aboutsummaryrefslogtreecommitdiff
path: root/rand/tests/uniformity.rs
blob: b8f74a62e5bd5ff0781be30a3c644ae05b8ee6d4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
// Copyright 2018 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

#![cfg(feature = "std")]

#[macro_use]
extern crate average;
extern crate rand;

use std as core;
use rand::FromEntropy;
use rand::distributions::Distribution;
use average::Histogram;

const N_BINS: usize = 100;
const N_SAMPLES: u32 = 1_000_000;
const TOL: f64 = 1e-3;
define_histogram!(hist, 100);
use hist::Histogram as Histogram100;

#[test]
fn unit_sphere() {
    const N_DIM: usize = 3;
    let h = Histogram100::with_const_width(-1., 1.);
    let mut histograms = [h.clone(), h.clone(), h];
    let dist = rand::distributions::UnitSphereSurface::new();
    let mut rng = rand::rngs::SmallRng::from_entropy();
    for _ in 0..N_SAMPLES {
        let v = dist.sample(&mut rng);
        for i in 0..N_DIM {
            histograms[i].add(v[i]).map_err(
                |e| { println!("v: {}", v[i]); e }
            ).unwrap();
        }
    }
    for h in &histograms {
        let sum: u64 = h.bins().iter().sum();
        println!("{:?}", h);
        for &b in h.bins() {
            let p = (b as f64) / (sum as f64);
            assert!((p - 1.0 / (N_BINS as f64)).abs() < TOL, "{}", p);
        }
    }
}

#[test]
fn unit_circle() {
    use ::std::f64::consts::PI;
    let mut h = Histogram100::with_const_width(-PI, PI);
    let dist = rand::distributions::UnitCircle::new();
    let mut rng = rand::rngs::SmallRng::from_entropy();
    for _ in 0..N_SAMPLES {
        let v = dist.sample(&mut rng);
        h.add(v[0].atan2(v[1])).unwrap();
    }
    let sum: u64 = h.bins().iter().sum();
    println!("{:?}", h);
    for &b in h.bins() {
        let p = (b as f64) / (sum as f64);
        assert!((p - 1.0 / (N_BINS as f64)).abs() < TOL, "{}", p);
    }
}