1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
|
// Copyright 2018 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Math helper functions
use rand::Rng;
use crate::ziggurat_tables;
use rand::distributions::hidden_export::IntoFloat;
use core::{cmp, ops};
/// Trait for floating-point scalar types
///
/// This allows many distributions to work with `f32` or `f64` parameters and is
/// potentially extensible. Note however that the `Exp1` and `StandardNormal`
/// distributions are implemented exclusively for `f32` and `f64`.
///
/// The bounds and methods are based purely on internal
/// requirements, and will change as needed.
pub trait Float: Copy + Sized + cmp::PartialOrd
+ ops::Neg<Output = Self>
+ ops::Add<Output = Self>
+ ops::Sub<Output = Self>
+ ops::Mul<Output = Self>
+ ops::Div<Output = Self>
+ ops::AddAssign + ops::SubAssign + ops::MulAssign + ops::DivAssign
{
/// The constant π
fn pi() -> Self;
/// Support approximate representation of a f64 value
fn from(x: f64) -> Self;
/// Support converting to an unsigned integer.
fn to_u64(self) -> Option<u64>;
/// Take the absolute value of self
fn abs(self) -> Self;
/// Take the largest integer less than or equal to self
fn floor(self) -> Self;
/// Take the exponential of self
fn exp(self) -> Self;
/// Take the natural logarithm of self
fn ln(self) -> Self;
/// Take square root of self
fn sqrt(self) -> Self;
/// Take self to a floating-point power
fn powf(self, power: Self) -> Self;
/// Take the tangent of self
fn tan(self) -> Self;
/// Take the logarithm of the gamma function of self
fn log_gamma(self) -> Self;
}
impl Float for f32 {
#[inline]
fn pi() -> Self { core::f32::consts::PI }
#[inline]
fn from(x: f64) -> Self { x as f32 }
#[inline]
fn to_u64(self) -> Option<u64> {
if self >= 0. && self <= ::core::u64::MAX as f32 {
Some(self as u64)
} else {
None
}
}
#[inline]
fn abs(self) -> Self { self.abs() }
#[inline]
fn floor(self) -> Self { self.floor() }
#[inline]
fn exp(self) -> Self { self.exp() }
#[inline]
fn ln(self) -> Self { self.ln() }
#[inline]
fn sqrt(self) -> Self { self.sqrt() }
#[inline]
fn powf(self, power: Self) -> Self { self.powf(power) }
#[inline]
fn tan(self) -> Self { self.tan() }
#[inline]
fn log_gamma(self) -> Self {
let result = log_gamma(self.into());
assert!(result <= ::core::f32::MAX.into());
assert!(result >= ::core::f32::MIN.into());
result as f32
}
}
impl Float for f64 {
#[inline]
fn pi() -> Self { core::f64::consts::PI }
#[inline]
fn from(x: f64) -> Self { x }
#[inline]
fn to_u64(self) -> Option<u64> {
if self >= 0. && self <= ::core::u64::MAX as f64 {
Some(self as u64)
} else {
None
}
}
#[inline]
fn abs(self) -> Self { self.abs() }
#[inline]
fn floor(self) -> Self { self.floor() }
#[inline]
fn exp(self) -> Self { self.exp() }
#[inline]
fn ln(self) -> Self { self.ln() }
#[inline]
fn sqrt(self) -> Self { self.sqrt() }
#[inline]
fn powf(self, power: Self) -> Self { self.powf(power) }
#[inline]
fn tan(self) -> Self { self.tan() }
#[inline]
fn log_gamma(self) -> Self { log_gamma(self) }
}
/// Calculates ln(gamma(x)) (natural logarithm of the gamma
/// function) using the Lanczos approximation.
///
/// The approximation expresses the gamma function as:
/// `gamma(z+1) = sqrt(2*pi)*(z+g+0.5)^(z+0.5)*exp(-z-g-0.5)*Ag(z)`
/// `g` is an arbitrary constant; we use the approximation with `g=5`.
