aboutsummaryrefslogtreecommitdiff
path: root/rand/src/lib.rs
diff options
context:
space:
mode:
Diffstat (limited to 'rand/src/lib.rs')
-rw-r--r--rand/src/lib.rs852
1 files changed, 0 insertions, 852 deletions
diff --git a/rand/src/lib.rs b/rand/src/lib.rs
deleted file mode 100644
index ca231b5..0000000
--- a/rand/src/lib.rs
+++ /dev/null
@@ -1,852 +0,0 @@
-// Copyright 2018 Developers of the Rand project.
-// Copyright 2013-2017 The Rust Project Developers.
-//
-// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
-// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
-// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
-// option. This file may not be copied, modified, or distributed
-// except according to those terms.
-
-//! Utilities for random number generation
-//!
-//! Rand provides utilities to generate random numbers, to convert them to
-//! useful types and distributions, and some randomness-related algorithms.
-//!
-//! # Quick Start
-//!
-//! To get you started quickly, the easiest and highest-level way to get
-//! a random value is to use [`random()`]; alternatively you can use
-//! [`thread_rng()`]. The [`Rng`] trait provides a useful API on all RNGs, while
-//! the [`distributions` module] and [`seq` module] provide further
-//! functionality on top of RNGs.
-//!
-//! ```
-//! use rand::prelude::*;
-//!
-//! if rand::random() { // generates a boolean
-//! // Try printing a random unicode code point (probably a bad idea)!
-//! println!("char: {}", rand::random::<char>());
-//! }
-//!
-//! let mut rng = rand::thread_rng();
-//! let y: f64 = rng.gen(); // generates a float between 0 and 1
-//!
-//! let mut nums: Vec<i32> = (1..100).collect();
-//! nums.shuffle(&mut rng);
-//! ```
-//!
-//! # The Book
-//!
-//! For the user guide and futher documentation, please read
-//! [The Rust Rand Book](https://rust-random.github.io/book).
-//!
-//! [`distributions` module]: distributions/index.html
-//! [`random()`]: fn.random.html
-//! [`Rng`]: trait.Rng.html
-//! [`seq` module]: seq/index.html
-//! [`thread_rng()`]: fn.thread_rng.html
-
-
-#![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk.png",
- html_favicon_url = "https://www.rust-lang.org/favicon.ico",
- html_root_url = "https://rust-random.github.io/rand/")]
-
-#![deny(missing_docs)]
-#![deny(missing_debug_implementations)]
-#![doc(test(attr(allow(unused_variables), deny(warnings))))]
-
-#![cfg_attr(not(feature="std"), no_std)]
-#![cfg_attr(all(feature="alloc", not(feature="std")), feature(alloc))]
-#![cfg_attr(all(feature="simd_support", feature="nightly"), feature(stdsimd))]
-
-#[cfg(feature = "std")] extern crate core;
-#[cfg(all(feature = "alloc", not(feature="std")))] #[macro_use] extern crate alloc;
-
-#[cfg(feature="simd_support")] extern crate packed_simd;
-
-#[cfg(feature = "rand_os")]
-extern crate rand_os;
-
-extern crate rand_core;
-extern crate rand_isaac; // only for deprecations
-extern crate rand_chacha; // only for deprecations
-extern crate rand_hc;
-extern crate rand_pcg;
-extern crate rand_xorshift;
-
-#[cfg(feature = "log")] #[macro_use] extern crate log;
-#[allow(unused)]
-#[cfg(not(feature = "log"))] macro_rules! trace { ($($x:tt)*) => () }
-#[allow(unused)]
-#[cfg(not(feature = "log"))] macro_rules! debug { ($($x:tt)*) => () }
-#[allow(unused)]
-#[cfg(not(feature = "log"))] macro_rules! info { ($($x:tt)*) => () }
-#[allow(unused)]
-#[cfg(not(feature = "log"))] macro_rules! warn { ($($x:tt)*) => () }
-#[allow(unused)]
-#[cfg(not(feature = "log"))] macro_rules! error { ($($x:tt)*) => () }
-
-
-// Re-exports from rand_core
-pub use rand_core::{RngCore, CryptoRng, SeedableRng};
-pub use rand_core::{ErrorKind, Error};
-
-// Public exports
-#[cfg(feature="std")] pub use rngs::thread::thread_rng;
-
-// Public modules
-pub mod distributions;
-pub mod prelude;
-#[deprecated(since="0.6.0")]
-pub mod prng;
-pub mod rngs;
-pub mod seq;
-
-////////////////////////////////////////////////////////////////////////////////
-// Compatibility re-exports. Documentation is hidden; will be removed eventually.
