diff options
Diffstat (limited to 'rand/src/seq')
-rw-r--r-- | rand/src/seq/index.rs | 378 | ||||
-rw-r--r-- | rand/src/seq/mod.rs | 836 |
2 files changed, 1214 insertions, 0 deletions
diff --git a/rand/src/seq/index.rs b/rand/src/seq/index.rs new file mode 100644 index 0000000..3d4df3a --- /dev/null +++ b/rand/src/seq/index.rs @@ -0,0 +1,378 @@ +// Copyright 2018 Developers of the Rand project. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! Index sampling + +#[cfg(feature="alloc")] use core::slice; + +#[cfg(feature="std")] use std::vec; +#[cfg(all(feature="alloc", not(feature="std")))] use alloc::vec::{self, Vec}; +// BTreeMap is not as fast in tests, but better than nothing. +#[cfg(feature="std")] use std::collections::{HashSet}; +#[cfg(all(feature="alloc", not(feature="std")))] use alloc::collections::BTreeSet; + +#[cfg(feature="alloc")] use distributions::{Distribution, Uniform}; +use Rng; + +/// A vector of indices. +/// +/// Multiple internal representations are possible. +#[derive(Clone, Debug)] +pub enum IndexVec { + #[doc(hidden)] U32(Vec<u32>), + #[doc(hidden)] USize(Vec<usize>), +} + +impl IndexVec { + /// Returns the number of indices + pub fn len(&self) -> usize { + match self { + &IndexVec::U32(ref v) => v.len(), + &IndexVec::USize(ref v) => v.len(), + } + } + + /// Return the value at the given `index`. + /// + /// (Note: we cannot implement `std::ops::Index` because of lifetime + /// restrictions.) + pub fn index(&self, index: usize) -> usize { + match self { + &IndexVec::U32(ref v) => v[index] as usize, + &IndexVec::USize(ref v) => v[index], + } + } + + /// Return result as a `Vec<usize>`. Conversion may or may not be trivial. + pub fn into_vec(self) -> Vec<usize> { + match self { + IndexVec::U32(v) => v.into_iter().map(|i| i as usize).collect(), + IndexVec::USize(v) => v, + } + } + + /// Iterate over the indices as a sequence of `usize` values + pub fn iter<'a>(&'a self) -> IndexVecIter<'a> { + match self { + &IndexVec::U32(ref v) => IndexVecIter::U32(v.iter()), + &IndexVec::USize(ref v) => IndexVecIter::USize(v.iter()), + } + } + + /// Convert into an iterator over the indices as a sequence of `usize` values + pub fn into_iter(self) -> IndexVecIntoIter { + match self { + IndexVec::U32(v) => IndexVecIntoIter::U32(v.into_iter()), + IndexVec::USize(v) => IndexVecIntoIter::USize(v.into_iter()), + } + } +} + +impl PartialEq for IndexVec { + fn eq(&self, other: &IndexVec) -> bool { + use self::IndexVec::*; + match (self, other) { + (&U32(ref v1), &U32(ref v2)) => v1 == v2, + (&USize(ref v1), &USize(ref v2)) => v1 == v2, + (&U32(ref v1), &USize(ref v2)) => (v1.len() == v2.len()) + && (v1.iter().zip(v2.iter()).all(|(x, y)| *x as usize == *y)), + (&USize(ref v1), &U32(ref v2)) => (v1.len() == v2.len()) + && (v1.iter().zip(v2.iter()).all(|(x, y)| *x == *y as usize)), + } + } +} + +impl From<Vec<u32>> for IndexVec { + fn from(v: Vec<u32>) -> Self { + IndexVec::U32(v) + } +} + +impl From<Vec<usize>> for IndexVec { + fn from(v: Vec<usize>) -> Self { + IndexVec::USize(v) + } +} + +/// Return type of `IndexVec::iter`. +#[derive(Debug)] +pub enum IndexVecIter<'a> { + #[doc(hidden)] U32(slice::Iter<'a, u32>), + #[doc(hidden)] USize(slice::Iter<'a, usize>), +} + +impl<'a> Iterator for IndexVecIter<'a> { + type Item = usize; + fn next(&mut self) -> Option<usize> { + use self::IndexVecIter::*; + match self { + &mut U32(ref mut iter) => iter.next().map(|i| *i as usize), + &mut USize(ref mut iter) => iter.next().cloned(), + } + } + + fn size_hint(&self) -> (usize, Option<usize>) { + match self { + &IndexVecIter::U32(ref v) => v.size_hint(), + &IndexVecIter::USize(ref v) => v.size_hint(), + } + } +} + +impl<'a> ExactSizeIterator for IndexVecIter<'a> {} + +/// Return type of `IndexVec::into_iter`. +#[derive(Clone, Debug)] +pub enum IndexVecIntoIter { + #[doc(hidden)] U32(vec::IntoIter<u32>), + #[doc(hidden)] USize(vec::IntoIter<usize>), +} + +impl Iterator for IndexVecIntoIter { + type Item = usize; + + fn next(&mut self) -> Option<Self::Item> { + use self::IndexVecIntoIter::*; + match self { + &mut U32(ref mut v) => v.next().map(|i| i as usize), + &mut USize(ref mut v) => v.next(), + } + } + + fn size_hint(&self) -> (usize, Option<usize>) { + use self::IndexVecIntoIter::*; + match self { + &U32(ref v) => v.size_hint(), + &USize(ref v) => v.size_hint(), + } + } +} + +impl ExactSizeIterator for IndexVecIntoIter {} + + +/// Randomly sample exactly `amount` distinct indices from `0..length`, and +/// return them in random order (fully shuffled). +/// +/// This method is used internally by the slice sampling methods, but it can +/// sometimes be useful to have the indices themselves so this is provided as +/// an alternative. +/// +/// The implementation used is not