aboutsummaryrefslogtreecommitdiff
path: root/rand/tests/uniformity.rs
diff options
context:
space:
mode:
Diffstat (limited to 'rand/tests/uniformity.rs')
-rw-r--r--rand/tests/uniformity.rs67
1 files changed, 0 insertions, 67 deletions
diff --git a/rand/tests/uniformity.rs b/rand/tests/uniformity.rs
deleted file mode 100644
index b8f74a6..0000000
--- a/rand/tests/uniformity.rs
+++ /dev/null
@@ -1,67 +0,0 @@
-// Copyright 2018 Developers of the Rand project.
-//
-// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
-// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
-// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
-// option. This file may not be copied, modified, or distributed
-// except according to those terms.
-
-#![cfg(feature = "std")]
-
-#[macro_use]
-extern crate average;
-extern crate rand;
-
-use std as core;
-use rand::FromEntropy;
-use rand::distributions::Distribution;
-use average::Histogram;
-
-const N_BINS: usize = 100;
-const N_SAMPLES: u32 = 1_000_000;
-const TOL: f64 = 1e-3;
-define_histogram!(hist, 100);
-use hist::Histogram as Histogram100;
-
-#[test]
-fn unit_sphere() {
- const N_DIM: usize = 3;
- let h = Histogram100::with_const_width(-1., 1.);
- let mut histograms = [h.clone(), h.clone(), h];
- let dist = rand::distributions::UnitSphereSurface::new();
- let mut rng = rand::rngs::SmallRng::from_entropy();
- for _ in 0..N_SAMPLES {
- let v = dist.sample(&mut rng);
- for i in 0..N_DIM {
- histograms[i].add(v[i]).map_err(
- |e| { println!("v: {}", v[i]); e }
- ).unwrap();
- }
- }
- for h in &histograms {
- let sum: u64 = h.bins().iter().sum();
- println!("{:?}", h);
- for &b in h.bins() {
- let p = (b as f64) / (sum as f64);
- assert!((p - 1.0 / (N_BINS as f64)).abs() < TOL, "{}", p);
- }
- }
-}
-
-#[test]
-fn unit_circle() {
- use ::std::f64::consts::PI;
- let mut h = Histogram100::with_const_width(-PI, PI);
- let dist = rand::distributions::UnitCircle::new();
- let mut rng = rand::rngs::SmallRng::from_entropy();
- for _ in 0..N_SAMPLES {
- let v = dist.sample(&mut rng);
- h.add(v[0].atan2(v[1])).unwrap();
- }
- let sum: u64 = h.bins().iter().sum();
- println!("{:?}", h);
- for &b in h.bins() {
- let p = (b as f64) / (sum as f64);
- assert!((p - 1.0 / (N_BINS as f64)).abs() < TOL, "{}", p);
- }
-}