rng.set_rounds(rounds); // optional - /// let _ = rng.gen::<u64>(); - /// - /// // Ready for use - /// let v: u64 = rng.gen(); - /// # Ok(()) - /// # } - /// - /// # let _ = try_inner(); - /// ``` - /// - /// [`test_timer`]: struct.JitterRng.html#method.test_timer - /// [`set_rounds`]: struct.JitterRng.html#method.set_rounds - pub fn new_with_timer(timer: fn() -> u64) -> JitterRng { - JitterRng { - data: 0, - rounds: 64, - timer, - mem_prev_index: 0, - data_half_used: false, - } - } - - /// Configures how many rounds are used to generate each 64-bit value. - /// This must be greater than zero, and has a big impact on performance - /// and output quality. - /// - /// [`new_with_timer`] conservatively uses 64 rounds, but often less rounds - /// can be used. The `test_timer()` function returns the minimum number of - /// rounds required for full strength (platform dependent), so one may use - /// `rng.set_rounds(rng.test_timer()?);` or cache the value. - /// - /// [`new_with_timer`]: struct.JitterRng.html#method.new_with_timer - pub fn set_rounds(&mut self, rounds: u8) { - assert!(rounds > 0); - self.rounds = rounds; - } - - // Calculate a random loop count used for the next round of an entropy - // collection, based on bits from a fresh value from the timer. - // - // The timer is folded to produce a number that contains at most `n_bits` - // bits. - // - // Note: A constant should be added to the resulting random loop count to - // prevent loops that run 0 times. - #[inline(never)] - fn random_loop_cnt(&mut self, n_bits: u32) -> u32 { - let mut rounds = 0; - - let mut time = (self.timer)(); - // Mix with the current state of the random number balance the random - // loop counter a bit more. - time ^= self.data; - - // We fold the time value as much as possible to ensure that as many - // bits of the time stamp are included as possible. - let folds = (64 + n_bits - 1) / n_bits; - let mask = (1 << n_bits) - 1; - for _ in 0..folds { - rounds ^= time & mask; - time >>= n_bits; - } - - rounds as u32 - } - - // CPU jitter noise source - // Noise source based on the CPU execution time jitter - // - // This function injects the individual bits of the time value into the - // entropy pool using an LFSR. - // - // The code is deliberately inefficient with respect to the bit shifting. - // This function not only acts as folding operation, but this function's - // execution is used to measure the CPU execution time jitter. Any change to - // the loop in this function implies that careful retesting must be done. - #[inline(never)] - fn lfsr_time(&mut self, time: u64, var_rounds: bool) { - fn lfsr(mut data: u64, time: u64) -> u64{ - for i in 1..65 { - let mut tmp = time << (64 - i); - tmp >>= 64 - 1; - - // Fibonacci LSFR with polynomial of - // x^64 + x^61 + x^56 + x^31 + x^28 + x^23 + 1 which is - // primitive according to - // http://poincare.matf.bg.ac.rs/~ezivkovm/publications/primpol1.pdf - // (the shift values are the polynomial values minus one - // due to counting bits from 0 to 63). As the current - // position is always the LSB, the polynomial only needs - // to shift data in from the left without wrap. - data ^= tmp; - data ^= (data >> 63) & 1; - data ^= (data >> 60) & 1; - data ^= (data >> 55) & 1; - data ^= (data >> 30) & 1; - data ^= (data >> 27) & 1; - data ^= (data >> 22) & 1; - data = data.rotate_left(1); - } - data - } - - // Note: in the reference implementation only the last round effects - // `self.data`, all the other results are ignored. To make sure the - // other rounds are not optimised out, we first run all but the last - // round on a throw-away value instead of the real `self.data`. - let mut lfsr_loop_cnt = 0; - if var_rounds { lfsr_loop_cnt = self.random_loop_cnt(4) }; - - let mut throw_away: u64 = 0; - for _ in 0..lfsr_loop_cnt { - throw_away = lfsr(throw_away, time); - } - black_box(throw_away); - - self.data = lfsr(self.data, time); - } - - // Memory Access noise source - // This is a noise source based on variations in memory access times - // - // This function performs memory accesses which will add to the timing - // variations due to an unknown amount of CPU wait states that need to be - // added when accessing memory. The memory size should be larger than the L1 - // caches as outlined in the documentation and the associated testing. - // - // The L1 cache has a very high bandwidth, albeit its access rate is usually - // slower than accessing CPU registers. Therefore, L1 accesses only add - // minimal variations as the CPU has hardly to wait. Starting with L2, - // significant variations are added because L2 typically does not belong to - // the CPU any more and therefore a wider range of CPU wait states is - // necessary for accesses. L3 and real memory accesses have even a wider - // range of wait states. However, to reliably access either L3 or memory, - // the `self.mem` memory must be quite large which is usually not desirable. - #[inline(never)] - fn memaccess(&mut self, mem: &mut [u8; MEMORY_SIZE], var_rounds: bool) { - let mut acc_loop_cnt = 128; - if var_rounds { acc_loop_cnt += self.random_loop_cnt(4) }; - - let mut index = self.mem_prev_index as usize; - for _ in 0..acc_loop_cnt { - // Addition of memblocksize - 1 to index with wrap around logic to - // ensure that every memory location is hit evenly. - // The modulus also allows the compiler to remove the indexing - // bounds check. - index = (index + MEMORY_BLOCKSIZE - 1) % MEMORY_SIZE; - - // memory access: just add 1 to one byte - // memory access implies read from and write to memory location - mem[index] = mem[index].wrapping_add(1); - } - self.mem_prev_index = index as u16; - } - - // This is the heart of the entropy generation: calculate time deltas and - // use the CPU jitter in the time deltas. The jitter is injected into the - // entropy pool. - // - // Ensure that `ec.prev_time` is primed