///
/// Noting that `gamma(z+1) = z*gamma(z)` and applying `ln` to both sides:
/// `ln(gamma(z)) = (z+0.5)*ln(z+g+0.5)-(z+g+0.5) + ln(sqrt(2*pi)*Ag(z)/z)`
///
/// `Ag(z)` is an infinite series with coefficients that can be calculated
/// ahead of time - we use just the first 6 terms, which is good enough
/// for most purposes.
pub(crate) fn log_gamma(x: f64) -> f64 {
// precalculated 6 coefficients for the first 6 terms of the series
let coefficients: [f64; 6] = [
76.18009172947146,
-86.50532032941677,
24.01409824083091,
-1.231739572450155,
0.1208650973866179e-2,
-0.5395239384953e-5,
];
// (x+0.5)*ln(x+g+0.5)-(x+g+0.5)
let tmp = x + 5.5;
let log = (x + 0.5) * tmp.ln() - tmp;
// the first few terms of the series for Ag(x)
let mut a = 1.000000000190015;
let mut denom = x;
for &coeff in &coefficients {
denom += 1.0;
a += coeff / denom;
}
// get everything together
// a is Ag(x)
// 2.5066... is sqrt(2pi)
log + (2.5066282746310005 * a / x).ln()
}
/// Sample a random number using the Ziggurat method (specifically the
/// ZIGNOR variant from Doornik 2005). Most of the arguments are
/// directly from the paper:
///
/// * `rng`: source of randomness
/// * `symmetric`: whether this is a symmetric distribution, or one-sided with P(x < 0) = 0.
/// * `X`: the $x_i$ abscissae.
/// * `F`: precomputed values of the PDF at the $x_i$, (i.e. $f(x_i)$)
/// * `F_DIFF`: precomputed values of $f(x_i) - f(x_{i+1})$
/// * `pdf`: the probability density function
/// * `zero_case`: manual sampling from the tail when we chose the
/// bottom box (i.e. i == 0)
// the perf improvement (25-50%) is definitely worth the extra code
// size from force-inlining.
#[inline(always)]
pub(crate) fn ziggurat<R: Rng + ?Sized, P, Z>(
rng: &mut R,
symmetric: bool,
x_tab: ziggurat_tables::ZigTable,
f_tab: ziggurat_tables::ZigTable,
mut pdf: P,
mut zero_case: Z)
-> f64 where P: FnMut(f64) -> f64, Z: FnMut(&mut R, f64) -> f64 {
loop {
// As an optimisation we re-implement the conversion to a f64.
// From the remaining 12 most significant bits we use 8 to construct `i`.
// This saves us generating a whole extra random number, while the added
// precision of using 64 bits for f64 does not buy us much.
let bits = rng.next_u64();
let i = bits as usize & 0xff;
let u = if symmetric {
// Convert to a value in the range [2,4) and substract to get [-1,1)
// We can't convert to an open range directly, that would require
// substracting `3.0 - EPSILON`, which is not representable.
// It is possible with an extra step, but an open range does not
// seem neccesary for the ziggurat algorithm anyway.
(bits >> 12).into_float_with_exponent(1) - 3.0
} else {
// Convert to a value in the range [1,2) and substract to get (0,1)
(bits >> 12).into_float_with_exponent(0)
- (1.0 - std::f64::EPSILON / 2.0)
};
let x = u * x_tab[i];
let test_x = if symmetric { x.abs() } else {x};
// algebraically equivalent to |u| < x_tab[i+1]/x_tab[i] (or u < x_tab[i+1]/x_tab[i])
if test_x < x_tab[i + 1] {
return x;
}
if i == 0 {
return zero_case(rng, u);
}
// algebraically equivalent to f1 + DRanU()*(f0 - f1) < 1
if f_tab[i + 1] + (f_tab[i] - f_tab[i + 1]) * rng.gen::<f64>() < pdf(x) {
return x;
}
}
}
|