1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
|
// Copyright 2018 Developers of the Rand project.
// Copyright 2013 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The Gamma and derived distributions.
use self::GammaRepr::*;
use self::ChiSquaredRepr::*;
use rand::Rng;
use crate::normal::StandardNormal;
use crate::{Distribution, Exp1, Exp, Open01};
use crate::utils::Float;
/// The Gamma distribution `Gamma(shape, scale)` distribution.
///
/// The density function of this distribution is
///
/// ```text
/// f(x) = x^(k - 1) * exp(-x / θ) / (Γ(k) * θ^k)
/// ```
///
/// where `Γ` is the Gamma function, `k` is the shape and `θ` is the
/// scale and both `k` and `θ` are strictly positive.
///
/// The algorithm used is that described by Marsaglia & Tsang 2000[^1],
/// falling back to directly sampling from an Exponential for `shape
/// == 1`, and using the boosting technique described in that paper for
/// `shape < 1`.
///
/// # Example
///
/// ```
/// use rand_distr::{Distribution, Gamma};
///
/// let gamma = Gamma::new(2.0, 5.0).unwrap();
/// let v = gamma.sample(&mut rand::thread_rng());
/// println!("{} is from a Gamma(2, 5) distribution", v);
/// ```
///
/// [^1]: George Marsaglia and Wai Wan Tsang. 2000. "A Simple Method for
/// Generating Gamma Variables" *ACM Trans. Math. Softw.* 26, 3
/// (September 2000), 363-372.
/// DOI:[10.1145/358407.358414](https://doi.acm.org/10.1145/358407.358414)
#[derive(Clone, Copy, Debug)]
pub struct Gamma<N> {
repr: GammaRepr<N>,
}
/// Error type returned from `Gamma::new`.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum Error {
/// `shape <= 0` or `nan`.
ShapeTooSmall,
/// `scale <= 0` or `nan`.
ScaleTooSmall,
/// `1 / scale == 0`.
ScaleTooLarge,
}
#[derive(Clone, Copy, Debug)]
enum GammaRepr<N> {
Large(GammaLargeShape<N>),
One(Exp<N>),
Small(GammaSmallShape<N>)
}
// These two helpers could be made public, but saving the
// match-on-Gamma-enum branch from using them directly (e.g. if one
// knows that the shape is always > 1) doesn't appear to be much
// faster.
/// Gamma distribution where the shape parameter is less than 1.
///
/// Note, samples from this require a compulsory floating-point `pow`
/// call, which makes it significantly slower than sampling from a
/// gamma distribution where the shape parameter is greater than or
/// equal to 1.
///
/// See `Gamma` for sampling from a Gamma distribution with general
/// shape parameters.
#[derive(Clone, Copy, Debug)]
struct GammaSmallShape<N> {
inv_shape: N,
large_shape: GammaLargeShape<N>
}
/// Gamma distribution where the shape parameter is larger than 1.
///
/// See `Gamma` for sampling from a Gamma distribution with general
/// shape parameters.
#[derive(Clone, Copy, Debug)]
struct GammaLargeShape<N> {
scale: N,
c: N,
d: N
}
impl<N: Float> Gamma<N>
where StandardNormal: Distribution<N>, Exp1: Distribution<N>, Open01: Distribution<N>
{
/// Construct an object representing the `Gamma(shape, scale)`
/// distribution.
#[inline]
pub fn new(shape: N, scale: N) -> Result<Gamma<N>, Error> {
if !(shape > N::from(0.0)) {
return Err(Error::ShapeTooSmall);
}
if !(scale > N::from(0.0)) {
return Err(Error::ScaleTooSmall);
}
let repr = if shape == N::from(1.0) {
One(Exp::new(N::from(1.0) / scale).map_err(|_| Error::ScaleTooLarge)?)
