1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
|
#[cfg(test)]
extern crate quickcheck;
#[cfg(test)]
extern crate rand;
use std::cmp::min;
#[derive(Copy,Clone)]
pub enum Alphabet {
RFC4648 { padding: bool },
Crockford,
}
const RFC4648_ALPHABET: &'static [u8] = b"ABCDEFGHIJKLMNOPQRSTUVWXYZ234567";
const CROCKFORD_ALPHABET: &'static [u8] = b"0123456789ABCDEFGHJKMNPQRSTVWXYZ";
pub fn encode(alphabet: Alphabet, data: &[u8]) -> String {
let (alphabet, padding) = match alphabet {
Alphabet::RFC4648 { padding } => (RFC4648_ALPHABET, padding),
Alphabet::Crockford => (CROCKFORD_ALPHABET, false),
};
let mut ret = Vec::with_capacity((data.len()+3)/4*5);
for chunk in data.chunks(5) {
let buf = {
let mut buf = [0u8; 5];
for (i, &b) in chunk.iter().enumerate() {
buf[i] = b;
}
buf
};
ret.push(alphabet[((buf[0] & 0xF8) >> 3) as usize]);
ret.push(alphabet[(((buf[0] & 0x07) << 2) | ((buf[1] & 0xC0) >> 6)) as usize]);
ret.push(alphabet[((buf[1] & 0x3E) >> 1) as usize]);
ret.push(alphabet[(((buf[1] & 0x01) << 4) | ((buf[2] & 0xF0) >> 4)) as usize]);
ret.push(alphabet[(((buf[2] & 0x0F) << 1) | (buf[3] >> 7)) as usize]);
ret.push(alphabet[((buf[3] & 0x7C) >> 2) as usize]);
ret.push(alphabet[(((buf[3] & 0x03) << 3) | ((buf[4] & 0xE0) >> 5)) as usize]);
ret.push(alphabet[(buf[4] & 0x1F) as usize]);
}
if data.len() % 5 != 0 {
let len = ret.len();
let num_extra = 8-(data.len()%5*8+4)/5;
if padding {
for i in 1..num_extra+1 {
ret[len-i] = b'=';
}
} else {
ret.truncate(len-num_extra);
}
}
String::from_utf8(ret).unwrap()
}
const RFC4648_INV_ALPHABET: [i8; 43] = [-1, -1, 26, 27, 28, 29, 30, 31, -1, -1, -1, -1, -1, 0, -1, -1, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25];
const CROCKFORD_INV_ALPHABET: [i8; 43] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, -1, -1, -1, -1, -1, 10, 11, 12, 13, 14, 15, 16, 17, 1, 18, 19, 1, 20, 21, 0, 22, 23, 24, 25, 26, -1, 27, 28, 29, 30, 31];
pub fn decode(alphabet: Alphabet, data: &str) -> Option<Vec<u8>> {
if !data.is_ascii() {
return None;
}
let data = data.as_bytes();
let alphabet = match alphabet {
Alphabet::RFC4648 {..} => RFC4648_INV_ALPHABET,
Alphabet::Crockford => CROCKFORD_INV_ALPHABET
};
let mut unpadded_data_length = data.len();
for i in 1..min(6, data.len())+1 {
if data[data.len() - i] != b'=' {
break;
}
unpadded_data_length -= 1;
}
let output_length = unpadded_data_length*5/8;
let mut ret = Vec::with_capacity((output_length+4)/5*5);
for chunk in data.chunks(8) {
let buf = {
let mut buf = [0u8; 8];
for (i, &c) in chunk.iter().enumerate() {
match alphabet.get(c.to_ascii_uppercase().wrapping_sub(b'0') as usize) {
Some(&-1) | None => return None,
Some(&value) => buf[i] = value as u8,
};
}
buf
};
ret.push((buf[0] << 3) | (buf[1] >> 2));
ret.push((buf[1] << 6) | (buf[2] << 1) | (buf[3] >> 4));
ret.push((buf[3] << 4) | (buf[4] >> 1));
ret.push((buf[4] << 7) | (buf[5] << 2) | (buf[6] >> 3));
ret.push((buf[6] << 5) | buf[7]);
}
ret.truncate(output_length);
Some(ret)
}
#[cfg(test)]
#[allow(dead_code, unused_attributes)]
mod test {
use super::{encode, decode};
use super::Alphabet::{Crockford, RFC4648};
use quickcheck;
use std;
use rand::Rng;
#[derive(Clone)]
struct B32 {
c: u8
}
impl quickcheck::Arbitrary for B32 {
fn arbitrary<G: quickcheck::Gen>(g: &mut G) -> B32 {
let alphabet = b"0123456789ABCDEFGHJKMNPQRSTVWXYZ";