specified; we automatically select the +/// fastest available algorithm for the `length` and `amount` parameters +/// (based on detailed profiling on an Intel Haswell CPU). Roughly speaking, +/// complexity is `O(amount)`, except that when `amount` is small, performance +/// is closer to `O(amount^2)`, and when `length` is close to `amount` then +/// `O(length)`. +/// +/// Note that performance is significantly better over `u32` indices than over +/// `u64` indices. Because of this we hide the underlying type behind an +/// abstraction, `IndexVec`. +/// +/// If an allocation-free `no_std` function is required, it is suggested +/// to adapt the internal `sample_floyd` implementation. +/// +/// Panics if `amount > length`. +pub fn sample<R>(rng: &mut R, length: usize, amount: usize) -> IndexVec + where R: Rng + ?Sized, +{ + if amount > length { + panic!("`amount` of samples must be less than or equal to `length`"); + } + if length > (::core::u32::MAX as usize) { + // We never want to use inplace here, but could use floyd's alg + // Lazy version: always use the cache alg. + return sample_rejection(rng, length, amount); + } + let amount = amount as u32; + let length = length as u32; + + // Choice of algorithm here depends on both length and amount. See: + // https://github.com/rust-random/rand/pull/479 + // We do some calculations with f32. Accuracy is not very important. + + if amount < 163 { + const C: [[f32; 2]; 2] = [[1.6, 8.0/45.0], [10.0, 70.0/9.0]]; + let j = if length < 500_000 { 0 } else { 1 }; + let amount_fp = amount as f32; + let m4 = C[0][j] * amount_fp; + // Short-cut: when amount < 12, floyd's is always faster + if amount > 11 && (length as f32) < (C[1][j] + m4) * amount_fp { + sample_inplace(rng, length, amount) + } else { + sample_floyd(rng, length, amount) + } + } else { + const C: [f32; 2] = [270.0, 330.0/9.0]; + let j = if length < 500_000 { 0 } else { 1 }; + if (length as f32) < C[j] * (amount as f32) { + sample_inplace(rng, length, amount) + } else { + // note: could have a specific u32 impl, but I'm lazy and + // generics don't have usable conversions + sample_rejection(rng, length as usize, amount as usize) + } + } +} + +/// Randomly sample exactly `amount` indices from `0..length`, using Floyd's +/// combination algorithm. +/// +/// The output values are fully shuffled. (Overhead is under 50%.) +/// +/// This implementation uses `O(amount)` memory and `O(amount^2)` time. +fn sample_floyd<R>(rng: &mut R, length: u32, amount: u32) -> IndexVec + where R: Rng + ?Sized, +{ + // For small amount we use Floyd's fully-shuffled variant. For larger + // amounts this is slow due to Vec::insert performance, so we shuffle + // afterwards. Benchmarks show little overhead from extra logic. + let floyd_shuffle = amount < 50; + + debug_assert!(amount <= length); + let mut indices = Vec::with_capacity(amount as usize); + for j in length - amount .. length { + let t = rng.gen_range(0, j + 1); + if floyd_shuffle { + if let Some(pos) = indices.iter().position(|&x| x == t) { + indices.insert(pos, j); + continue; + } + } else { + if indices.contains(&t) { + indices.push(j); + continue; + } + } + indices.push(t); + } + if !floyd_shuffle { + // Reimplement SliceRandom::shuffle with smaller indices + for i in (1..amount).rev() { + // invariant: elements with index > i have been locked in place. + indices.swap(i as usize, rng.gen_range(0, i + 1) as usize); + } + } + IndexVec::from(indices) +} + +/// Randomly sample exactly `amount` indices from `0..length`, using an inplace +/// partial Fisher-Yates method. +/// Sample an amount of indices using an inplace partial fisher yates method. +/// +/// This allocates the entire `length` of indices and randomizes only the first `amount`. +/// It then truncates to `amount` and returns. +/// +/// This method is not appropriate for large `length` and potentially uses a lot +/// of memory; because of this we only implement for `u32` index (which improves +/// performance in all cases). +/// +/// Set-up is `O(length)` time and memory and shuffling is `O(amount)` time. +fn sample_inplace<R>(rng: &mut R, length: u32, amount: u32) -> IndexVec + where R: Rng + ?Sized, +{ + debug_assert!(amount <= length); + let mut indices: Vec<u32> = Vec::with_capacity(length as usize); + indices.extend(0..length); + for i in 0..amount { + let j: u32 = rng.gen_range(i, length); + indices.swap(i as usize, j as usize); + } + indices.truncate(amount as usize); + debug_assert_eq!(indices.len(), amount as usize); + IndexVec::from(indices) +} + +/// Randomly sample exactly `amount` indices from `0..length`, using rejection +/// sampling. +/// +/// Since `amount <<< length` there is a low chance of a random sample in +/// `0..length` being a duplicate. We test for duplicates and resample where +/// necessary. The algorithm is `O(amount)` time and memory. +fn sample_rejection<R>(rng: &mut R, length: usize, amount: usize) -> IndexVec + where R: Rng + ?Sized, +{ + debug_assert!