before using the output of this - // function. This can be done by calling this function and not using its - // result. - fn measure_jitter(&mut self, ec: &mut EcState) -> Option<()> { - // Invoke one noise source before time measurement to add variations - self.memaccess(&mut ec.mem, true); - - // Get time stamp and calculate time delta to previous - // invocation to measure the timing variations - let time = (self.timer)(); - // Note: wrapping_sub combined with a cast to `i64` generates a correct - // delta, even in the unlikely case this is a timer that is not strictly - // monotonic. - let current_delta = time.wrapping_sub(ec.prev_time) as i64 as i32; - ec.prev_time = time; - - // Call the next noise source which also injects the data - self.lfsr_time(current_delta as u64, true); - - // Check whether we have a stuck measurement (i.e. does the last - // measurement holds entropy?). - if ec.stuck(current_delta) { return None }; - - // Rotate the data buffer by a prime number (any odd number would - // do) to ensure that every bit position of the input time stamp - // has an even chance of being merged with a bit position in the - // entropy pool. We do not use one here as the adjacent bits in - // successive time deltas may have some form of dependency. The - // chosen value of 7 implies that the low 7 bits of the next - // time delta value is concatenated with the current time delta. - self.data = self.data.rotate_left(7); - - Some(()) - } - - // Shuffle the pool a bit by mixing some value with a bijective function - // (XOR) into the pool. - // - // The function generates a mixer value that depends on the bits set and - // the location of the set bits in the random number generated by the - // entropy source. Therefore, based on the generated random number, this - // mixer value can have 2^64 different values. That mixer value is - // initialized with the first two SHA-1 constants. After obtaining the - // mixer value, it is XORed into the random number. - // - // The mixer value is not assumed to contain any entropy. But due to the - // XOR operation, it can also not destroy any entropy present in the - // entropy pool. - #[inline(never)] - fn stir_pool(&mut self) { - // This constant is derived from the first two 32 bit initialization - // vectors of SHA-1 as defined in FIPS 180-4 section 5.3.1 - // The order does not really matter as we do not rely on the specific - // numbers. We just pick the SHA-1 constants as they have a good mix of - // bit set and unset. - const CONSTANT: u64 = 0x67452301efcdab89; - - // The start value of the mixer variable is derived from the third - // and fourth 32 bit initialization vector of SHA-1 as defined in - // FIPS 180-4 section 5.3.1 - let mut mixer = 0x98badcfe10325476; - - // This is a constant time function to prevent leaking timing - // information about the random number. - // The normal code is: - // ``` - // for i in 0..64 { - // if ((self.data >> i) & 1) == 1 { mixer ^= CONSTANT; } - // } - // ``` - // This is a bit fragile, as LLVM really wants to use branches here, and - // we rely on it to not recognise the opportunity. - for i in 0..64 { - let apply = (self.data >> i) & 1; - let mask = !apply.wrapping_sub(1); - mixer ^= CONSTANT & mask; - mixer = mixer.rotate_left(1); - } - - self.data ^= mixer; - } - - fn gen_entropy(&mut self) -> u64 { - trace!("JitterRng: collecting entropy"); - - // Prime `ec.prev_time`, and run the noice sources to make sure the - // first loop round collects the expected entropy. - let mut ec = EcState { - prev_time: (self.timer)(), - last_delta: 0, - last_delta2: 0, - mem: [0; MEMORY_SIZE], - }; - let _ = self.measure_jitter(&mut ec); - - for _ in 0..self.rounds { - // If a stuck measurement is received, repeat measurement - // Note: we do not guard against an infinite loop, that would mean - // the timer suddenly became broken. - while self.measure_jitter(&mut ec).is_none() {} - } - - // Do a single read from `self.mem` to make sure the Memory Access noise - // source is not optimised out. - black_box(ec.mem[0]); - - self.stir_pool(); - self.data - } - - /// Basic quality tests on the timer, by measuring CPU timing jitter a few - /// hundred times. - /// - /// If succesful, this will return the estimated number of rounds necessary - /// to collect 64 bits of entropy. Otherwise a [`TimerError`] with the cause - /// of the failure will be returned. - /// - /// [`TimerError`]: enum.TimerError.html - pub fn test_timer(&mut self) -> Result<u8, TimerError> { - debug!("JitterRng: testing timer ..."); - // We could add a check for system capabilities such as `clock_getres` - // or check for `CONFIG_X86_TSC`, but it does not make much sense as the - // following sanity checks verify that we have a high-resolution timer. - - let mut delta_sum = 0; - let mut old_delta = 0; - - let mut time_backwards = 0; - let mut count_mod = 0; - let mut count_stuck = 0; - - let mut ec = EcState { - prev_time: (self.timer)(), - last_delta: 0, - last_delta2: 0, - mem: [0; MEMORY_SIZE], - }; - - // TESTLOOPCOUNT needs some loops to identify edge systems. - // 100 is definitely too little. - const TESTLOOPCOUNT: u64 = 300; - const CLEARCACHE: u64 = 100; - - for i in 0..(CLEARCACHE + TESTLOOPCOUNT) { - // Measure time delta of core entropy collection logic - let time = (self.timer)(); - self.memaccess(&mut ec.mem, true); - self.lfsr_time(time, true); - let time2 = (self.timer)(); - - // Test whether timer works - if time == 0 || time2 == 0 { - return Err(TimerError::NoTimer); - } - let delta = time2.wrapping_sub(time) as i64 as i32; - - // Test whether timer is fine grained enough to provide delta even - // when called shortly after each other -- this implies that we also - // have a high resolution timer - if delta == 0 { - return Err(TimerError::CoarseTimer); - } - - // Up to here we did not modify any variable that will be - // evaluated later, but we already performed some work. Thus we - // already have had an impact on the caches, branch prediction, - // etc. with the goal to clear it to get the worst case - // measurements. - if i < CLEARCACHE { continue; } - - if ec.stuck(delta) { count_stuck += 1; } - - // Test whether we have an increasing timer. - if !