B32 {
c: alphabet[g.gen_range(0, alphabet.len())]
}
}
}
impl std::fmt::Debug for B32 {
fn fmt(&self, f: &mut std::fmt::Formatter) -> Result<(), std::fmt::Error> {
(self.c as char).fmt(f)
}
}
#[test]
fn masks_crockford() {
assert_eq!(encode(Crockford, &[0xF8, 0x3E, 0x0F, 0x83, 0xE0]), "Z0Z0Z0Z0");
assert_eq!(encode(Crockford, &[0x07, 0xC1, 0xF0, 0x7C, 0x1F]), "0Z0Z0Z0Z");
assert_eq!(decode(Crockford, "Z0Z0Z0Z0").unwrap(), [0xF8, 0x3E, 0x0F, 0x83, 0xE0]);
assert_eq!(decode(Crockford, "0Z0Z0Z0Z").unwrap(), [0x07, 0xC1, 0xF0, 0x7C, 0x1F]);
}
#[test]
fn masks_rfc4648() {
assert_eq!(encode(RFC4648 { padding: true }, &[0xF8, 0x3E, 0x7F, 0x83, 0xE7]), "7A7H7A7H");
assert_eq!(encode(RFC4648 { padding: true }, &[0x77, 0xC1, 0xF7, 0x7C, 0x1F]), "O7A7O7A7");
assert_eq!(decode(RFC4648 { padding: true }, "7A7H7A7H").unwrap(), [0xF8, 0x3E, 0x7F, 0x83, 0xE7]);
assert_eq!(decode(RFC4648 { padding: true }, "O7A7O7A7").unwrap(), [0x77, 0xC1, 0xF7, 0x7C, 0x1F]);
assert_eq!(encode(RFC4648 { padding: true }, &[0xF8, 0x3E, 0x7F, 0x83]), "7A7H7AY=");
}
#[test]
fn masks_unpadded_rfc4648() {
assert_eq!(encode(RFC4648 { padding: false }, &[0xF8, 0x3E, 0x7F, 0x83, 0xE7]), "7A7H7A7H");
assert_eq!(encode(RFC4648 { padding: false }, &[0x77, 0xC1, 0xF7, 0x7C, 0x1F]), "O7A7O7A7");
assert_eq!(decode(RFC4648 { padding: false }, "7A7H7A7H").unwrap(), [0xF8, 0x3E, 0x7F, 0x83, 0xE7]);
assert_eq!(decode(RFC4648 { padding: false }, "O7A7O7A7").unwrap(), [0x77, 0xC1, 0xF7, 0x7C, 0x1F]);
assert_eq!(encode(RFC4648 { padding: false }, &[0xF8, 0x3E, 0x7F, 0x83]), "7A7H7AY");
}
#[test]
fn padding() {
let num_padding = [0, 6, 4, 3, 1];
for i in 1..6 {
let encoded = encode(RFC4648 { padding: true }, (0..(i as u8)).collect::<Vec<u8>>().as_ref());
assert_eq!(encoded.len(), 8);
for j in 0..(num_padding[i % 5]) {
assert_eq!(encoded.as_bytes()[encoded.len()-j-1], b'=');
}
for j in 0..(8 - num_padding[i % 5]) {
assert!(encoded.as_bytes()[j] != b'=');
}
}
}
#[test]
fn invertible_crockford() {
fn test(data: Vec<u8>) -> bool {
decode(Crockford, encode(Crockford, data.as_ref()).as_ref()).unwrap() == data
}
quickcheck::quickcheck(test as fn(Vec<u8>) -> bool)
}
#[test]
fn invertible_rfc4648() {
fn test(data: Vec<u8>) -> bool {
decode(RFC4648 { padding: true }, encode(RFC4648 { padding: true }, data.as_ref()).as_ref()).unwrap() == data
}
quickcheck::quickcheck(test as fn(Vec<u8>) -> bool)
}
#[test]
fn invertible_unpadded_rfc4648() {
fn test(data: Vec<u8>) -> bool {
decode(RFC4648 { padding: false }, encode(RFC4648 { padding: false }, data.as_ref()).as_ref()).unwrap() == data
}
quickcheck::quickcheck(test as fn(Vec<u8>) -> bool)
}
#[test]
fn lower_case() {
fn test(data: Vec<B32>) -> bool {
let data: String = data.iter().map(|e| e.c as char).collect();
decode(Crockford, data.as_ref()) == decode(Crockford, data.to_ascii_lowercase().as_ref())
}
quickcheck::quickcheck(test as fn(Vec<B32>) -> bool)
}
#[test]
#[allow(non_snake_case)]
fn iIlL1_oO0() {
assert_eq!(decode(Crockford, "IiLlOo"), decode(Crockford, "111100"));
}
#[test]
fn invalid_chars_crockford() {
assert_eq!(decode(Crockford, ","), None)
}
#[test]
fn invalid_chars_rfc4648() {
assert_eq!(decode(RFC4648 { padding: true }, ","), None)
}
#[test]
fn invalid_chars_unpadded_rfc4648() {
assert_eq!(decode(RFC4648 { padding: false }, ","), None)
}
}
|