-
-#[doc(hidden)] mod deprecated;
-
-#[allow(deprecated)]
-#[doc(hidden)] pub use deprecated::ReseedingRng;
-
-#[allow(deprecated)]
-#[cfg(feature="std")] #[doc(hidden)] pub use deprecated::EntropyRng;
-
-#[allow(deprecated)]
-#[cfg(feature="rand_os")]
-#[doc(hidden)]
-pub use deprecated::OsRng;
-
-#[allow(deprecated)]
-#[doc(hidden)] pub use deprecated::{ChaChaRng, IsaacRng, Isaac64Rng, XorShiftRng};
-#[allow(deprecated)]
-#[doc(hidden)] pub use deprecated::StdRng;
-
-
-#[allow(deprecated)]
-#[doc(hidden)]
-pub mod jitter {
- pub use deprecated::JitterRng;
- pub use rngs::TimerError;
-}
-#[allow(deprecated)]
-#[cfg(feature="rand_os")]
-#[doc(hidden)]
-pub mod os {
- pub use deprecated::OsRng;
-}
-#[allow(deprecated)]
-#[doc(hidden)]
-pub mod chacha {
- pub use deprecated::ChaChaRng;
-}
-#[allow(deprecated)]
-#[doc(hidden)]
-pub mod isaac {
- pub use deprecated::{IsaacRng, Isaac64Rng};
-}
-#[allow(deprecated)]
-#[cfg(feature="std")]
-#[doc(hidden)]
-pub mod read {
- pub use deprecated::ReadRng;
-}
-
-#[allow(deprecated)]
-#[cfg(feature="std")] #[doc(hidden)] pub use deprecated::ThreadRng;
-
-////////////////////////////////////////////////////////////////////////////////
-
-
-use core::{mem, slice};
-use distributions::{Distribution, Standard};
-use distributions::uniform::{SampleUniform, UniformSampler, SampleBorrow};
-
-/// An automatically-implemented extension trait on [`RngCore`] providing high-level
-/// generic methods for sampling values and other convenience methods.
-///
-/// This is the primary trait to use when generating random values.
-///
-/// # Generic usage
-///
-/// The basic pattern is `fn foo<R: Rng + ?Sized>(rng: &mut R)`. Some
-/// things are worth noting here:
-///
-/// - Since `Rng: RngCore` and every `RngCore` implements `Rng`, it makes no
-/// difference whether we use `R: Rng` or `R: RngCore`.
-/// - The `+ ?Sized` un-bounding allows functions to be called directly on
-/// type-erased references; i.e. `foo(r)` where `r: &mut RngCore`. Without
-/// this it would be necessary to write `foo(&mut r)`.
-///
-/// An alternative pattern is possible: `fn foo<R: Rng>(rng: R)`. This has some
-/// trade-offs. It allows the argument to be consumed directly without a `&mut`
-/// (which is how `from_rng(thread_rng())` works); also it still works directly
-/// on references (including type-erased references). Unfortunately within the
-/// function `foo` it is not known whether `rng` is a reference type or not,
-/// hence many uses of `rng` require an extra reference, either explicitly
-/// (`distr.sample(&mut rng)`) or implicitly (`rng.gen()`); one may hope the
-/// optimiser can remove redundant references later.