(time2 > time) { time_backwards += 1; } - - // Count the number of times the counter increases in steps of 100ns - // or greater. - if (delta % 100) == 0 { count_mod += 1; } - - // Ensure that we have a varying delta timer which is necessary for - // the calculation of entropy -- perform this check only after the - // first loop is executed as we need to prime the old_delta value - delta_sum += (delta - old_delta).abs() as u64; - old_delta = delta; - } - - // Do a single read from `self.mem` to make sure the Memory Access noise - // source is not optimised out. - black_box(ec.mem[0]); - - // We allow the time to run backwards for up to three times. - // This can happen if the clock is being adjusted by NTP operations. - // If such an operation just happens to interfere with our test, it - // should not fail. The value of 3 should cover the NTP case being - // performed during our test run. - if time_backwards > 3 { - return Err(TimerError::NotMonotonic); - } - - // Test that the available amount of entropy per round does not get to - // low. We expect 1 bit of entropy per round as a reasonable minimum - // (although less is possible, it means the collector loop has to run - // much more often). - // `assert!(delta_average >= log2(1))` - // `assert!(delta_sum / TESTLOOPCOUNT >= 1)` - // `assert!(delta_sum >= TESTLOOPCOUNT)` - if delta_sum < TESTLOOPCOUNT { - return Err(TimerError::TinyVariantions); - } - - // Ensure that we have variations in the time stamp below 100 for at - // least 10% of all checks -- on some platforms, the counter increments - // in multiples of 100, but not always - if count_mod > (TESTLOOPCOUNT * 9 / 10) { - return Err(TimerError::CoarseTimer); - } - - // If we have more than 90% stuck results, then this Jitter RNG is - // likely to not work well. - if count_stuck > (TESTLOOPCOUNT * 9 / 10) { - return Err(TimerError::TooManyStuck); - } - - // Estimate the number of `measure_jitter` rounds necessary for 64 bits - // of entropy. - // - // We don't try very hard to come up with a good estimate of the - // available bits of entropy per round here for two reasons: - // 1. Simple estimates of the available bits (like Shannon entropy) are - // too optimistic. - // 2. Unless we want to waste a lot of time during intialization, there - // only a small number of samples are available. - // - // Therefore we use a very simple and conservative estimate: - // `let bits_of_entropy = log2(delta_average) / 2`. - // - // The number of rounds `measure_jitter` should run to collect 64 bits - // of entropy is `64 / bits_of_entropy`. - let delta_average = delta_sum / TESTLOOPCOUNT; - - if delta_average >= 16 { - let log2 = 64 - delta_average.leading_zeros(); - // Do something similar to roundup(64/(log2/2)): - Ok( ((64u32 * 2 + log2 - 1) / log2) as u8) - } else { - // For values < 16 the rounding error becomes too large, use a - // lookup table. - // Values 0 and 1 are invalid, and filtered out by the - // `delta_sum < TESTLOOPCOUNT` test above. - let log2_lookup = [0, 0, 128, 81, 64, 56, 50, 46, - 43, 41, 39, 38, 36, 35, 34, 33]; - Ok(log2_lookup[delta_average as usize]) - } - } - - /// Statistical test: return the timer delta of one normal run of the - /// `JitterRng` entropy collector. - /// - /// Setting `var_rounds` to `true` will execute the memory access and the - /// CPU jitter noice sources a variable amount of times (just like a real - /// `JitterRng` round). - /// - /// Setting `var_rounds` to `false` will execute the noice sources the - /// minimal number of times. This can be used to measure the minimum amount - /// of entropy one round of the entropy collector can collect in the worst - /// case. - /// - /// See [Quality testing](struct.JitterRng.html#quality-testing) on how to - /// use `timer_stats` to test the quality of `JitterRng`. - pub fn timer_stats(&mut self, var_rounds: bool) -> i64 { - let mut mem = [0; MEMORY_SIZE]; - - let time = (self.timer)(); - self.memaccess(&mut mem, var_rounds); - self.lfsr_time(time, var_rounds); - let time2 = (self.timer)(); - time2.wrapping_sub(time) as i64 - } -} - -#[cfg(feature="std")] -mod platform { - #[cfg(not(any(target_os = "macos", target_os = "ios", - target_os = "windows", - target_arch = "wasm32")))] - pub fn get_nstime() -> u64 { - use std::time::{SystemTime, UNIX_EPOCH}; - - let dur = SystemTime::now().duration_since(UNIX_EPOCH).unwrap(); - // The correct way to calculate the current time is - // `dur.as_secs() * 1_000_000_000 + dur.subsec_nanos() as u64` - // But this is faster, and the difference in terms of entropy is - // negligible (log2(10^9) == 29.9). - dur.as_secs() << 30 | dur.subsec_nanos() as u64 - } - - #[cfg(any(target_os = "macos", target_os = "ios"))] - pub fn get_nstime() -> u64 { - extern crate libc; - // On Mac OS and iOS std::time::SystemTime only has 1000ns resolution. - // We use `mach_absolute_time` instead. This provides a CPU dependent - // unit, to get real nanoseconds the result should by multiplied by - // numer/denom from `mach_timebase_info`. - // But we are not interested in the exact nanoseconds, just entropy. So - // we use the raw result. - unsafe { libc::mach_absolute_time() } - } - - #[cfg(target_os = "windows")] - pub fn get_nstime() -> u64 { - extern crate winapi; - unsafe { - let mut t = super::mem::zeroed(); - winapi::um::profileapi::QueryPerformanceCounter(&mut t); - *t.QuadPart() as u64 - } - } -} - -// A function that is opaque to the optimizer to assist in avoiding dead-code -// elimination. Taken from `bencher`. -fn black_box<T>(dummy: T) -> T { - unsafe { - let ret = ptr::read_volatile(&dummy); - mem::forget(dummy); - ret - } -} - -impl RngCore for JitterRng { - fn next_u32(&mut self) -> u32 { - // We want to use both parts of the generated entropy - if self.data_half_used { - self.data_half_used = false; - (self.data >> 32) as u32 - } else { - self.data = self.next_u64(); - self.data_half_used = true; - self.data as u32 - } - } - - fn next_u64(&mut self) -> u64 { - self.data_half_used = false; - self.gen_entropy() - } - - fn fill_bytes(&mut self, dest: &mut [u8]) { - // Fill using `next_u32`. This is faster for filling small slices (four - // bytes or less), while the overhead is negligible. - // - // This is done especially for wrappers that implement `next_u32` - // themselves via `fill_bytes`. - impls::fill_bytes_via_next(self, dest) - } - - fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { - Ok(self.fill_bytes(dest)) - } -} - -impl CryptoRng for JitterRng {} - -#[cfg(test)] -mod test_jitter_init { - use super::JitterRng; - - #[cfg(all(feature="std", not(target_arch = "wasm32")))] - #[test] - fn test_jitter_init() { - use RngCore; - // Because this is a debug build, measurements here are not representive - // of the final release build. - // Don't fail this test if initializing `JitterRng` fails because of a - // bad timer (the timer from the standard library may not have enough - // accuracy on all platforms). - match JitterRng::new() { - Ok(ref mut rng) => { - // false positives are possible, but extremely unlikely - assert!(rng.next_u32() | rng.next_u32() != 0); - }, - Err(_) => {}, - } - } - - #[test] - fn test_jitter_bad_timer() { - fn bad_timer() -> u64 { 0 } - let mut rng = JitterRng::new_with_timer(bad_timer); - assert!(rng.test_timer().is_err()); - } -} diff --git a/rand/src/rngs/mock.rs b/rand/src/rngs/mock.rs index 3c9a994..b4081da 100644 --- a/rand/src/rngs/mock.rs +++ b/rand/src/rngs/mock.rs @@ -39,21 +39,26 @@ impl StepRng { } impl RngCore for StepRng { + #[inline] fn next_u32(&mut self) -> u32 { self.next_u64() as u32 } + #[inline] fn next_u64(&mut self) -> u64 { let result = self.v; self.v = self.v.wrapping_add(self.a); result } + #[inline] fn fill_bytes(&mut self, dest: &mut [u8]) { impls::fill_bytes_via_next(self, dest); } + #[inline] fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { - Ok(self.fill_bytes(dest)) + self.fill_bytes(dest); + Ok(()) } } diff --git a/rand/src/rngs/mod.rs b/rand/src/rngs/mod.rs index 847fc94..abf3243 100644 --- a/rand/src/rngs/mod.rs +++ b/rand/src/rngs/mod.rs @@ -6,177 +6,114 @@ // option. This file may not be copied, modified, or distributed // except according to those terms. -//! Random number generators and adapters for common usage: -//! -//! - [`ThreadRng`], a fast, secure, auto-seeded thread-local generator -//! - [`StdRng`] and [`SmallRng`], algorithms to cover typical usage -//! - [`EntropyRng`], [`OsRng`] and [`JitterRng`] as entropy sources -//! - [`mock::StepRng`] as a simple counter for tests -//! - [`adapter::ReadRng`] to read from a file/stream -//! - [`adapter::ReseedingRng`] to reseed a PRNG on clone / process fork etc. -//! -//! # Background — Random number generators (RNGs) -//! -//! Computers are inherently deterministic, so to get *random* numbers one -//! either has to use a hardware generator or collect bits of *entropy* from -//! various sources (e.g. event timestamps, or jitter). This is a relatively -//! slow and complicated operation. -//! -//! Generally the operating system will collect some entropy, remove bias, and -//! use that to seed its own PRNG; [`OsRng`] provides an interface to this. -//! [`JitterRng`] is an entropy collector included with Rand that measures -//! jitter in the CPU execution time, and jitter in memory access time. -//! [`EntropyRng`] is a wrapper that uses the best entropy source that is -//! available. -//! -//! ## Pseudo-random number generators -//! -//! What is commonly used instead of "true" random number renerators, are -//! *pseudo-random number generators* (PRNGs), deterministic algorithms that -//! produce an infinite stream of pseudo-random numbers from a small random -//! seed. PRNGs are faster, and have better provable properties. The numbers -//! produced can be statistically of very high quality and can be impossible to -//! predict. (They can also have obvious correlations and be trivial to predict; -//! quality varies.) -//! -//! There are two different types of PRNGs: those developed for simulations -//! and statistics, and those developed for use in cryptography; the latter are -//! called Cryptographically Secure PRNGs (CSPRNG or CPRNG). Both types can -//! have good statistical quality but the latter also have to be impossible to -//! predict, even after seeing many previous output values. Rand provides a good -//! default algorithm from each class: -//! -//! - [`SmallRng`] is a PRNG chosen for low memory usage, high performance and -//! good statistical quality. -//! - [`StdRng`] is a CSPRNG chosen for good performance and trust of security -//! (based on reviews, maturity and usage). The current algorithm is HC-128, -//! which is one of the recommendations by ECRYPT's eSTREAM project. -//! -//! The above PRNGs do not cover all use-cases; more algorithms can be found in -//! the [`prng` module], as well as in several other crates. For example, you -//! may wish a CSPRNG with significantly lower memory usage than [`StdRng`] -//! while being less concerned about performance, in which case [`ChaChaRng`] -//! is a good choice. -//! -//! One complexity is that the internal state of a PRNG must change with every -//! generated number. For APIs this generally means a mutable reference to the -//! state of the PRNG has to be passed around. -//! -//! A solution is [`ThreadRng`]. This is a thread-local implementation of -//! [`StdRng`] with automatic seeding on first use. It is the best choice if you -//! "just" want