(amount < length); + #[cfg(feature="std")] let mut cache = HashSet::with_capacity(amount); + #[cfg(not(feature="std"))] let mut cache = BTreeSet::new(); + let distr = Uniform::new(0, length); + let mut indices = Vec::with_capacity(amount); + for _ in 0..amount { + let mut pos = distr.sample(rng); + while !cache.insert(pos) { + pos = distr.sample(rng); + } + indices.push(pos); + } + + debug_assert_eq!(indices.len(), amount); + IndexVec::from(indices) +} + +#[cfg(test)] +mod test { + use super::*; + + #[test] + fn test_sample_boundaries() { + let mut r = ::test::rng(404); + + assert_eq!(sample_inplace(&mut r, 0, 0).len(), 0); + assert_eq!(sample_inplace(&mut r, 1, 0).len(), 0); + assert_eq!(sample_inplace(&mut r, 1, 1).into_vec(), vec![0]); + + assert_eq!(sample_rejection(&mut r, 1, 0).len(), 0); + + assert_eq!(sample_floyd(&mut r, 0, 0).len(), 0); + assert_eq!(sample_floyd(&mut r, 1, 0).len(), 0); + assert_eq!(sample_floyd(&mut r, 1, 1).into_vec(), vec![0]); + + // These algorithms should be fast with big numbers. Test average. + let sum: usize = sample_rejection(&mut r, 1 << 25, 10) + .into_iter().sum(); + assert!(1 << 25 < sum && sum < (1 << 25) * 25); + + let sum: usize = sample_floyd(&mut r, 1 << 25, 10) + .into_iter().sum(); + assert!(1 << 25 < sum && sum < (1 << 25) * 25); + } + + #[test] + fn test_sample_alg() { + let seed_rng = ::test::rng; + + // We can't test which algorithm is used directly, but Floyd's alg + // should produce different results from the others. (Also, `inplace` + // and `cached` currently use different sizes thus produce different results.) + + // A small length and relatively large amount should use inplace + let (length, amount): (usize, usize) = (100, 50); + let v1 = sample(&mut seed_rng(420), length, amount); + let v2 = sample_inplace(&mut seed_rng(420), length as u32, amount as u32); + assert!(v1.iter().all(|e| e < length)); + assert_eq!(v1, v2); + + // Test Floyd's alg does produce different results + let v3 = sample_floyd(&mut seed_rng(420), length as u32, amount as u32); + assert!(v1 != v3); + + // A large length and small amount should use Floyd + let (length, amount): (usize, usize) = (1<<20, 50); + let v1 = sample(&mut seed_rng(421), length, amount); + let v2 = sample_floyd(&mut seed_rng(421), length as u32, amount as u32); + assert!(v1.iter().all(|e| e < length)); + assert_eq!(v1, v2); + + // A large length and larger amount should use cache + let (length, amount): (usize, usize) = (1<<20, 600); + let v1 = sample(&mut seed_rng(422), length, amount); + let v2 = sample_rejection(&mut seed_rng(422), length, amount); + assert!(v1.iter().all(|e| e < length)); + assert_eq!(v1, v2); + } +} diff --git a/rand/src/seq/mod.rs b/rand/src/seq/mod.rs new file mode 100644 index 0000000..9959602 --- /dev/null +++ b/rand/src/seq/mod.rs @@ -0,0 +1,836 @@ +// Copyright 2018 Developers of the Rand project. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! Functions for randomly accessing and sampling sequences. +//! +//! TODO: module doc + + +#[cfg(feature="alloc")] pub mod index; + +#[cfg(feature="alloc")] use core::ops::Index; + +#[cfg(all(feature="alloc", not(feature="std")))] use alloc::vec::Vec; + +use Rng; +#[cfg(feature="alloc")] use distributions::WeightedError; +#[cfg(feature="alloc")] use distributions::uniform::{SampleUniform, SampleBorrow}; + +/// Extension trait on slices, providing random mutation and sampling methods. +/// +/// An implementation is provided for slices. This may also be implementable for +/// other types. +pub trait SliceRandom { + /// The element type. + type Item; + + /// Returns a reference to one random element of the slice, or `None` if the + /// slice is empty. + /// + /// Depending on the implementation, complexity is expected to be `O(1)`. + /// + /// # Example + /// + /// ``` + /// use rand::thread_rng; + /// use rand::seq::SliceRandom; + /// + /// let choices = [1, 2, 4, 8, 16, 32]; + /// let mut rng = thread_rng(); + /// println!("{:?}", choices.choose(&mut rng)); + /// assert_eq!