-///
-/// Example:
-///
-/// ```
-/// # use rand::thread_rng;
-/// use rand::Rng;
-///
-/// fn foo<R: Rng + ?Sized>(rng: &mut R) -> f32 {
-/// rng.gen()
-/// }
-///
-/// # let v = foo(&mut thread_rng());
-/// ```
-///
-/// [`RngCore`]: trait.RngCore.html
-pub trait Rng: RngCore {
- /// Return a random value supporting the [`Standard`] distribution.
- ///
- /// [`Standard`]: distributions/struct.Standard.html
- ///
- /// # Example
- ///
- /// ```
- /// use rand::{thread_rng, Rng};
- ///
- /// let mut rng = thread_rng();
- /// let x: u32 = rng.gen();
- /// println!("{}", x);
- /// println!("{:?}", rng.gen::<(f64, bool)>());
- /// ```
- #[inline]
- fn gen<T>(&mut self) -> T where Standard: Distribution<T> {
- Standard.sample(self)
- }
-
- /// Generate a random value in the range [`low`, `high`), i.e. inclusive of
- /// `low` and exclusive of `high`.
- ///
- /// This function is optimised for the case that only a single sample is
- /// made from the given range. See also the [`Uniform`] distribution
- /// type which may be faster if sampling from the same range repeatedly.
- ///
- /// # Panics
- ///
- /// Panics if `low >= high`.
- ///
- /// # Example
- ///
- /// ```
- /// use rand::{thread_rng, Rng};
- ///
- /// let mut rng = thread_rng();
- /// let n: u32 = rng.gen_range(0, 10);
- /// println!("{}", n);
- /// let m: f64 = rng.gen_range(-40.0f64, 1.3e5f64);
- /// println!("{}", m);
- /// ```
- ///
- /// [`Uniform`]: distributions/uniform/struct.Uniform.html
- fn gen_range<T: SampleUniform, B1, B2>(&mut self, low: B1, high: B2) -> T
- where B1: SampleBorrow<T> + Sized,
- B2: SampleBorrow<T> + Sized {
- T::Sampler::sample_single(low, high, self)
- }
-
- /// Sample a new value, using the given distribution.
- ///
- /// ### Example
- ///
- /// ```
- /// use rand::{thread_rng, Rng};
- /// use rand::distributions::Uniform;
- ///
- /// let mut rng = thread_rng();
- /// let x = rng.sample(Uniform::new(10u32, 15));
- /// // Type annotation requires two types, the type and distribution; the
- /// // distribution can be inferred.
- /// let y = rng.sample::<u16, _>(Uniform::new(10, 15));
- /// ```
- fn sample<T, D: Distribution<T>>(&mut self, distr: D) -> T {
- distr.sample(self)
- }
-
- /// Create an iterator that generates values using the given distribution.
- ///
- /// # Example
- ///
- /// ```
- /// use rand::{thread_rng, Rng};
- /// use rand::distributions::{Alphanumeric, Uniform, Standard};
- ///
- /// let mut rng = thread_rng();
- ///
- /// // Vec of 16 x f32:
- /// let v: Vec<f32> = thread_rng().sample_iter(&Standard).take(16).collect();
- ///
- /// // String:
- /// let s: String = rng.sample_iter(&Alphanumeric).take(7).collect();
- ///
- /// // Combined values
- /// println!("{:?}", thread_rng().sample_iter(&Standard).take(5)
- /// .collect::<Vec<(f64, bool)>>());
- ///
- /// // Dice-rolling:
- /// let die_range = Uniform::new_inclusive(1, 6);
- /// let mut roll_die = rng.sample_iter(&die_range);
- /// while roll_die.next().unwrap() != 6 {
- /// println!("Not a 6; rolling again!");
- /// }
- /// ```
- fn sample_iter<'a, T, D: Distribution<T>>(&'a mut self, distr: &'a D)
- -> distributions::DistIter<'a, D, Self, T> where Self: Sized
- {
- distr.sample_iter(self)
- }
-
- /// Fill `dest` entirely with random bytes (uniform value distribution),
- /// where `dest` is any type supporting [`AsByteSliceMut`], namely slices
- /// and arrays over primitive integer types (`i8`, `i16`, `u32`, etc.).
