1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
|
// Copyright 2018 Developers of the Rand project.
// Copyright 2013 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The exponential distribution.
use {Rng};
use distributions::{ziggurat_tables, Distribution};
use distributions::utils::ziggurat;
/// Samples floating-point numbers according to the exponential distribution,
/// with rate parameter `λ = 1`. This is equivalent to `Exp::new(1.0)` or
/// sampling with `-rng.gen::<f64>().ln()`, but faster.
///
/// See `Exp` for the general exponential distribution.
///
/// Implemented via the ZIGNOR variant[^1] of the Ziggurat method. The exact
/// description in the paper was adjusted to use tables for the exponential
/// distribution rather than normal.
///
/// [^1]: Jurgen A. Doornik (2005). [*An Improved Ziggurat Method to
/// Generate Normal Random Samples*](
/// https://www.doornik.com/research/ziggurat.pdf).
/// Nuffield College, Oxford
///
/// # Example
/// ```
/// use rand::prelude::*;
/// use rand::distributions::Exp1;
///
/// let val: f64 = SmallRng::from_entropy().sample(Exp1);
/// println!("{}", val);
/// ```
#[derive(Clone, Copy, Debug)]
pub struct Exp1;
// This could be done via `-rng.gen::<f64>().ln()` but that is slower.
impl Distribution<f64> for Exp1 {
#[inline]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 {
#[inline]
fn pdf(x: f64) -> f64 {
(-x).exp()
}
#[inline]
fn zero_case<R: Rng + ?Sized>(rng: &mut R, _u: f64) -> f64 {
ziggurat_tables::ZIG_EXP_R - rng.gen::<f64>().ln()
}
ziggurat(rng, false,
&ziggurat_tables::ZIG_EXP_X,
&ziggurat_tables::ZIG_EXP_F,
pdf, zero_case)
}
}
/// The exponential distribution `Exp(lambda)`.
///
/// This distribution has density function: `f(x) = lambda * exp(-lambda * x)`
/// for `x > 0`.
///
/// Note that [`Exp1`](struct.Exp1.html) is an optimised implementation for `lambda = 1`.
///
/// # Example
///
/// ```
/// use rand::distributions::{Exp, Distribution};
///
/// let exp = Exp::new(2.0);
/// let v = exp.sample(&mut rand::thread_rng());
/// println!("{} is from a Exp(2) distribution", v);
/// ```
#[derive(Clone, Copy, Debug)]
pub struct Exp {
/// `lambda` stored as `1/lambda`, since this is what we scale by.
lambda_inverse: f64
}
impl Exp {
/// Construct a new `Exp` with the given shape parameter
/// `lambda`. Panics if `lambda <= 0`.
#[inline]
pub fn new(lambda: f64) -> Exp {
assert!(lambda > 0.0, "Exp::new called with `lambda` <= 0");
Exp { lambda_inverse: 1.0 / lambda }
}
}
impl Distribution<f64> for Exp {
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 {
let n: f64 = rng.sample(Exp1);
n * self.lambda_inverse
}
}
#[cfg(test)]
mod test {
use distributions::Distribution;
use super::Exp;
#[test]
fn test_exp() {
let exp = Exp::new(10.0);
let mut rng = ::test::rng(221);
for _ in 0..1000 {
assert!(exp.sample(&mut rng) >= 0.0);
}
}
#[test]
#[should_panic]
fn test_exp_invalid_lambda_zero() {
Exp::new(0.0);
}
#[test]
#[should_panic]
fn test_exp_invalid_lambda_neg() {
Exp::new(-10.0);
}
}
|