} else if shape < N::from(1.0) {
Small(GammaSmallShape::new_raw(shape, scale))
} else {
Large(GammaLargeShape::new_raw(shape, scale))
};
Ok(Gamma { repr })
}
}
impl<N: Float> GammaSmallShape<N>
where StandardNormal: Distribution<N>, Open01: Distribution<N>
{
fn new_raw(shape: N, scale: N) -> GammaSmallShape<N> {
GammaSmallShape {
inv_shape: N::from(1.0) / shape,
large_shape: GammaLargeShape::new_raw(shape + N::from(1.0), scale)
}
}
}
impl<N: Float> GammaLargeShape<N>
where StandardNormal: Distribution<N>, Open01: Distribution<N>
{
fn new_raw(shape: N, scale: N) -> GammaLargeShape<N> {
let d = shape - N::from(1. / 3.);
GammaLargeShape {
scale,
c: N::from(1.0) / (N::from(9.) * d).sqrt(),
d
}
}
}
impl<N: Float> Distribution<N> for Gamma<N>
where StandardNormal: Distribution<N>, Exp1: Distribution<N>, Open01: Distribution<N>
{
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> N {
match self.repr {
Small(ref g) => g.sample(rng),
One(ref g) => g.sample(rng),
Large(ref g) => g.sample(rng),
}
}
}
impl<N: Float> Distribution<N> for GammaSmallShape<N>
where StandardNormal: Distribution<N>, Open01: Distribution<N>
{
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> N {
let u: N = rng.sample(Open01);
self.large_shape.sample(rng) * u.powf(self.inv_shape)
}
}
impl<N: Float> Distribution<N> for GammaLargeShape<N>
where StandardNormal: Distribution<N>, Open01: Distribution<N>
{
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> N {
// Marsaglia & Tsang method, 2000
loop {
let x: N = rng.sample(StandardNormal);
let v_cbrt = N::from(1.0) + self.c * x;
if v_cbrt <= N::from(0.0) { // a^3 <= 0 iff a <= 0
continue
}
let v = v_cbrt * v_cbrt * v_cbrt;
let u: N = rng.sample(Open01);
let x_sqr = x * x;
if u < N::from(1.0) - N::from(0.0331) * x_sqr * x_sqr ||
u.ln() < N::from(0.5) * x_sqr + self.d * (N::from(1.0) - v + v.ln())
{
return self.d * v * self.scale
}
}
}
}
/// The chi-squared distribution `χ²(k)`, where `k` is the degrees of
/// freedom.
///
/// For `k > 0` integral, this distribution is the sum of the squares
/// of `k` independent standard normal random variables. For other
/// `k`, this uses the equivalent characterisation
/// `χ²(k) = Gamma(k/2, 2)`.
///
/// # Example
///
/// ```
/// use rand_distr::{ChiSquared, Distribution};
///
/// let chi = ChiSquared::new(11.0).unwrap();
/// let v = chi.sample(&mut rand::thread_rng());
/// println!("{} is from a χ²(11) distribution", v)
/// ```
#[derive(Clone, Copy, Debug)]
pub struct ChiSquared<N> {
repr: ChiSquaredRepr<N>,
}
/// Error type returned from `ChiSquared::new` and `StudentT::new`.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum ChiSquaredError {
/// `0.5 * k <= 0` or `nan`.
DoFTooSmall,
}
#[derive(Clone, Copy, Debug)]
enum ChiSquaredRepr<N> {
// k == 1, Gamma(alpha, ..) is particularly slow for alpha < 1,
// e.g. when alpha = 1/2 as it would be for this case, so special-
// casing and using the definition of N(0,1)^2 is faster.
DoFExactlyOne,
DoFAnythingElse(Gamma<N>),
}
impl<N: Float> ChiSquared<N>
where StandardNormal: Distribution<N>, Exp1: Distribution<N>, Open01: Distribution<N>
{
/// Create a new chi-squared distribution with degrees-of-freedom
/// `k`.
pub fn new(k: N) -> Result<ChiSquared<N>, ChiSquaredError> {
let repr = if k == N::from(1.0) {
DoFExactlyOne
} else {
if !(N::from(0.5) * k > N::from(0.0)) {
return Err(ChiSquaredError::DoFTooSmall);
}
DoFAnythingElse(Gamma::new(N::from(0.5) * k, N::from(2.0)).unwrap())
};
Ok(ChiSquared { repr })
}
}
impl<N: Float> Distribution<N> for ChiSquared<N>
where StandardNormal: Distribution<N>, Exp1: Distribution<N>, Open01: Distribution<N>
{
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> N {
match self.repr {
DoFExactlyOne => {
// k == 1 => N(0,1)^2
let norm: N = rng.sample(StandardNormal);
norm * norm
}
DoFAnythingElse(ref g) => g.sample(rng)
}
}
}
/// The Fisher F distribution `F(m, n)`.
///
/// This distribution is equivalent to the ratio of two normalised
/// chi-squared distributions, that is, `F(m,n) = (χ²(m)/m) /
/// (χ²(n)/n)`.
///
/// # Example
///
/// ```
/// use rand_distr::{FisherF, Distribution};
///
/// let f = FisherF::new(2.0, 32.0).unwrap();
/// let v = f.sample(&mut rand::thread_rng());
/// println!("{} is from an F(2, 32) distribution", v)
/// ```
#[derive(Clone, Copy, Debug)]
pub struct FisherF<N> {
numer: ChiSquared<N>,
denom: ChiSquared<N>,
// denom_dof / numer_dof so that this can just be a straight
// multiplication, rather than a division.
dof_ratio: N,
}
/// Error type returned from `FisherF::new`.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum FisherFError {
/// `m <= 0` or `nan`.
MTooSmall,
/// `n <= 0` or `nan`.