- ///
- /// On big-endian platforms this performs byte-swapping to ensure
- /// portability of results from reproducible generators.
- ///
- /// This uses [`fill_bytes`] internally which may handle some RNG errors
- /// implicitly (e.g. waiting if the OS generator is not ready), but panics
- /// on other errors. See also [`try_fill`] which returns errors.
- ///
- /// # Example
- ///
- /// ```
- /// use rand::{thread_rng, Rng};
- ///
- /// let mut arr = [0i8; 20];
- /// thread_rng().fill(&mut arr[..]);
- /// ```
- ///
- /// [`fill_bytes`]: trait.RngCore.html#method.fill_bytes
- /// [`try_fill`]: trait.Rng.html#method.try_fill
- /// [`AsByteSliceMut`]: trait.AsByteSliceMut.html
- fn fill<T: AsByteSliceMut + ?Sized>(&mut self, dest: &mut T) {
- self.fill_bytes(dest.as_byte_slice_mut());
- dest.to_le();
- }
-
- /// Fill `dest` entirely with random bytes (uniform value distribution),
- /// where `dest` is any type supporting [`AsByteSliceMut`], namely slices
- /// and arrays over primitive integer types (`i8`, `i16`, `u32`, etc.).
- ///
- /// On big-endian platforms this performs byte-swapping to ensure
- /// portability of results from reproducible generators.
- ///
- /// This uses [`try_fill_bytes`] internally and forwards all RNG errors. In
- /// some cases errors may be resolvable; see [`ErrorKind`] and
- /// documentation for the RNG in use. If you do not plan to handle these
- /// errors you may prefer to use [`fill`].
- ///
- /// # Example
- ///
- /// ```
- /// # use rand::Error;
- /// use rand::{thread_rng, Rng};
- ///
- /// # fn try_inner() -> Result<(), Error> {
- /// let mut arr = [0u64; 4];
- /// thread_rng().try_fill(&mut arr[..])?;
- /// # Ok(())
- /// # }
- ///
- /// # try_inner().unwrap()
- /// ```
- ///
- /// [`ErrorKind`]: enum.ErrorKind.html
- /// [`try_fill_bytes`]: trait.RngCore.html#method.try_fill_bytes
- /// [`fill`]: trait.Rng.html#method.fill
- /// [`AsByteSliceMut`]: trait.AsByteSliceMut.html
- fn try_fill<T: AsByteSliceMut + ?Sized>(&mut self, dest: &mut T) -> Result<(), Error> {
- self.try_fill_bytes(dest.as_byte_slice_mut())?;
- dest.to_le();
- Ok(())
- }
-
- /// Return a bool with a probability `p` of being true.
- ///
- /// See also the [`Bernoulli`] distribution, which may be faster if
- /// sampling from the same probability repeatedly.
- ///
- /// # Example
- ///
- /// ```
- /// use rand::{thread_rng, Rng};
- ///
- /// let mut rng = thread_rng();
- /// println!("{}", rng.gen_bool(1.0 / 3.0));
- /// ```
- ///
- /// # Panics
- ///
- /// If `p < 0` or `p > 1`.
- ///
- /// [`Bernoulli`]: distributions/bernoulli/struct.Bernoulli.html
- #[inline]
- fn gen_bool(&mut self, p: f64) -> bool {
- let d = distributions::Bernoulli::new(p);
- self.sample(d)
- }
-
- /// Return a bool with a probability of `numerator/denominator` of being
- /// true. I.e. `gen_ratio(2, 3)` has chance of 2 in 3, or about 67%, of
- /// returning true. If `numerator == denominator`, then the returned value
- /// is guaranteed to be `true`. If `numerator == 0`, then the returned
- /// value is guaranteed to be `false`.