(choices[..0].choose(&mut rng), None); + /// ``` + fn choose<R>(&self, rng: &mut R) -> Option<&Self::Item> + where R: Rng + ?Sized; + + /// Returns a mutable reference to one random element of the slice, or + /// `None` if the slice is empty. + /// + /// Depending on the implementation, complexity is expected to be `O(1)`. + fn choose_mut<R>(&mut self, rng: &mut R) -> Option<&mut Self::Item> + where R: Rng + ?Sized; + + /// Produces an iterator that chooses `amount` elements from the slice at + /// random without repeating any, and returns them in random order. + /// + /// In case this API is not sufficiently flexible, use `index::sample` then + /// apply the indices to the slice. + /// + /// Complexity is expected to be the same as `index::sample`. + /// + /// # Example + /// ``` + /// use rand::seq::SliceRandom; + /// + /// let mut rng = &mut rand::thread_rng(); + /// let sample = "Hello, audience!".as_bytes(); + /// + /// // collect the results into a vector: + /// let v: Vec<u8> = sample.choose_multiple(&mut rng, 3).cloned().collect(); + /// + /// // store in a buffer: + /// let mut buf = [0u8; 5]; + /// for (b, slot) in sample.choose_multiple(&mut rng, buf.len()).zip(buf.iter_mut()) { + /// *slot = *b; + /// } + /// ``` + #[cfg(feature = "alloc")] + fn choose_multiple<R>(&self, rng: &mut R, amount: usize) -> SliceChooseIter<Self, Self::Item> + where R: Rng + ?Sized; + + /// Similar to [`choose`], where the likelihood of each outcome may be + /// specified. The specified function `weight` maps items `x` to a relative + /// likelihood `weight(x)`. The probability of each item being selected is + /// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`. + /// + /// # Example + /// + /// ``` + /// use rand::prelude::*; + /// + /// let choices = [('a', 2), ('b', 1), ('c', 1)]; + /// let mut rng = thread_rng(); + /// // 50% chance to print 'a', 25% chance to print 'b', 25% chance to print 'c' + /// println!("{:?}", choices.choose_weighted(&mut rng, |item| item.1).unwrap().0); + /// ``` + /// [`choose`]: trait.SliceRandom.html#method.choose + #[cfg(feature = "alloc")] + fn choose_weighted<R, F, B, X>(&self, rng: &mut R, weight: F) -> Result<&Self::Item, WeightedError> + where R: Rng + ?Sized, + F: Fn(&Self::Item) -> B, + B: SampleBorrow<X>, + X: SampleUniform + + for<'a> ::core::ops::AddAssign<&'a X> + + ::core::cmp::PartialOrd<X> + + Clone + + Default; + + /// Similar to [`choose_mut`], where the likelihood of each outcome may be + /// specified. The specified function `weight` maps items `x` to a relative + /// likelihood `weight(x)`. The probability of each item being selected is + /// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`. + /// + /// See also [`choose_weighted`]. + /// + /// [`choose_mut`]: trait.SliceRandom.html#method.choose_mut + /// [`choose_weighted`]: trait.SliceRandom.html#method.choose_weighted + #[cfg(feature = "alloc")] + fn choose_weighted_mut<R, F, B, X>(&mut self, rng: &mut R, weight: F) -> Result<&mut Self::Item, WeightedError> + where R: Rng + ?Sized, + F: Fn(&Self::Item) -> B, + B: SampleBorrow<X>, + X: SampleUniform + + for<'a> ::core::ops::AddAssign<&'a X> + + ::core::cmp::PartialOrd<X> + + Clone + + Default; + + /// Shuffle a mutable slice in place. + /// + /// Depending on the implementation, complexity is expected to be `O(1)`. + /// + /// # Example + /// + /// ``` + /// use rand::thread_rng; + /// use rand::seq::SliceRandom; + /// + /// let mut rng = thread_rng(); + /// let mut y = [1, 2, 3, 4, 5]; + /// println!("Unshuffled: {:?}", y); + /// y.shuffle(&mut rng); + /// println!("Shuffled: {:?}", y); + /// ``` + fn shuffle<R>(&mut self, rng: &mut R) where R: Rng + ?Sized; + + /// Shuffle a slice in place, but exit early. + /// + /// Returns two mutable slices from the source slice. The first contains + /// `amount` elements randomly permuted. The second has the remaining + /// elements that are not fully shuffled. + /// + /// This is an efficient method to select `amount` elements at random from + /// the slice, provided the slice may be mutated. + /// + /// If you only need to choose elements randomly and `amount > self.len()/2` + /// then you may improve performance by taking + /// `amount = values.len() - amount` and using only the second slice. + /// + /// If `amount` is greater than the number of elements in the slice, this + /// will perform a full shuffle. + /// + /// Complexity is expected to be `O(m)` where `m = amount`. + fn partial_shuffle<R>(&mut self, rng: &mut R, amount: usize) + -> (&mut [Self::Item], &mut [Self::Item]) where R: Rng + ?Sized; +} + +/// Extension trait on iterators, providing random sampling methods. +pub trait IteratorRandom: Iterator + Sized { + /// Choose one element at random from the iterator. If you have a slice, + /// it's significantly faster to call the [`choose`] or [`choose_mut`] + /// functions using the slice instead. + /// + /// Returns `None` if and only if the iterator is empty. + /// + /// Complexity is `O(n)`, where `n` is the length of the iterator. + /// This likely consumes multiple random numbers, but the exact number + /// is unspecified. + /// + /// [`choose`]: trait.SliceRandom.html#method.choose + /// [`choose_mut`]: trait.SliceRandom.html#method.choose_mut + fn choose<R>(mut