NTooSmall,
}
impl<N: Float> FisherF<N>
where StandardNormal: Distribution<N>, Exp1: Distribution<N>, Open01: Distribution<N>
{
/// Create a new `FisherF` distribution, with the given parameter.
pub fn new(m: N, n: N) -> Result<FisherF<N>, FisherFError> {
if !(m > N::from(0.0)) {
return Err(FisherFError::MTooSmall);
}
if !(n > N::from(0.0)) {
return Err(FisherFError::NTooSmall);
}
Ok(FisherF {
numer: ChiSquared::new(m).unwrap(),
denom: ChiSquared::new(n).unwrap(),
dof_ratio: n / m
})
}
}
impl<N: Float> Distribution<N> for FisherF<N>
where StandardNormal: Distribution<N>, Exp1: Distribution<N>, Open01: Distribution<N>
{
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> N {
self.numer.sample(rng) / self.denom.sample(rng) * self.dof_ratio
}
}
/// The Student t distribution, `t(nu)`, where `nu` is the degrees of
/// freedom.
///
/// # Example
///
/// ```
/// use rand_distr::{StudentT, Distribution};
///
/// let t = StudentT::new(11.0).unwrap();
/// let v = t.sample(&mut rand::thread_rng());
/// println!("{} is from a t(11) distribution", v)
/// ```
#[derive(Clone, Copy, Debug)]
pub struct StudentT<N> {
chi: ChiSquared<N>,
dof: N
}
impl<N: Float> StudentT<N>
where StandardNormal: Distribution<N>, Exp1: Distribution<N>, Open01: Distribution<N>
{
/// Create a new Student t distribution with `n` degrees of
/// freedom.
pub fn new(n: N) -> Result<StudentT<N>, ChiSquaredError> {
Ok(StudentT {
chi: ChiSquared::new(n)?,
dof: n
})
}
}
impl<N: Float> Distribution<N> for StudentT<N>
where StandardNormal: Distribution<N>, Exp1: Distribution<N>, Open01: Distribution<N>
{
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> N {
let norm: N = rng.sample(StandardNormal);
norm * (self.dof / self.chi.sample(rng)).sqrt()
}
}
/// The Beta distribution with shape parameters `alpha` and `beta`.
///
/// # Example
///
/// ```
/// use rand_distr::{Distribution, Beta};
///
/// let beta = Beta::new(2.0, 5.0).unwrap();
/// let v = beta.sample(&mut rand::thread_rng());
/// println!("{} is from a Beta(2, 5) distribution", v);
/// ```
#[derive(Clone, Copy, Debug)]
pub struct Beta<N> {
gamma_a: Gamma<N>,
gamma_b: Gamma<N>,
}
/// Error type returned from `Beta::new`.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum BetaError {
/// `alpha <= 0` or `nan`.
AlphaTooSmall,
/// `beta <= 0` or `nan`.
BetaTooSmall,
}
impl<N: Float> Beta<N>
where StandardNormal: Distribution<N>, Exp1: Distribution<N>, Open01: Distribution<N>
{
/// Construct an object representing the `Beta(alpha, beta)`
/// distribution.
pub fn new(alpha: N, beta: N) -> Result<Beta<N>, BetaError> {
Ok(Beta {
gamma_a: Gamma::new(alpha, N::from(1.))
.map_err(|_| BetaError::AlphaTooSmall)?,
gamma_b: Gamma::new(beta, N::from(1.))
.map_err(|_| BetaError::BetaTooSmall)?,
})
}
}
impl<N: Float> Distribution<N> for Beta<N>
where StandardNormal: Distribution<N>, Exp1: Distribution<N>, Open01: Distribution<N>
{
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> N {
let x = self.gamma_a.sample(rng);
let y = self.gamma_b.sample(rng);
x / (x + y)
}
}
#[cfg(test)]
mod test {
use crate::Distribution;
use super::{Beta, ChiSquared, StudentT, FisherF};
#[test]
fn test_chi_squared_one() {
let chi = ChiSquared::new(1.0).unwrap();
let mut rng = crate::test::rng(201);
for _ in 0..1000 {
chi.sample(&mut rng);
}
}
#[test]
fn test_chi_squared_small() {
let chi = ChiSquared::new(0.5).unwrap();
let mut rng = crate::test::rng(202);
for _ in 0..1000 {
chi.sample(&mut rng);
}
}
#[test]
fn test_chi_squared_large() {
let chi = ChiSquared::new(30.0).unwrap();
let mut rng = crate::test::rng(203);
for _ in 0..1000 {
chi.sample(&mut rng);
}
}
#[test]
#[should_panic]
fn test_chi_squared_invalid_dof() {
ChiSquared::new(-1.0).unwrap();
}
#[test]
fn test_f() {
let f = FisherF::new(2.0, 32.0).unwrap();
let mut rng = crate::test::rng(204);
for _ in 0..1000 {
f.sample(&mut rng);
}
}
#[test]
fn test_t() {
let t = StudentT::new(11.0).unwrap();
let mut rng = crate::test::rng(205);
for _ in 0..1000 {
t.sample(&mut rng);
}
}
#[test]
fn test_beta() {
let beta = Beta::new(1.0, 2.0).unwrap();
let mut rng = crate::test::rng(201);
for _ in 0..1000 {
beta.sample(&mut rng);
}
}
#[test]
#[should_panic]
fn test_beta_invalid_dof() {
Beta::new(0., 0.).unwrap();
}
}
|