- ///
- /// See also the [`Bernoulli`] distribution, which may be faster if
- /// sampling from the same `numerator` and `denominator` repeatedly.
- ///
- /// # Panics
- ///
- /// If `denominator == 0` or `numerator > denominator`.
- ///
- /// # Example
- ///
- /// ```
- /// use rand::{thread_rng, Rng};
- ///
- /// let mut rng = thread_rng();
- /// println!("{}", rng.gen_ratio(2, 3));
- /// ```
- ///
- /// [`Bernoulli`]: distributions/bernoulli/struct.Bernoulli.html
- #[inline]
- fn gen_ratio(&mut self, numerator: u32, denominator: u32) -> bool {
- let d = distributions::Bernoulli::from_ratio(numerator, denominator);
- self.sample(d)
- }
-
- /// Return a random element from `values`.
- ///
- /// Deprecated: use [`SliceRandom::choose`] instead.
- ///
- /// [`SliceRandom::choose`]: seq/trait.SliceRandom.html#method.choose
- #[deprecated(since="0.6.0", note="use SliceRandom::choose instead")]
- fn choose<'a, T>(&mut self, values: &'a [T]) -> Option<&'a T> {
- use seq::SliceRandom;
- values.choose(self)
- }
-
- /// Return a mutable pointer to a random element from `values`.
- ///
- /// Deprecated: use [`SliceRandom::choose_mut`] instead.
- ///
- /// [`SliceRandom::choose_mut`]: seq/trait.SliceRandom.html#method.choose_mut
- #[deprecated(since="0.6.0", note="use SliceRandom::choose_mut instead")]
- fn choose_mut<'a, T>(&mut self, values: &'a mut [T]) -> Option<&'a mut T> {
- use seq::SliceRandom;
- values.choose_mut(self)
- }
-
- /// Shuffle a mutable slice in place.
- ///
- /// Deprecated: use [`SliceRandom::shuffle`] instead.
- ///
- /// [`SliceRandom::shuffle`]: seq/trait.SliceRandom.html#method.shuffle
- #[deprecated(since="0.6.0", note="use SliceRandom::shuffle instead")]
- fn shuffle<T>(&mut self, values: &mut [T]) {
- use seq::SliceRandom;
- values.shuffle(self)
- }
-}
-
-impl<R: RngCore + ?Sized> Rng for R {}
-
-/// Trait for casting types to byte slices
-///
-/// This is used by the [`fill`] and [`try_fill`] methods.
-///
-/// [`fill`]: trait.Rng.html#method.fill
-/// [`try_fill`]: trait.Rng.html#method.try_fill
-pub trait AsByteSliceMut {
- /// Return a mutable reference to self as a byte slice
- fn as_byte_slice_mut(&mut self) -> &mut [u8];
-
- /// Call `to_le` on each element (i.e. byte-swap on Big Endian platforms).
