1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
|
// Copyright 2018 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The triangular distribution.
use rand::Rng;
use crate::{Distribution, Standard};
use crate::utils::Float;
/// The triangular distribution.
///
/// A continuous probability distribution parameterised by a range, and a mode
/// (most likely value) within that range.
///
/// The probability density function is triangular. For a similar distribution
/// with a smooth PDF, see the [`Pert`] distribution.
///
/// # Example
///
/// ```rust
/// use rand_distr::{Triangular, Distribution};
///
/// let d = Triangular::new(0., 5., 2.5).unwrap();
/// let v = d.sample(&mut rand::thread_rng());
/// println!("{} is from a triangular distribution", v);
/// ```
///
/// [`Pert`]: crate::Pert
#[derive(Clone, Copy, Debug)]
pub struct Triangular<N> {
min: N,
max: N,
mode: N,
}
/// Error type returned from [`Triangular::new`].
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum TriangularError {
/// `max < min` or `min` or `max` is NaN.
RangeTooSmall,
/// `mode < min` or `mode > max` or `mode` is NaN.
ModeRange,
}
impl<N: Float> Triangular<N>
where Standard: Distribution<N>
{
/// Set up the Triangular distribution with defined `min`, `max` and `mode`.
#[inline]
pub fn new(min: N, max: N, mode: N) -> Result<Triangular<N>, TriangularError> {
if !(max >= min) {
return Err(TriangularError::RangeTooSmall);
}
if !(mode >= min && max >= mode) {
return Err(TriangularError::ModeRange);
}
Ok(Triangular { min, max, mode })
}
}
impl<N: Float> Distribution<N> for Triangular<N>
where Standard: Distribution<N>
{
#[inline]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> N {
let f: N = rng.sample(Standard);
let diff_mode_min = self.mode - self.min;
let range = self.max - self.min;
let f_range = f * range;
if f_range < diff_mode_min {
self.min + (f_range * diff_mode_min).sqrt()
} else {
self.max - ((range - f_range) * (self.max - self.mode)).sqrt()
}
}
}
#[cfg(test)]
mod test {
use std::f64;
use rand::{Rng, rngs::mock};
use super::*;
#[test]
fn test_triangular() {
let mut half_rng = mock::StepRng::new(0x8000_0000_0000_0000, 0);
assert_eq!(half_rng.gen::<f64>(), 0.5);
for &(min, max, mode, median) in &[
(-1., 1., 0., 0.),
(1., 2., 1., 2. - 0.5f64.sqrt()),
(5., 25., 25., 5. + 200f64.sqrt()),
(1e-5, 1e5, 1e-3, 1e5 - 4999999949.5f64.sqrt()),
(0., 1., 0.9, 0.45f64.sqrt()),
(-4., -0.5, -2., -4.0 + 3.5f64.sqrt()),
] {
println!("{} {} {} {}", min, max, mode, median);
let distr = Triangular::new(min, max, mode).unwrap();
// Test correct value at median:
assert_eq!(distr.sample(&mut half_rng), median);
}
for &(min, max, mode) in &[
(-1., 1., 2.),
(-1., 1., -2.),
(2., 1., 1.),
] {
assert!(Triangular::new(min, max, mode).is_err());
}
}
#[test]
fn value_stability() {
let rng = crate::test::rng(860);
let distr = Triangular::new(2., 10., 3.).unwrap();
let seq = distr.sample_iter(rng).take(5).collect::<Vec<f64>>();
println!("seq: {:?}", seq);
let expected = vec![5.74373257511361, 7.890059162791258,
4.7256280652553455, 2.9474808121184077, 3.058301946314053];
assert!(seq == expected);
}
}
|