a convenient, secure, fast random number source. Use via the -//! [`thread_rng`] function, which gets a reference to the current thread's -//! local instance. -//! -//! ## Seeding -//! -//! As mentioned above, PRNGs require a random seed in order to produce random -//! output. This is especially important for CSPRNGs, which are still -//! deterministic algorithms, thus can only be secure if their seed value is -//! also secure. To seed a PRNG, use one of: -//! -//! - [`FromEntropy::from_entropy`]; this is the most convenient way to seed -//! with fresh, secure random data. -//! - [`SeedableRng::from_rng`]; this allows seeding from another PRNG or -//! from an entropy source such as [`EntropyRng`]. -//! - [`SeedableRng::from_seed`]; this is mostly useful if you wish to be able -//! to reproduce the output sequence by using a fixed seed. (Don't use -//! [`StdRng`] or [`SmallRng`] in this case since different algorithms may be -//! used by future versions of Rand; use an algorithm from the -//! [`prng` module].) -//! -//! ## Conclusion -//! -//! - [`thread_rng`] is what you often want to use. -//! - If you want more control, flexibility, or better performance, use -//! [`StdRng`], [`SmallRng`] or an algorithm from the [`prng` module]. -//! - Use [`FromEntropy::from_entropy`] to seed new PRNGs. -//! - If you need reproducibility, use [`SeedableRng::from_seed`] combined with -//! a named PRNG. -//! -//! More information and notes on cryptographic security can be found -//! in the [`prng` module]. -//! -//! ## Examples -//! -//! Examples of seeding PRNGs: -//! -//! ``` -//! use rand::prelude::*; -//! # use rand::Error; -//! -//! // StdRng seeded securely by the OS or local entropy collector: -//! let mut rng = StdRng::from_entropy(); -//! # let v: u32 = rng.gen(); -//! -//! // SmallRng seeded from thread_rng: -//! # fn try_inner() -> Result<(), Error> { -//! let mut rng = SmallRng::from_rng(thread_rng())?; -//! # let v: u32 = rng.gen(); -//! # Ok(()) -//! # } -//! # try_inner().unwrap(); -//! -//! // SmallRng seeded by a constant, for deterministic results: -//! let seed = [1,2,3,4, 5,6,7,8, 9,10,11,12, 13,14,15,16]; // byte array -//! let mut rng = SmallRng::from_seed(seed); -//! # let v: u32 = rng.gen(); -//! ``` -//! -//! -//! # Implementing custom RNGs -//! -//! If you want to implement custom RNG, see the [`rand_core`] crate. The RNG -//! will have to implement the [`RngCore`] trait, where the [`Rng`] trait is -//! build on top of. -//! -//! If the RNG needs seeding, also implement the [`SeedableRng`] trait. -//! -//! [`CryptoRng`] is a marker trait cryptographically secure PRNGs can -//! implement. -//! -//! -// This module: -//! [`ThreadRng`]: struct.ThreadRng.html -//! [`StdRng`]: struct.StdRng.html -//! [`SmallRng`]: struct.SmallRng.html -//! [`EntropyRng`]: struct.EntropyRng.html -//! [`OsRng`]: struct.OsRng.html -//! [`JitterRng`]: struct.JitterRng.html -// Other traits and functions: -//! [`rand_core`]: https://crates.io/crates/rand_core -//! [`prng` module]: ../prng/index.html -//! [`CryptoRng`]: ../trait.CryptoRng.html -//! [`FromEntropy`]: ../trait.FromEntropy.html -//! [`FromEntropy::from_entropy`]: ../trait.FromEntropy.html#tymethod.from_entropy -//! [`RngCore`]: ../trait.RngCore.html -//! [`Rng`]: ../trait.Rng.html -//! [`SeedableRng`]: ../trait.SeedableRng.html -//! [`SeedableRng::from_rng`]: ../trait.SeedableRng.html#tymethod.from_rng -//! [`SeedableRng::from_seed`]: ../trait.SeedableRng.html#tymethod.from_seed -//! [`thread_rng`]: ../fn.thread_rng.html -//! [`mock::StepRng`]: mock/struct.StepRng.html -//! [`adapter::ReadRng`]: adapter/struct.ReadRng.html -//! [`adapter::ReseedingRng`]: adapter/struct.ReseedingRng.html -//! [`ChaChaRng`]: ../../rand_chacha/struct.ChaChaRng.html +//! Random number generators and adapters +//! +//! ## Background: Random number generators (RNGs) +//! +//! Computers cannot produce random numbers from nowhere. We classify +//! random number generators as follows: +//! +//! - "True" random number generators (TRNGs) use hard-to-predict data sources +//! (e.g. the high-resolution parts of event timings and sensor jitter) to +//! harvest random bit-sequences, apply algorithms to remove bias and +//! estimate available entropy, then combine these bits into a byte-sequence +//! or an entropy pool. This job is usually done by the operating system or +//! a hardware generator (HRNG). +//! - "Pseudo"-random number generators (PRNGs) use algorithms to transform a +//! seed into a sequence of pseudo-random numbers. These generators can be +//! fast and produce well-distributed unpredictable random numbers (or not). +//! They are usually deterministic: given algorithm and seed, the output +//! sequence can be reproduced. They have finite period and eventually loop; +//! with many algorithms this period is fixed and can be proven sufficiently +//! long, while others are chaotic and the period depends on the seed. +//! - "Cryptographically secure" pseudo-random number generators (CSPRNGs) +//! are the sub-set of PRNGs which are secure. Security of the generator +//! relies both on hiding the internal state and using a strong algorithm. +//! +//! ## Traits and functionality +//! +//! All RNGs implement the [`RngCore`] trait, as a consequence of which the +//! [`Rng`] extension trait is automatically implemented. Secure RNGs may +//! additionally implement the [`CryptoRng`] trait. +//! +//! All PRNGs require a seed to produce their random number sequence. The +//! [`SeedableRng`] trait provides three ways of constructing PRNGs: +//! +//! - `from_seed` accepts a type specific to the PRNG +//! - `from_rng` allows a PRNG to be seeded from any other RNG +//! - `seed_from_u64` allows any PRNG to be seeded from a `u64` insecurely +//! - `from_entropy` securely seeds a PRNG from fresh entropy +//! +//! Use the [`rand_core`] crate when implementing your own