- fn to_le(&mut self);
-}
-
-impl AsByteSliceMut for [u8] {
- fn as_byte_slice_mut(&mut self) -> &mut [u8] {
- self
- }
-
- fn to_le(&mut self) {}
-}
-
-macro_rules! impl_as_byte_slice {
- ($t:ty) => {
- impl AsByteSliceMut for [$t] {
- fn as_byte_slice_mut(&mut self) -> &mut [u8] {
- if self.len() == 0 {
- unsafe {
- // must not use null pointer
- slice::from_raw_parts_mut(0x1 as *mut u8, 0)
- }
- } else {
- unsafe {
- slice::from_raw_parts_mut(&mut self[0]
- as *mut $t
- as *mut u8,
- self.len() * mem::size_of::<$t>()
- )
- }
- }
- }
-
- fn to_le(&mut self) {
- for x in self {
- *x = x.to_le();
- }
- }
- }
- }
-}
-
-impl_as_byte_slice!(u16);
-impl_as_byte_slice!(u32);
-impl_as_byte_slice!(u64);
-#[cfg(all(rustc_1_26, not(target_os = "emscripten")))] impl_as_byte_slice!(u128);
-impl_as_byte_slice!(usize);
-impl_as_byte_slice!(i8);
-impl_as_byte_slice!(i16);
-impl_as_byte_slice!(i32);
-impl_as_byte_slice!(i64);
-#[cfg(all(rustc_1_26, not(target_os = "emscripten")))] impl_as_byte_slice!(i128);
-impl_as_byte_slice!(isize);
-
-macro_rules! impl_as_byte_slice_arrays {
- ($n:expr,) => {};
- ($n:expr, $N:ident, $($NN:ident,)*) => {
- impl_as_byte_slice_arrays!($n - 1, $($NN,)*);
-
- impl<T> AsByteSliceMut for [T; $n] where [T]: AsByteSliceMut {
- fn as_byte_slice_mut(&mut self) -> &mut [u8] {
- self[..].as_byte_slice_mut()
- }
-
- fn to_le(&mut self) {
- self[..].to_le()
- }
- }
- };
- (!div $n:expr,) => {};
- (!div $n:expr, $N:ident, $($NN:ident,)*) => {
- impl_as_byte_slice_arrays!(!div $n / 2, $($NN,)*);
-
- impl<T> AsByteSliceMut for [T; $n] where [T]: AsByteSliceMut {
- fn as_byte_slice_mut(&mut self) -> &mut [u8] {
- self[..].as_byte_slice_mut()
- }
-
- fn to_le(&mut self) {
- self[..].to_le()
- }
- }
- };
-}
-impl_as_byte_slice_arrays!(32, N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,);
-impl_as_byte_slice_arrays!(!div 4096, N,N,N,N,N,N,N,);
-
-
-/// A convenience extension to [`SeedableRng`] allowing construction from fresh
-/// entropy. This trait is automatically implemented for any PRNG implementing
-/// [`SeedableRng`] and is not intended to be implemented by users.
-///
-/// This is equivalent to using `SeedableRng::from_rng(EntropyRng::new())` then
-/// unwrapping the result.
-///
-/// Since this is convenient and secure, it is the recommended way to create
-/// PRNGs, though two alternatives may be considered:
-///
-/// * Deterministic creation using [`SeedableRng::from_seed`] with a fixed seed
-/// * Seeding from `thread_rng`: `SeedableRng::from_rng(thread_rng())?`;
-/// this will usually be faster and should also be secure, but requires
-/// trusting one extra component.
-///
-/// ## Example
-///
-/// ```
-/// use rand::{Rng, FromEntropy};
-/// use rand::rngs::StdRng;
-///
-/// let mut rng = StdRng::from_entropy();
-/// println!("Random die roll: {}", rng.gen_range(1, 7));
-/// ```
-///
-/// [`EntropyRng`]: rngs/struct.EntropyRng.html
-/// [`SeedableRng`]: trait.SeedableRng.html
-/// [`SeedableRng::from_seed`]: trait.SeedableRng.html#tymethod.from_seed
-#[cfg(feature="std")]
-pub trait FromEntropy: SeedableRng {
- /// Creates a new instance, automatically seeded with fresh entropy.
- ///
- /// Normally this will use `OsRng`, but if that fails `JitterRng` will be
- /// used instead. Both should be suitable for cryptography. It is possible
- /// that both entropy sources will fail though unlikely; failures would
- /// almost certainly be platform limitations or build issues, i.e. most
- /// applications targetting PC/mobile platforms should not need to worry
- /// about this failing.
