aboutsummaryrefslogtreecommitdiff
path: root/rand/rand_distr/src/cauchy.rs
diff options
context:
space:
mode:
Diffstat (limited to 'rand/rand_distr/src/cauchy.rs')
-rw-r--r--rand/rand_distr/src/cauchy.rs120
1 files changed, 120 insertions, 0 deletions
diff --git a/rand/rand_distr/src/cauchy.rs b/rand/rand_distr/src/cauchy.rs
new file mode 100644
index 0000000..6b0e7c6
--- /dev/null
+++ b/rand/rand_distr/src/cauchy.rs
@@ -0,0 +1,120 @@
+// Copyright 2018 Developers of the Rand project.
+// Copyright 2016-2017 The Rust Project Developers.
+//
+// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
+// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
+// option. This file may not be copied, modified, or distributed
+// except according to those terms.
+
+//! The Cauchy distribution.
+
+use rand::Rng;
+use crate::{Distribution, Standard};
+use crate::utils::Float;
+
+/// The Cauchy distribution `Cauchy(median, scale)`.
+///
+/// This distribution has a density function:
+/// `f(x) = 1 / (pi * scale * (1 + ((x - median) / scale)^2))`
+///
+/// # Example
+///
+/// ```
+/// use rand_distr::{Cauchy, Distribution};
+///
+/// let cau = Cauchy::new(2.0, 5.0).unwrap();
+/// let v = cau.sample(&mut rand::thread_rng());
+/// println!("{} is from a Cauchy(2, 5) distribution", v);
+/// ```
+#[derive(Clone, Copy, Debug)]
+pub struct Cauchy<N> {
+ median: N,
+ scale: N,
+}
+
+/// Error type returned from `Cauchy::new`.
+#[derive(Clone, Copy, Debug, PartialEq, Eq)]
+pub enum Error {
+ /// `scale <= 0` or `nan`.
+ ScaleTooSmall,
+}
+
+impl<N: Float> Cauchy<N>
+where Standard: Distribution<N>
+{
+ /// Construct a new `Cauchy` with the given shape parameters
+ /// `median` the peak location and `scale` the scale factor.
+ pub fn new(median: N, scale: N) -> Result<Cauchy<N>, Error> {
+ if !(scale > N::from(0.0)) {
+ return Err(Error::ScaleTooSmall);
+ }
+ Ok(Cauchy {
+ median,
+ scale
+ })
+ }
+}
+
+impl<N: Float> Distribution<N> for Cauchy<N>
+where Standard: Distribution<N>
+{
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> N {
+ // sample from [0, 1)
+ let x = Standard.sample(rng);
+ // get standard cauchy random number
+ // note that π/2 is not exactly representable, even if x=0.5 the result is finite
+ let comp_dev = (N::pi() * x).tan();
+ // shift and scale according to parameters
+ self.median + self.scale * comp_dev
+ }
+}
+
+#[cfg(test)]
+mod test {
+ use crate::Distribution;
+ use super::Cauchy;
+
+ fn median(mut numbers: &mut [f64]) -> f64 {
+ sort(&mut numbers);
+ let mid = numbers.len() / 2;
+ numbers[mid]
+ }
+
+ fn sort(numbers: &mut [f64]) {
+ numbers.sort_by(|a, b| a.partial_cmp(b).unwrap());
+ }
+
+ #[test]
+ fn test_cauchy_averages() {
+ // NOTE: given that the variance and mean are undefined,
+ // this test does not have any rigorous statistical meaning.
+ let cauchy = Cauchy::new(10.0, 5.0).unwrap();
+ let mut rng = crate::test::rng(123);
+ let mut numbers: [f64; 1000] = [0.0; 1000];
+ let mut sum = 0.0;
+ for i in 0..1000 {
+ numbers[i] = cauchy.sample(&mut rng);
+ sum += numbers[i];
+ }
+ let median = median(&mut numbers);
+ println!("Cauchy median: {}", median);
+ assert!((median - 10.0).abs() < 0.4); // not 100% certain, but probable enough
+ let mean = sum / 1000.0;
+ println!("Cauchy mean: {}", mean);
+ // for a Cauchy distribution the mean should not converge
+ assert!((mean - 10.0).abs() > 0.4); // not 100% certain, but probable enough
+ }
+
+ #[test]
+ #[should_panic]
+ fn test_cauchy_invalid_scale_zero() {
+ Cauchy::new(0.0, 0.0).unwrap();
+ }
+
+ #[test]
+ #[should_panic]
+ fn test_cauchy_invalid_scale_neg() {
+ Cauchy::new(0.0, -10.0).unwrap();
+ }
+}