RNGs. +//! +//! ## Our generators +//! +//! This crate provides several random number generators: +//! +//! - [`OsRng`] is an interface to the operating system's random number +//! source. Typically the operating system uses a CSPRNG with entropy +//! provided by a TRNG and some type of on-going re-seeding. +//! - [`ThreadRng`], provided by the [`thread_rng`] function, is a handle to a +//! thread-local CSPRNG with periodic seeding from [`OsRng`]. Because this +//! is local, it is typically much faster than [`OsRng`]. It should be +//! secure, though the paranoid may prefer [`OsRng`]. +//! - [`StdRng`] is a CSPRNG chosen for good performance and trust of security +//! (based on reviews, maturity and usage). The current algorithm is ChaCha20, +//! which is well established and rigorously analysed. +//! [`StdRng`] provides the algorithm used by [`ThreadRng`] but without +//! periodic reseeding. +//! - [`SmallRng`] is an **insecure** PRNG designed to be fast, simple, require +//! little memory, and have good output quality. +//! +//! The algorithms selected for [`StdRng`] and [`SmallRng`] may change in any +//! release and may be platform-dependent, therefore they should be considered +//! **not reproducible**. +//! +//! ## Additional generators +//! +//! **TRNGs**: The [`rdrand`] crate provides an interface to the RDRAND and +//! RDSEED instructions available in modern Intel and AMD CPUs. +//! The [`rand_jitter`] crate provides a user-space implementation of +//! entropy harvesting from CPU timer jitter, but is very slow and has +//! [security issues](https://github.com/rust-random/rand/issues/699). +//! +//! **PRNGs**: Several companion crates are available, providing individual or +//! families of PRNG algorithms. These provide the implementations behind +//! [`StdRng`] and [`SmallRng`] but can also be used directly, indeed *should* +//! be used directly when **reproducibility** matters. +//! Some suggestions are: [`rand_chacha`], [`rand_pcg`], [`rand_xoshiro`]. +//! A full list can be found by searching for crates with the [`rng` tag]. +//! +//! [`SmallRng`]: rngs::SmallRng +//! [`StdRng`]: rngs::StdRng +//! [`OsRng`]: rngs::OsRng +//! [`ThreadRng`]: rngs::ThreadRng +//! [`mock::StepRng`]: rngs::mock::StepRng +//! [`adapter::ReadRng`]: rngs::adapter::ReadRng +//! [`adapter::ReseedingRng`]: rngs::adapter::ReseedingRng +//! [`rdrand`]: https://crates.io/crates/rdrand +//! [`rand_jitter`]: https://crates.io/crates/rand_jitter +//! [`rand_chacha`]: https://crates.io/crates/rand_chacha +//! [`rand_pcg`]: https://crates.io/crates/rand_pcg +//! [`rand_xoshiro`]: https://crates.io/crates/rand_xoshiro +//! [`rng` tag]: https://crates.io/keywords/rng pub mod adapter; #[cfg(feature="std")] mod entropy; -mod jitter; pub mod mock; // Public so we don't export `StepRng` directly, making it a bit // more clear it is intended for testing. +#[cfg(feature="small_rng")] mod small; mod std; #[cfg(feature="std")] pub(crate) mod thread; - -pub use self::jitter::{JitterRng, TimerError}; +#[allow(deprecated)] #[cfg(feature="std")] pub use self::entropy::EntropyRng; +#[cfg(feature="small_rng")] pub use self::small::SmallRng; pub use self::std::StdRng; #[cfg(feature="std")] pub use self::thread::ThreadRng; -#[cfg(feature="rand_os")] -pub use rand_os::OsRng; +#[cfg(feature="getrandom")] pub use rand_core::OsRng; diff --git a/rand/src/rngs/small.rs b/rand/src/rngs/small.rs index b652c8c..6571363 100644 --- a/rand/src/rngs/small.rs +++ b/rand/src/rngs/small.rs @@ -8,35 +8,42 @@ //! A small fast RNG -use {RngCore, SeedableRng, Error}; +use rand_core::{RngCore, SeedableRng, Error}; -#[cfg(all(all(rustc_1_26, not(target_os = "emscripten")), target_pointer_width = "64"))] -type Rng = ::rand_pcg::Pcg64Mcg; -#[cfg(not(all(all(rustc_1_26, not(target_os = "emscripten")), target_pointer_width = "64")))] -type Rng = ::rand_pcg::Pcg32; +#[cfg(all(not(target_os = "emscripten"), target_pointer_width = "64"))] +type Rng = rand_pcg::Pcg64Mcg; +#[cfg(not(all(not(target_os = "emscripten"), target_pointer_width = "64")))] +type Rng = rand_pcg::Pcg32; -/// An RNG recommended when small state, cheap initialization and good -/// performance are required. The PRNG algorithm in `SmallRng` is chosen to be -/// efficient on the current platform, **without consideration for cryptography -/// or security**. The size of its state is much smaller than for [`StdRng`]. +/// A small-state, fast non-crypto PRNG /// -/// Reproducibility of output from this generator is however not required, thus -/// future library versions may use a different internal generator with -/// different output. Further, this generator may not be portable and can -/// produce different output depending on the architecture. If you require -/// reproducible output, use a named RNG. Refer to the documentation on the -/// [`prng` module](../prng/index.html). +/// `SmallRng` may be a good choice when a PRNG with small state, cheap +/// initialization, good statistical quality and good performance are required. +/// It is **not** a good choice when security against prediction or +/// reproducibility are important. /// -/// The current algorithm is [`Pcg64Mcg`] on 64-bit platforms with Rust version -/// 1.26 and later, or [`Pcg32`] otherwise. +/// This PRNG is **feature-gated**: to use, you must enable the crate feature +/// `small_rng`. +/// +/// The algorithm is deterministic but should not be considered reproducible +/// due to dependence on platform and possible replacement in future +/// library versions. For a reproducible generator, use a named PRNG from an +/// external crate, e.g. [rand_pcg] or [rand_chacha]. +/// Refer also to [The Book](https://rust-random.github.io/book/guide-rngs.html). +/// +/// The PRNG algorithm in `SmallRng` is chosen to be +/// efficient on the current platform, without consideration for cryptography +/// or security. The size of its state is much smaller