self, rng: &mut R) -> Option<Self::Item> + where R: Rng + ?Sized + { + let (mut lower, mut upper) = self.size_hint(); + let mut consumed = 0; + let mut result = None; + + if upper == Some(lower) { + return if lower == 0 { None } else { self.nth(rng.gen_range(0, lower)) }; + } + + // Continue until the iterator is exhausted + loop { + if lower > 1 { + let ix = rng.gen_range(0, lower + consumed); + let skip; + if ix < lower { + result = self.nth(ix); + skip = lower - (ix + 1); + } else { + skip = lower; + } + if upper == Some(lower) { + return result; + } + consumed += lower; + if skip > 0 { + self.nth(skip - 1); + } + } else { + let elem = self.next(); + if elem.is_none() { + return result; + } + consumed += 1; + let denom = consumed as f64; // accurate to 2^53 elements + if rng.gen_bool(1.0 / denom) { + result = elem; + } + } + + let hint = self.size_hint(); + lower = hint.0; + upper = hint.1; + } + } + + /// Collects `amount` values at random from the iterator into a supplied + /// buffer. + /// + /// Although the elements are selected randomly, the order of elements in + /// the buffer is neither stable nor fully random. If random ordering is + /// desired, shuffle the result. + /// + /// Returns the number of elements added to the buffer. This equals `amount` + /// unless the iterator contains insufficient elements, in which case this + /// equals the number of elements available. + /// + /// Complexity is `O(n)` where `n` is the length of the iterator. + fn choose_multiple_fill<R>(mut self, rng: &mut R, buf: &mut [Self::Item]) + -> usize where R: Rng + ?Sized + { + let amount = buf.len(); + let mut len = 0; + while len < amount { + if let Some(elem) = self.next() { + buf[len] = elem; + len += 1; + } else { + // Iterator exhausted; stop early + return len; + } + } + + // Continue, since the iterator was not exhausted + for (i, elem) in self.enumerate() { + let k = rng.gen_range(0, i + 1 + amount); + if let Some(slot) = buf.get_mut(k) { + *slot = elem; + } + } + len + } + + /// Collects `amount` values at random from the iterator into a vector. + /// + /// This is equivalent to `choose_multiple_fill` except for the result type. + /// + /// Although the elements are selected randomly, the order of elements in + /// the buffer is neither stable nor fully random. If random ordering is + /// desired, shuffle the result. + /// + /// The length of the returned vector equals `amount` unless the iterator + /// contains insufficient elements, in which case it equals the number of + /// elements available. + /// + /// Complexity is `O(n)` where `n` is the length of the iterator. + #[cfg(feature = "alloc")] + fn choose_multiple<R>(mut self, rng: &mut R, amount: usize) -> Vec<Self::Item> + where R: Rng + ?Sized + { + let mut reservoir = Vec::with_capacity(amount); + reservoir.extend(self.by_ref().take(amount)); + + // Continue unless the iterator was exhausted + // + // note: this prevents iterators that "restart" from causing problems. + // If the iterator stops once, then so do we. + if reservoir.len() == amount { + for (i, elem) in self.enumerate() { + let k = rng.gen_range(0, i + 1 + amount); + if let Some(slot) = reservoir.get_mut(k) { + *slot = elem; + } + } + } else { + // Don't hang onto extra memory. There is a corner case where + // `amount` was much less than `self.len()`. + reservoir.shrink_to_fit(); + } + reservoir + } +} + + +impl<T> SliceRandom for [T] { + type Item = T; + + fn choose<R>(&self, rng: &mut R) -> Option<&Self::Item> + where R: Rng + ?Sized + { + if self.is_empty() { + None + } else { + Some(&self[rng.gen_range(0, self.len())]) + } + } + + fn choose_mut<R>(&mut self, rng: &mut R) -> Option<&mut Self::Item> + where R: Rng + ?Sized + { + if self.is_empty() { + None + } else { + let len = self.len(); + Some(&mut self[rng.gen_range(0, len)]) + } + } + + #[cfg(feature = "alloc")] + fn choose_multiple<R>(&self, rng: &mut R, amount: usize) + -> SliceChooseIter<Self, Self::Item> + where R: Rng + ?Sized + { + let amount = ::core::cmp::min(amount, self.len()); + SliceChooseIter { + slice: self, + _phantom: Default::default(), + indices: index::sample(rng, self.len(), amount).into_iter(), + } + } + + #[cfg(feature = "alloc")] + fn choose_weighted<R, F, B, X>(&self, rng: &mut R, weight: F) -> Result<&Self::Item, WeightedError> + where R: Rng + ?Sized, + F: Fn(&Self::Item) -> B, + B: SampleBorrow<X>, + X: SampleUniform + + for<'a> ::core::ops::AddAssign<&'a X> + + ::core::cmp::PartialOrd<X> + + Clone + + Default { + use distributions::{Distribution, WeightedIndex}; + let distr = WeightedIndex::new(self.iter().map(weight))?; + Ok(&self[distr.sample(rng)]) + } + + #[cfg(feature = "alloc")] + fn choose_weighted_mut<R, F, B, X>(&mut self, rng: &mut R, weight: F) -> Result<&mut Self::Item, WeightedError> + where R: Rng + ?Sized, + F: Fn(&Self::Item) -> B, + B: SampleBorrow<X>, + X: SampleUniform + + for<'a> ::core::ops::AddAssign<&'a X> + + ::core::cmp::PartialOrd<X> + + Clone + + Default { + use distributions::{Distribution, WeightedIndex}; + let distr = WeightedIndex::new(self.iter().map(weight))?; + Ok(&mut self[distr.sample(rng)]) + } + + fn shuffle<R>(&mut self, rng: &mut R) where R: Rng + ?Sized + { + for i in (1..self.len()).rev() { + // invariant: elements with index > i have been locked in place. + self.swap(i, rng.gen_range(0, i + 1)); + } + } + + fn partial_shuffle<R>(&mut self, rng: &mut R, amount: usize) + -> (&mut [Self::Item], &mut [Self::Item]) where R: Rng + ?Sized + { + // This applies Durstenfeld's algorithm for the + // [Fisher–Yates shuffle](https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle#The_modern_algorithm) + // for an unbiased permutation, but exits early after choosing `amount` + // elements. + + let len = self.len(); + let end = if amount >= len { 0 } else { len - amount }; + + for i in (end..len).rev() { + // invariant: elements with index > i have been locked in place. + self.swap(i, rng.gen_range(0, i + 1)); + } + let r = self.split_at_mut(end); + (r.1, r.0) + } +} + +impl<I> IteratorRandom for I where I: Iterator + Sized {} + + +/// Iterator over multiple choices, as returned by [`SliceRandom::choose_multiple]( +/// trait.SliceRandom.html#method.choose_multiple). +#[cfg(feature = "alloc")] +#[derive(Debug)] +pub struct SliceChooseIter<'a, S: ?Sized + 'a, T: 'a> { + slice: &'a S, + _phantom: ::core::marker::PhantomData<T>, + indices: index::IndexVecIntoIter, +} + +#[cfg(feature = "alloc")] +impl<'a, S: Index<usize, Output = T> + ?Sized + 'a, T: 'a> Iterator for SliceChooseIter<'a, S, T> { + type Item = &'a T; + + fn next(&mut self) -> Option<Self::Item> { + // TODO: investigate using SliceIndex::get_unchecked when stable + self.indices.next().map(|i| &self.slice[i as usize]) + } + + fn size_hint(&self) -> (usize, Option<usize>) { + (self.indices.len(), Some(self.indices.len())) + } +} + +#[cfg(feature = "alloc")] +impl<'a, S: Index<usize, Output = T> + ?Sized + 'a, T: 'a> ExactSizeIterator + for SliceChooseIter<'a, S, T> +{ + fn len(&self) -> usize { + self.indices.len() + } +} + + +/// Randomly sample `amount` elements from a finite iterator. +/// +/// Deprecated: use [`IteratorRandom::choose_multiple`] instead. +/// +/// [`IteratorRandom::choose_multiple`]: trait.IteratorRandom.html#method.choose_multiple +#[cfg(feature = "alloc")] +#[deprecated(since="0.6.0", note="use IteratorRandom::choose_multiple instead")] +pub fn sample_iter<T, I, R>(rng: &mut R, iterable: I, amount: usize) -> Result<Vec<T>, Vec<T>> + where I: IntoIterator<Item=T>, + R: Rng + ?Sized, +{ + use seq::IteratorRandom; + let iter = iterable.into_iter(); + let result = iter.choose_multiple(rng, amount); + if result.len() == amount { + Ok(result) + } else { + Err(result) + } +} + +/// Randomly sample exactly `amount` values from `slice`. +/// +/// The values are non-repeating and in random order. +/// +/// This implementation uses `O(amount)` time and memory. +/// +/// Panics if `amount > slice.len()` +/// +/// Deprecated: use [`SliceRandom::choose_multiple`] instead. +/// +/// [`SliceRandom::choose_multiple`]: trait.SliceRandom.html#method.choose_multiple +#[cfg(feature = "alloc")] +#[deprecated(since="0.6.0", note="use SliceRandom::choose_multiple instead")] +pub fn sample_slice<R, T>(rng: &mut R, slice: &[T], amount: usize) -> Vec<T> + where R: Rng + ?Sized, + T: Clone +{ + let indices = index::sample(rng, slice.len(), amount).into_iter(); + + let mut out = Vec::with_capacity(amount); + out.extend(indices.map(|i| slice[i].clone())); + out +} + +/// Randomly sample exactly `amount` references from `slice`. +/// +/// The references are non-repeating and in random order. +/// +/// This implementation uses `O(amount)` time and memory. +/// +/// Panics if `amount > slice.len()` +/// +/// Deprecated: use [`SliceRandom::choose_multiple`] instead. +/// +/// [`SliceRandom::choose_multiple`]: trait.SliceRandom.html#method.choose_multiple +#[cfg(feature = "alloc")] +#[deprecated(since="0.6.0", note="use SliceRandom::choose_multiple instead")] +pub fn sample_slice_ref<'a, R, T>(rng: &mut R, slice: &'a [T], amount: usize) -> Vec<&'a T> + where R: Rng + ?Sized +{ + let indices = index::sample(rng, slice.len(), amount).into_iter(); + + let mut out = Vec::with_capacity(amount); + out.extend(indices.map(|i| &slice[i])); + out +} + +#[cfg(test)] +mod test { + use super::*; + #[cfg(feature = "alloc")] use {Rng, SeedableRng}; + #[cfg(feature = "alloc")] use rngs::SmallRng; + #[cfg(all(feature="alloc", not(feature="std")))] + use alloc::vec::Vec; + + #[test] + fn test_slice_choose() { + let mut r = ::test::rng(107); + let chars = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n']; + let mut chosen = [0i32; 14]; + for _ in 0..1000 { + let picked = *chars.choose(&mut r).unwrap(); + chosen[(picked as usize) - ('a' as usize)] += 1; + } + for count in chosen.iter() { + let err = *count - (1000 / (chars.len() as i32)); + assert!