- ///
- /// # Panics
- ///
- /// If all entropy sources fail this will panic. If you need to handle
- /// errors, use the following code, equivalent aside from error handling:
- ///
- /// ```
- /// # use rand::Error;
- /// use rand::prelude::*;
- /// use rand::rngs::EntropyRng;
- ///
- /// # fn try_inner() -> Result<(), Error> {
- /// // This uses StdRng, but is valid for any R: SeedableRng
- /// let mut rng = StdRng::from_rng(EntropyRng::new())?;
- ///
- /// println!("random number: {}", rng.gen_range(1, 10));
- /// # Ok(())
- /// # }
- ///
- /// # try_inner().unwrap()
- /// ```
- fn from_entropy() -> Self;
-}
-
-#[cfg(feature="std")]
-impl<R: SeedableRng> FromEntropy for R {
- fn from_entropy() -> R {
- R::from_rng(rngs::EntropyRng::new()).unwrap_or_else(|err|
- panic!("FromEntropy::from_entropy() failed: {}", err))
- }
-}
-
-
-/// Generates a random value using the thread-local random number generator.
-///
-/// This is simply a shortcut for `thread_rng().gen()`. See [`thread_rng`] for
-/// documentation of the entropy source and [`Standard`] for documentation of
-/// distributions and type-specific generation.
-///
-/// # Examples
-///
-/// ```
-/// let x = rand::random::<u8>();
-/// println!("{}", x);
-///
-/// let y = rand::random::<f64>();
-/// println!("{}", y);
-///
-/// if rand::random() { // generates a boolean
-/// println!("Better lucky than good!");
-/// }
-/// ```
-///
-/// If you're calling `random()` in a loop, caching the generator as in the
-/// following example can increase performance.
-///
-/// ```
-/// use rand::Rng;
-///
-/// let mut v = vec![1, 2, 3];
-///
-/// for x in v.iter_mut() {
-/// *x = rand::random()
-/// }
-///
-/// // can be made faster by caching thread_rng
-///
-/// let mut rng = rand::thread_rng();
-///
-/// for x in v.iter_mut() {
-/// *x = rng.gen();
-/// }
-/// ```
-///
-/// [`thread_rng`]: fn.thread_rng.html
-/// [`Standard`]: distributions/struct.Standard.html
-#[cfg(feature="std")]
-#[inline]
-pub fn random<T>() -> T where Standard: Distribution<T> {
- thread_rng().gen()
-}
-
-#[cfg(test)]
-mod test {
- use rngs::mock::StepRng;
- use rngs::StdRng;
- use super::*;
- #[cfg(all(not(feature="std"), feature="alloc"))] use alloc::boxed::Box;
-
- pub struct TestRng<R> { inner: R }
-
- impl<R: RngCore> RngCore for TestRng<R> {
- fn next_u32(&mut self) -> u32 {
- self.inner.next_u32()
- }
- fn next_u64(&mut self) -> u64 {
- self.inner.next_u64()
- }
- fn fill_bytes(&mut self, dest: &mut [u8]) {
- self.inner.fill_bytes(dest)
- }
- fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
- self.inner.try_fill_bytes(dest)
- }
- }
-
- pub fn rng(seed: u64) -> TestRng<StdRng> {
- TestRng { inner: StdRng::seed_from_u64(seed) }
- }
-
- #[test]
- fn test_fill_bytes_default() {
- let mut r = StepRng::new(0x11_22_33_44_55_66_77_88, 0);
-
- // check every remainder mod 8, both in small and big vectors.
- let lengths = [0, 1, 2, 3, 4, 5, 6, 7,
- 80, 81, 82, 83, 84, 85, 86, 87];
- for &n in lengths.iter() {
- let mut buffer = [0u8; 87];
- let v = &mut buffer[0..n];
- r.fill_bytes(v);
-
- // use this to get nicer error messages.
- for (i, &byte) in v.iter().enumerate() {
- if byte == 0 {
- panic!("byte {} of {} is zero", i, n)
- }
- }
- }
- }
-
- #[test]
- fn test_fill() {
- let x = 9041086907909331047; // a random u64
- let mut rng = StepRng::new(x, 0);
-
- // Convert to byte sequence and back to u64; byte-swap twice if BE.
