1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
|
// Copyright 2018 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Thread-local random number generator
use std::cell::UnsafeCell;
use {RngCore, CryptoRng, SeedableRng, Error};
use rngs::adapter::ReseedingRng;
use rngs::EntropyRng;
use rand_hc::Hc128Core;
// Rationale for using `UnsafeCell` in `ThreadRng`:
//
// Previously we used a `RefCell`, with an overhead of ~15%. There will only
// ever be one mutable reference to the interior of the `UnsafeCell`, because
// we only have such a reference inside `next_u32`, `next_u64`, etc. Within a
// single thread (which is the definition of `ThreadRng`), there will only ever
// be one of these methods active at a time.
//
// A possible scenario where there could be multiple mutable references is if
// `ThreadRng` is used inside `next_u32` and co. But the implementation is
// completely under our control. We just have to ensure none of them use
// `ThreadRng` internally, which is nonsensical anyway. We should also never run
// `ThreadRng` in destructors of its implementation, which is also nonsensical.
//
// The additional `Rc` is not strictly neccesary, and could be removed. For now
// it ensures `ThreadRng` stays `!Send` and `!Sync`, and implements `Clone`.
// Number of generated bytes after which to reseed `TreadRng`.
//
// The time it takes to reseed HC-128 is roughly equivalent to generating 7 KiB.
// We pick a treshold here that is large enough to not reduce the average
// performance too much, but also small enough to not make reseeding something
// that basically never happens.
const THREAD_RNG_RESEED_THRESHOLD: u64 = 32*1024*1024; // 32 MiB
/// The type returned by [`thread_rng`], essentially just a reference to the
/// PRNG in thread-local memory.
///
/// `ThreadRng` uses [`ReseedingRng`] wrapping the same PRNG as [`StdRng`],
/// which is reseeded after generating 32 MiB of random data. A single instance
/// is cached per thread and the returned `ThreadRng` is a reference to this
/// instance — hence `ThreadRng` is neither `Send` nor `Sync` but is safe to use
/// within a single thread. This RNG is seeded and reseeded via [`EntropyRng`]
/// as required.
///
/// Note that the reseeding is done as an extra precaution against entropy
/// leaks and is in theory unnecessary — to predict `ThreadRng`'s output, an
/// attacker would have to either determine most of the RNG's seed or internal
/// state, or crack the algorithm used.
///
/// Like [`StdRng`], `ThreadRng` is a cryptographically secure PRNG. The current
/// algorithm used is [HC-128], which is an array-based PRNG that trades memory
/// usage for better performance. This makes it similar to ISAAC, the algorithm
/// used in `ThreadRng` before rand 0.5.
///
/// Cloning this handle just produces a new reference to the same thread-local
/// generator.
///
/// [`thread_rng`]: ../fn.thread_rng.html
/// [`ReseedingRng`]: adapter/struct.ReseedingRng.html
/// [`StdRng`]: struct.StdRng.html
/// [`EntropyRng`]: struct.EntropyRng.html
/// [HC-128]: ../../rand_hc/struct.Hc128Rng.html
#[derive(Clone, Debug)]
pub struct ThreadRng {
// use of raw pointer implies type is neither Send nor Sync
rng: *mut ReseedingRng<Hc128Core, EntropyRng>,
}
thread_local!(
static THREAD_RNG_KEY: UnsafeCell<ReseedingRng<Hc128Core, EntropyRng>> = {
let mut entropy_source = EntropyRng::new();
let r = Hc128Core::from_rng(&mut entropy_source).unwrap_or_else(|err|
panic!("could not initialize thread_rng: {}", err));
let rng = ReseedingRng::new(r,
THREAD_RNG_RESEED_THRESHOLD,
entropy_source);
UnsafeCell::new(rng)
}
);
/// Retrieve the lazily-initialized thread-local random number generator,
/// seeded by the system. Intended to be used in method chaining style,
/// e.g. `thread_rng().gen::<i32>()`, or cached locally, e.g.
/// `let mut rng = thread_rng();`. Invoked by the `Default` trait, making
/// `ThreadRng::default()` equivelent.
///
/// For more information see [`ThreadRng`].
///
/// [`ThreadRng`]: rngs/struct.ThreadRng.html
pub fn thread_rng() -> ThreadRng {
ThreadRng { rng: THREAD_RNG_KEY.with(|t| t.get()) }
}
impl Default for ThreadRng {
fn default() -> ThreadRng {
::prelude::thread_rng()
}
}
impl RngCore for ThreadRng {
#[inline(always)]
fn next_u32(&mut self) -> u32 {
unsafe { (*self.rng).next_u32() }
}
#[inline(always)]
fn next_u64(&mut self) -> u64 {
unsafe { (*self.rng).next_u64() }
}
fn fill_bytes(&mut self, dest: &mut [u8]) {
unsafe { (*self.rng).fill_bytes(dest) }
}
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
unsafe { (*self.rng).try_fill_bytes(dest) }
}
}
impl CryptoRng for ThreadRng {}
#[cfg(test)]
mod test {
#[test]
fn test_thread_rng() {
use Rng;
let mut r = ::thread_rng();
r.gen::<i32>();
assert_eq!(r.gen_range(0, 1), 0);
}
}
|