(-20 <= err && err <= 20); + } + + chosen.iter_mut().for_each(|x| *x = 0); + for _ in 0..1000 { + *chosen.choose_mut(&mut r).unwrap() += 1; + } + for count in chosen.iter() { + let err = *count - (1000 / (chosen.len() as i32)); + assert!(-20 <= err && err <= 20); + } + + let mut v: [isize; 0] = []; + assert_eq!(v.choose(&mut r), None); + assert_eq!(v.choose_mut(&mut r), None); + } + + #[derive(Clone)] + struct UnhintedIterator<I: Iterator + Clone> { + iter: I, + } + impl<I: Iterator + Clone> Iterator for UnhintedIterator<I> { + type Item = I::Item; + fn next(&mut self) -> Option<Self::Item> { + self.iter.next() + } + } + + #[derive(Clone)] + struct ChunkHintedIterator<I: ExactSizeIterator + Iterator + Clone> { + iter: I, + chunk_remaining: usize, + chunk_size: usize, + hint_total_size: bool, + } + impl<I: ExactSizeIterator + Iterator + Clone> Iterator for ChunkHintedIterator<I> { + type Item = I::Item; + fn next(&mut self) -> Option<Self::Item> { + if self.chunk_remaining == 0 { + self.chunk_remaining = ::core::cmp::min(self.chunk_size, + self.iter.len()); + } + self.chunk_remaining = self.chunk_remaining.saturating_sub(1); + + self.iter.next() + } + fn size_hint(&self) -> (usize, Option<usize>) { + (self.chunk_remaining, + if self.hint_total_size { Some(self.iter.len()) } else { None }) + } + } + + #[derive(Clone)] + struct WindowHintedIterator<I: ExactSizeIterator + Iterator + Clone> { + iter: I, + window_size: usize, + hint_total_size: bool, + } + impl<I: ExactSizeIterator + Iterator + Clone> Iterator for WindowHintedIterator<I> { + type Item = I::Item; + fn next(&mut self) -> Option<Self::Item> { + self.iter.next() + } + fn size_hint(&self) -> (usize, Option<usize>) { + (::core::cmp::min(self.iter.len(), self.window_size), + if self.hint_total_size { Some(self.iter.len()) } else { None }) + } + } + + #[test] + fn test_iterator_choose() { + let r = &mut ::test::rng(109); + fn test_iter<R: Rng + ?Sized, Iter: Iterator<Item=usize> + Clone>(r: &mut R, iter: Iter) { + let mut chosen = [0i32; 9]; + for _ in 0..1000 { + let picked = iter.clone().choose(r).unwrap(); + chosen[picked] += 1; + } + for count in chosen.iter() { + // Samples should follow Binomial(1000, 1/9) + // Octave: binopdf(x, 1000, 1/9) gives the prob of *count == x + // Note: have seen 153, which is unlikely but not impossible. + assert!(72 < *count && *count < 154, "count not close to 1000/9: {}", count); + } + } + + test_iter(r, 0..9); + test_iter(r, [0, 1, 2, 3, 4, 5, 6, 7, 8].iter().cloned()); + #[cfg(feature = "alloc")] + test_iter(r, (0..9).collect::<Vec<_>>().into_iter()); + test_iter(r, UnhintedIterator { iter: 0..9 }); + test_iter(r, ChunkHintedIterator { iter: 0..9, chunk_size: 4, chunk_remaining: 4, hint_total_size: false }); + test_iter(r, ChunkHintedIterator { iter: 0..9, chunk_size: 4, chunk_remaining: 4, hint_total_size: true }); + test_iter(r, WindowHintedIterator { iter: 0..9, window_size: 2, hint_total_size: false }); + test_iter(r, WindowHintedIterator { iter: 0..9, window_size: 2, hint_total_size: true }); + + assert_eq!((0..0).choose(r), None); + assert_eq!(UnhintedIterator{ iter: 0..0 }.choose(r), None); + } + + #[test] + fn test_shuffle() { + let mut r = ::test::rng(108); + let empty: &mut [isize] = &mut []; + empty.shuffle(&mut r); + let mut one = [1]; + one.shuffle(&mut r); + let b: &[_] = &[1]; + assert_eq!(one, b); + + let mut two = [1, 2]; + two.shuffle(&mut r); + assert!(two == [1, 2] || two == [2, 1]); + + fn move_last(slice: &mut [usize], pos: usize) { + // use slice[pos..].rotate_left(1); once we can use that + let last_val = slice[pos]; + for i in pos..slice.len() - 1 { + slice[i] = slice[i + 1]; + } + *slice.last_mut().unwrap() = last_val; + } + let mut counts = [0i32; 24]; + for _ in 0..10000 { + let mut arr: [usize; 4] = [0, 1, 2, 3]; + arr.shuffle(&mut r); + let mut permutation = 0usize; + let mut pos_value = counts.len(); + for i in 0..4 { + pos_value /= 4 - i; + let pos = arr.iter().position(|&x| x == i).unwrap(); + assert!(pos < (4 - i)); + permutation += pos * pos_value; + move_last(&mut arr, pos); + assert_eq!(arr[3], i); + } + for i in 0..4 { + assert_eq!(arr[i], i); + } + counts[permutation] += 1; + } + for count in counts.iter() { + let err = *count - 10000i32 / 24; + assert!