- let mut array = [0u64; 2];
- rng.fill(&mut array[..]);
- assert_eq!(array, [x, x]);
- assert_eq!(rng.next_u64(), x);
-
- // Convert to bytes then u32 in LE order
- let mut array = [0u32; 2];
- rng.fill(&mut array[..]);
- assert_eq!(array, [x as u32, (x >> 32) as u32]);
- assert_eq!(rng.next_u32(), x as u32);
- }
-
- #[test]
- fn test_fill_empty() {
- let mut array = [0u32; 0];
- let mut rng = StepRng::new(0, 1);
- rng.fill(&mut array);
- rng.fill(&mut array[..]);
- }
-
- #[test]
- fn test_gen_range() {
- let mut r = rng(101);
- for _ in 0..1000 {
- let a = r.gen_range(-4711, 17);
- assert!(a >= -4711 && a < 17);
- let a = r.gen_range(-3i8, 42);
- assert!(a >= -3i8 && a < 42i8);
- let a = r.gen_range(&10u16, 99);
- assert!(a >= 10u16 && a < 99u16);
- let a = r.gen_range(-100i32, &2000);
- assert!(a >= -100i32 && a < 2000i32);
- let a = r.gen_range(&12u32, &24u32);
- assert!(a >= 12u32 && a < 24u32);
-
- assert_eq!(r.gen_range(0u32, 1), 0u32);
- assert_eq!(r.gen_range(-12i64, -11), -12i64);
- assert_eq!(r.gen_range(3_000_000, 3_000_001), 3_000_000);
- }
- }
-
- #[test]
- #[should_panic]
- fn test_gen_range_panic_int() {
- let mut r = rng(102);
- r.gen_range(5, -2);
- }
-
- #[test]
- #[should_panic]
- fn test_gen_range_panic_usize() {
- let mut r = rng(103);
- r.gen_range(5, 2);
- }
-
- #[test]
- fn test_gen_bool() {
- let mut r = rng(105);
- for _ in 0..5 {
- assert_eq!(r.gen_bool(0.0), false);
- assert_eq!(r.gen_bool(1.0), true);
- }
- }
-
- #[test]
- fn test_rng_trait_object() {
- use distributions::{Distribution, Standard};
- let mut rng = rng(109);
- let mut r = &mut rng as &mut RngCore;
- r.next_u32();
- r.gen::<i32>();
- assert_eq!(r.gen_range(0, 1), 0);
- let _c: u8 = Standard.sample(&mut r);
- }
-
- #[test]
- #[cfg(feature="alloc")]
- fn test_rng_boxed_trait() {
- use distributions::{Distribution, Standard};
- let rng = rng(110);
- let mut r = Box::new(rng) as Box<RngCore>;
- r.next_u32();
- r.gen::<i32>();
- assert_eq!(r.gen_range(0, 1), 0);
- let _c: u8 = Standard.sample(&mut r);
- }
-
- #[test]
- #[cfg(feature="std")]
- fn test_random() {
- // not sure how to test this aside from just getting some values
- let _n : usize = random();
- let _f : f32 = random();
- let _o : Option<Option<i8>> = random();
- let _many : ((),
- (usize,
- isize,
- Option<(u32, (bool,))>),
- (u8, i8, u16, i16, u32, i32, u64, i64),
- (f32, (f64, (f64,)))) = random();
- }
-
- #[test]
- fn test_gen_ratio_average() {
- const NUM: u32 = 3;
- const DENOM: u32 = 10;
- const N: u32 = 100_000;
-
- let mut sum: u32 = 0;
- let mut rng = rng(111);
- for _ in 0..N {
- if rng.gen_ratio(NUM, DENOM) {
- sum += 1;
- }
- }
- // Have Binomial(N, NUM/DENOM) distribution
- let expected = (NUM * N) / DENOM; // exact integer
- assert!(((sum - expected) as i32).abs() < 500);
- }
-}