than [`StdRng`]. +/// The current algorithm is [`Pcg64Mcg`](rand_pcg::Pcg64Mcg) on 64-bit +/// platforms and [`Pcg32`](rand_pcg::Pcg32) on 32-bit platforms. Both are +/// implemented by the [rand_pcg] crate. /// /// # Examples /// -/// Initializing `SmallRng` with a random seed can be done using [`FromEntropy`]: +/// Initializing `SmallRng` with a random seed can be done using [`SeedableRng::from_entropy`]: /// /// ``` -/// # use rand::Rng; -/// use rand::FromEntropy; +/// use rand::{Rng, SeedableRng}; /// use rand::rngs::SmallRng; /// /// // Create small, cheap to initialize and fast RNG with a random seed. @@ -64,11 +71,10 @@ type Rng = ::rand_pcg::Pcg32; /// .collect(); /// ``` /// -/// [`FromEntropy`]: ../trait.FromEntropy.html -/// [`StdRng`]: struct.StdRng.html -/// [`thread_rng`]: ../fn.thread_rng.html -/// [`Pcg64Mcg`]: ../../rand_pcg/type.Pcg64Mcg.html -/// [`Pcg32`]: ../../rand_pcg/type.Pcg32.html +/// [`StdRng`]: crate::rngs::StdRng +/// [`thread_rng`]: crate::thread_rng +/// [rand_chacha]: https://crates.io/crates/rand_chacha +/// [rand_pcg]: https://crates.io/crates/rand_pcg #[derive(Clone, Debug)] pub struct SmallRng(Rng); @@ -83,10 +89,12 @@ impl RngCore for SmallRng { self.0.next_u64() } + #[inline(always)] fn fill_bytes(&mut self, dest: &mut [u8]) { self.0.fill_bytes(dest); } + #[inline(always)] fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { self.0.try_fill_bytes(dest) } @@ -95,10 +103,12 @@ impl RngCore for SmallRng { impl SeedableRng for SmallRng { type Seed = <Rng as SeedableRng>::Seed; + #[inline(always)] fn from_seed(seed: Self::Seed) -> Self { SmallRng(Rng::from_seed(seed)) } + #[inline(always)] fn from_rng<R: RngCore>(rng: R) -> Result<Self, Error> { Rng::from_rng(rng).map(SmallRng) } diff --git a/rand/src/rngs/std.rs b/rand/src/rngs/std.rs index ce1658b..22e08ae 100644 --- a/rand/src/rngs/std.rs +++ b/rand/src/rngs/std.rs @@ -8,25 +8,30 @@ //! The standard RNG -use {RngCore, CryptoRng, Error, SeedableRng}; -use rand_hc::Hc128Rng; +use crate::{RngCore, CryptoRng, Error, SeedableRng}; + +#[cfg(target_os = "emscripten")] pub(crate) use rand_hc::Hc128Core as Core; +#[cfg(not(target_os = "emscripten"))] pub(crate) use rand_chacha::ChaCha20Core as Core; +#[cfg(target_os = "emscripten")] use rand_hc::Hc128Rng as Rng; +#[cfg(not(target_os = "emscripten"))] use rand_chacha::ChaCha20Rng as Rng; /// The standard RNG. The PRNG algorithm in `StdRng` is chosen to be efficient /// on the current platform, to be statistically strong and unpredictable /// (meaning a cryptographically secure PRNG). /// -/// The current algorithm used on all platforms is [HC-128]. +/// The current algorithm used is the ChaCha block cipher with either 20 or 12 +/// rounds (see the `stdrng_*` feature flags, documented in the README). +/// This may change as new evidence of cipher security and performance +/// becomes available. /// -/// Reproducibility of output from this generator is however not required, thus -/// future library versions may use a different internal generator with -/// different output. Further, this generator may not be portable and can -/// produce different output depending on the architecture. If you require -/// reproducible output, use a named RNG, for example [`ChaChaRng`]. +/// The algorithm is deterministic but should not be considered reproducible +/// due to dependence on configuration and possible replacement in future +/// library versions. For a secure reproducible generator, we recommend use of +/// the [rand_chacha] crate directly. /// -/// [HC-128]: ../../rand_hc/struct.Hc128Rng.html -/// [`ChaChaRng`]: ../../rand_chacha/struct.ChaChaRng.html +/// [rand_chacha]: https://crates.io/crates/rand_chacha #[derive(Clone, Debug)] -pub struct StdRng(Hc128Rng); +pub struct StdRng(Rng); impl RngCore for StdRng { #[inline(always)] @@ -39,24 +44,28 @@ impl RngCore for StdRng { self.0.next_u64() } + #[inline(always)] fn fill_bytes(&mut self, dest: &mut [u8]) { self.0.fill_bytes(dest); } + #[inline(always)] fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { self.0.try_fill_bytes(dest) } } impl SeedableRng for StdRng { - type Seed = <Hc128Rng as SeedableRng>::Seed; + type Seed = <Rng as SeedableRng>::Seed; + #[inline(always)] fn from_seed(seed: Self::Seed) -> Self { - StdRng(Hc128Rng::from_seed(seed)) + StdRng(Rng::from_seed(seed)) } + #[inline(always)] fn from_rng<R: RngCore>(rng: R) -> Result<Self, Error> { - Hc128Rng::from_rng(rng).map(StdRng) + Rng::from_rng(rng).map(StdRng) } } @@ -65,17 +74,27 @@ impl CryptoRng for StdRng {} #[cfg(test)] mod test { - use {RngCore, SeedableRng}; - use rngs::StdRng; + use crate::{RngCore, SeedableRng}; + use crate::rngs::StdRng; #[test] fn test_stdrng_construction() { + // Test value-stability of StdRng. This is expected to break any time + // the algorithm is changed. let seed = [1,0,0,0, 23,0,0,0, 200,1,0,0, 210,30,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0]; - let mut rng1 = StdRng::from_seed(seed); - assert_eq!(rng1.next_u64(), 15759097995037006553); - let mut rng2 = StdRng::from_rng(rng1).unwrap(); - assert_eq!(rng2.next_u64(), 6766915756997287454); + #[cfg(any(feature="stdrng_strong", not(feature="stdrng_fast")))] + let target = [3950704604716924505, 5573172343717151650]; + #[cfg(all(not(feature="stdrng_strong"), feature="stdrng_fast"))] + let target = [10719222850664546238, 14064965282130556830]; + + let mut rng0 = StdRng::from_seed(seed); + let x0 = rng0.next_u64(); + + let mut rng1 = StdRng::from_rng(rng0).unwrap(); + let x1 = rng1.next_u64(); + + assert_eq!