1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
|
#![cfg(rustc_1_26)]
extern crate rand_pcg;
extern crate rand_core;
#[cfg(all(feature="serde1", test))] extern crate bincode;
use rand_core::{RngCore, SeedableRng};
use rand_pcg::{Mcg128Xsl64, Pcg64Mcg};
#[test]
fn test_mcg128xsl64_construction() {
// Test that various construction techniques produce a working RNG.
let seed = [1,2,3,4, 5,6,7,8, 9,10,11,12, 13,14,15,16];
let mut rng1 = Mcg128Xsl64::from_seed(seed);
assert_eq!(rng1.next_u64(), 7071994460355047496);
let mut rng2 = Mcg128Xsl64::from_rng(&mut rng1).unwrap();
assert_eq!(rng2.next_u64(), 12300796107712034932);
let mut rng3 = Mcg128Xsl64::seed_from_u64(0);
assert_eq!(rng3.next_u64(), 6198063878555692194);
// This is the same as Mcg128Xsl64, so we only have a single test:
let mut rng4 = Pcg64Mcg::seed_from_u64(0);
assert_eq!(rng4.next_u64(), 6198063878555692194);
}
#[test]
fn test_mcg128xsl64_true_values() {
// Numbers copied from official test suite (C version).
let mut rng = Mcg128Xsl64::new(42);
let mut results = [0u64; 6];
for i in results.iter_mut() { *i = rng.next_u64(); }
let expected: [u64; 6] = [0x63b4a3a813ce700a, 0x382954200617ab24,
0xa7fd85ae3fe950ce, 0xd715286aa2887737, 0x60c92fee2e59f32c, 0x84c4e96beff30017];
assert_eq!(results, expected);
}
#[cfg(feature="serde1")]
#[test]
fn test_mcg128xsl64_serde() {
use bincode;
use std::io::{BufWriter, BufReader};
let mut rng = Mcg128Xsl64::seed_from_u64(0);
let buf: Vec<u8> = Vec::new();
let mut buf = BufWriter::new(buf);
bincode::serialize_into(&mut buf, &rng).expect("Could not serialize");
let buf = buf.into_inner().unwrap();
let mut read = BufReader::new(&buf[..]);
let mut deserialized: Mcg128Xsl64 = bincode::deserialize_from(&mut read)
.expect("Could not deserialize");
for _ in 0..16 {
assert_eq!(rng.next_u64(), deserialized.next_u64());
}
}
|