(-50 <= err && err <= 50); + } + } + + #[test] + fn test_partial_shuffle() { + let mut r = ::test::rng(118); + + let mut empty: [u32; 0] = []; + let res = empty.partial_shuffle(&mut r, 10); + assert_eq!((res.0.len(), res.1.len()), (0, 0)); + + let mut v = [1, 2, 3, 4, 5]; + let res = v.partial_shuffle(&mut r, 2); + assert_eq!((res.0.len(), res.1.len()), (2, 3)); + assert!(res.0[0] != res.0[1]); + // First elements are only modified if selected, so at least one isn't modified: + assert!(res.1[0] == 1 || res.1[1] == 2 || res.1[2] == 3); + } + + #[test] + #[cfg(feature = "alloc")] + fn test_sample_iter() { + let min_val = 1; + let max_val = 100; + + let mut r = ::test::rng(401); + let vals = (min_val..max_val).collect::<Vec<i32>>(); + let small_sample = vals.iter().choose_multiple(&mut r, 5); + let large_sample = vals.iter().choose_multiple(&mut r, vals.len() + 5); + + assert_eq!(small_sample.len(), 5); + assert_eq!(large_sample.len(), vals.len()); + // no randomization happens when amount >= len + assert_eq!(large_sample, vals.iter().collect::<Vec<_>>()); + + assert!(small_sample.iter().all(|e| { + **e >= min_val && **e <= max_val + })); + } + + #[test] + #[cfg(feature = "alloc")] + #[allow(deprecated)] + fn test_sample_slice_boundaries() { + let empty: &[u8] = &[]; + + let mut r = ::test::rng(402); + + // sample 0 items + assert_eq!(&sample_slice(&mut r, empty, 0)[..], [0u8; 0]); + assert_eq!(&sample_slice(&mut r, &[42, 2, 42], 0)[..], [0u8; 0]); + + // sample 1 item + assert_eq!(&sample_slice(&mut r, &[42], 1)[..], [42]); + let v = sample_slice(&mut r, &[1, 42], 1)[0]; + assert!(v == 1 || v == 42); + + // sample "all" the items + let v = sample_slice(&mut r, &[42, 133], 2); + assert!(&v[..] == [42, 133] || v[..] == [133, 42]); + + // Make sure lucky 777's aren't lucky + let slice = &[42, 777]; + let mut num_42 = 0; + let total = 1000; + for _ in 0..total { + let v = sample_slice(&mut r, slice, 1); + assert_eq!(v.len(), 1); + let v = v[0]; + assert!(v == 42 || v == 777); + if v == 42 { + num_42 += 1; + } + } + let ratio_42 = num_42 as f64 / 1000 as f64; + assert!(0.4 <= ratio_42 || ratio_42 <= 0.6, "{}", ratio_42); + } + + #[test] + #[cfg(feature = "alloc")] + #[allow(deprecated)] + fn test_sample_slice() { + let seeded_rng = SmallRng::from_seed; + + let mut r = ::test::rng(403); + + for n in 1..20 { + let length = 5*n - 4; // 1, 6, ... + let amount = r.gen_range(0, length); + let mut seed = [0u8; 16]; + r.fill(&mut seed); + + // assert the basics work + let regular = index::sample(&mut seeded_rng(seed), length, amount); + assert_eq!(regular.len(), amount); + assert!(regular.iter().all(|e| e < length)); + + // also test that sampling the slice works + let vec: Vec<u32> = (0..(length as u32)).collect(); + let result = sample_slice(&mut seeded_rng(seed), &vec, amount); + assert_eq!(result, regular.iter().map(|i| i as u32).collect::<Vec<_>>()); + + let result = sample_slice_ref(&mut seeded_rng(seed), &vec, amount); + assert!(result.iter().zip(regular.iter()).all(|(i,j)| **i == j as u32)); + } + } + + #[test] + #[cfg(feature = "alloc")] + fn test_weighted() { + let mut r = ::test::rng(406); + const N_REPS: u32 = 3000; + let weights = [1u32, 2, 3, 0, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7]; + let total_weight = weights.iter().sum::<u32>() as f32; + + let verify = |result: [i32; 14]| { + for (i, count) in result.iter().enumerate() { + let exp = (weights[i] * N_REPS) as f32 / total_weight; + let mut err = (*count as f32 - exp).abs(); + if err != 0.0 { + err /= exp; + } + assert!(err <= 0.25); + } + }; + + // choose_weighted + fn get_weight<T>(item: &(u32, T)) -> u32 { + item.0 + } + let mut chosen = [0i32; 14]; + let mut items = [(0u32, 0usize); 14]; // (weight, index) + for (i, item) in items.iter_mut().enumerate() { + *item = (weights[i], i); + } + for _ in 0..N_REPS { + let item = items.choose_weighted(&mut r, get_weight).unwrap(); + chosen[item.1] += 1; + } + verify(chosen); + + // choose_weighted_mut + let mut items = [(0u32, 0i32); 14]; // (weight, count) + for (i, item) in items.iter_mut().enumerate() { + *item = (weights[i], 0); + } + for _ in 0..N_REPS { + items.choose_weighted_mut(&mut r, get_weight).unwrap().1 += 1; + } + for (ch, item) in chosen.iter_mut().zip(items.iter()) { + *ch = item.1; + } + verify(chosen); + + // Check error cases + let empty_slice = &mut [10][0..0]; + assert_eq!(empty_slice.choose_weighted(&mut r, |_| 1), Err(WeightedError::NoItem)); + assert_eq!(empty_slice.choose_weighted_mut(&mut r, |_| 1), Err(WeightedError::NoItem)); + assert_eq!(['x'].choose_weighted_mut(&mut r, |_| 0), Err(WeightedError::AllWeightsZero)); + assert_eq!([0, -1].choose_weighted_mut(&mut r, |x| *x), Err(WeightedError::NegativeWeight)); + assert_eq!([-1, 0].choose_weighted_mut(&mut r, |x| *x), Err(WeightedError::NegativeWeight)); + } +} |