([x0, x1], target); } } diff --git a/rand/src/rngs/thread.rs b/rand/src/rngs/thread.rs index 7977d85..2006f41 100644 --- a/rand/src/rngs/thread.rs +++ b/rand/src/rngs/thread.rs @@ -9,11 +9,12 @@ //! Thread-local random number generator use std::cell::UnsafeCell; +use std::ptr::NonNull; -use {RngCore, CryptoRng, SeedableRng, Error}; -use rngs::adapter::ReseedingRng; -use rngs::EntropyRng; -use rand_hc::Hc128Core; +use crate::{RngCore, CryptoRng, SeedableRng, Error}; +use crate::rngs::adapter::ReseedingRng; +use crate::rngs::OsRng; +use super::std::Core; // Rationale for using `UnsafeCell` in `ThreadRng`: // @@ -28,61 +29,43 @@ use rand_hc::Hc128Core; // completely under our control. We just have to ensure none of them use // `ThreadRng` internally, which is nonsensical anyway. We should also never run // `ThreadRng` in destructors of its implementation, which is also nonsensical. -// -// The additional `Rc` is not strictly neccesary, and could be removed. For now -// it ensures `ThreadRng` stays `!Send` and `!Sync`, and implements `Clone`. -// Number of generated bytes after which to reseed `TreadRng`. -// -// The time it takes to reseed HC-128 is roughly equivalent to generating 7 KiB. -// We pick a treshold here that is large enough to not reduce the average -// performance too much, but also small enough to not make reseeding something -// that basically never happens. -const THREAD_RNG_RESEED_THRESHOLD: u64 = 32*1024*1024; // 32 MiB +// Number of generated bytes after which to reseed `ThreadRng`. +// According to benchmarks, reseeding has a noticable impact with thresholds +// of 32 kB and less. We choose 64 kB to avoid significant overhead. +const THREAD_RNG_RESEED_THRESHOLD: u64 = 1024 * 64; /// The type returned by [`thread_rng`], essentially just a reference to the /// PRNG in thread-local memory. /// -/// `ThreadRng` uses [`ReseedingRng`] wrapping the same PRNG as [`StdRng`], -/// which is reseeded after generating 32 MiB of random data. A single instance -/// is cached per thread and the returned `ThreadRng` is a reference to this -/// instance — hence `ThreadRng` is neither `Send` nor `Sync` but is safe to use -/// within a single thread. This RNG is seeded and reseeded via [`EntropyRng`] -/// as required. +/// `ThreadRng` uses the same PRNG as [`StdRng`] for security and performance. +/// As hinted by the name, the generator is thread-local. `ThreadRng` is a +/// handle to this generator and thus supports `Copy`, but not `Send` or `Sync`. /// -/// Note that the reseeding is done as an extra precaution against entropy -/// leaks and is in theory unnecessary — to predict `ThreadRng`'s output, an -/// attacker would have to either determine most of the RNG's seed or internal -/// state, or crack the algorithm used. +/// Unlike `StdRng`, `ThreadRng` uses the [`ReseedingRng`] wrapper to reseed +/// the PRNG from fresh entropy every 64 kiB of random data. +/// [`OsRng`] is used to provide seed data. /// -/// Like [`StdRng`], `ThreadRng` is a cryptographically secure PRNG. The current -/// algorithm used is [HC-128], which is an array-based PRNG that trades memory -/// usage for better performance. This makes it similar to ISAAC, the algorithm -/// used in `ThreadRng` before rand 0.5. +/// Note that the reseeding is done as an extra precaution against side-channel +/// attacks and mis-use (e.g. if somehow weak entropy were supplied initially). +/// The PRNG algorithms used are assumed to be secure. /// -/// Cloning this handle just produces a new reference to the same thread-local -/// generator. -/// -/// [`thread_rng`]: ../fn.thread_rng.html -/// [`ReseedingRng`]: adapter/struct.ReseedingRng.html -/// [`StdRng`]: struct.StdRng.html -/// [`EntropyRng`]: struct.EntropyRng.html -/// [HC-128]: ../../rand_hc/struct.Hc128Rng.html -#[derive(Clone, Debug)] +/// [`ReseedingRng`]: crate::rngs::adapter::ReseedingRng +/// [`StdRng`]: crate::rngs::StdRng +#[derive(Copy, Clone, Debug)] pub struct ThreadRng { - // use of raw pointer implies type is neither Send nor Sync - rng: *mut ReseedingRng<Hc128Core, EntropyRng>, + // inner raw pointer implies type is neither Send nor Sync + rng: NonNull<ReseedingRng<Core, OsRng>>, } thread_local!( - static THREAD_RNG_KEY: UnsafeCell<ReseedingRng<Hc128Core, EntropyRng>> = { - let mut entropy_source = EntropyRng::new(); - let r = Hc128Core::from_rng(&mut entropy_source).unwrap_or_else(|err| + static THREAD_RNG_KEY: UnsafeCell<ReseedingRng<Core, OsRng>> = { + let r = Core::from_rng(OsRng).unwrap_or_else(|err| panic!("could not initialize thread_rng: {}", err)); let rng = ReseedingRng::new(r, THREAD_RNG_RESEED_THRESHOLD, - entropy_source); + OsRng); UnsafeCell::new(rng) } ); @@ -91,38 +74,38 @@ thread_local!( /// seeded by the system. Intended to be used in method chaining style, /// e.g. `thread_rng().gen::<i32>()`, or cached locally, e.g. /// `let mut rng = thread_rng();`. Invoked by the `Default` trait, making -/// `ThreadRng::default()` equivelent. +/// `ThreadRng::default()` equivalent. /// /// For more information see [`ThreadRng`]. -/// -/// [`ThreadRng`]: rngs/struct.ThreadRng.html pub fn thread_rng() -> ThreadRng { - ThreadRng { rng: THREAD_RNG_KEY.with(|t| t.get()) } + let raw = THREAD_RNG_KEY.with(|t| t.get()); + let nn = NonNull::new(raw).unwrap(); + ThreadRng { rng: nn } } impl Default for ThreadRng { fn default() -> ThreadRng { - ::prelude::thread_rng() + crate::prelude::thread_rng() } } impl RngCore for ThreadRng { #[inline(always)] fn next_u32(&mut self) -> u32 { - unsafe { (*self.rng).next_u32() } + unsafe { self.rng.as_mut().next_u32() } } #[inline(always)] fn next_u64(&mut self) -> u64 { - unsafe { (*self.rng).next_u64() } + unsafe { self.rng.as_mut().next_u64() } } fn fill_bytes(&mut self, dest: &mut [u8]) { - unsafe { (*self.rng).fill_bytes(dest) } + unsafe { self.rng.as_mut().fill_bytes(dest) } } fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { - unsafe { (*self.rng).try_fill_bytes(dest) } + unsafe { self.rng.as_mut().try_fill_bytes(dest) } } } @@ -133,8 +116,8 @@ impl CryptoRng for ThreadRng {} mod test { #[test] fn test_thread_rng() { - use Rng; - let mut r = ::thread_rng(); + use crate::Rng; + let mut r = crate::thread_rng(); r.gen::<i32>(); assert_eq!(r.gen_range(0, 1), 0); } |