1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
|
extern crate rand_pcg;
extern crate rand_core;
#[cfg(all(feature="serde1", test))] extern crate bincode;
use rand_core::{RngCore, SeedableRng};
use rand_pcg::{Lcg64Xsh32, Pcg32};
#[test]
fn test_lcg64xsh32_construction() {
// Test that various construction techniques produce a working RNG.
let seed = [1,2,3,4, 5,6,7,8, 9,10,11,12, 13,14,15,16];
let mut rng1 = Lcg64Xsh32::from_seed(seed);
assert_eq!(rng1.next_u64(), 1204678643940597513);
let mut rng2 = Lcg64Xsh32::from_rng(&mut rng1).unwrap();
assert_eq!(rng2.next_u64(), 12384929573776311845);
let mut rng3 = Lcg64Xsh32::seed_from_u64(0);
assert_eq!(rng3.next_u64(), 18195738587432868099);
// This is the same as Lcg64Xsh32, so we only have a single test:
let mut rng4 = Pcg32::seed_from_u64(0);
assert_eq!(rng4.next_u64(), 18195738587432868099);
}
#[test]
fn test_lcg64xsh32_true_values() {
// Numbers copied from official test suite.
let mut rng = Lcg64Xsh32::new(42, 54);
let mut results = [0u32; 6];
for i in results.iter_mut() { *i = rng.next_u32(); }
let expected: [u32; 6] = [0xa15c02b7, 0x7b47f409, 0xba1d3330,
0x83d2f293, 0xbfa4784b, 0xcbed606e];
assert_eq!(results, expected);
}
#[cfg(feature="serde1")]
#[test]
fn test_lcg64xsh32_serde() {
use bincode;
use std::io::{BufWriter, BufReader};
let mut rng = Lcg64Xsh32::seed_from_u64(0);
let buf: Vec<u8> = Vec::new();
let mut buf = BufWriter::new(buf);
bincode::serialize_into(&mut buf, &rng).expect("Could not serialize");
let buf = buf.into_inner().unwrap();
let mut read = BufReader::new(&buf[..]);
let mut deserialized: Lcg64Xsh32 = bincode::deserialize_from(&mut read)
.expect("Could not deserialize");
for _ in 0..16 {
assert_eq!(rng.next_u64(), deserialized.next_u64());
}
}
|