summaryrefslogtreecommitdiff
path: root/rand/src/seq/mod.rs
diff options
context:
space:
mode:
Diffstat (limited to 'rand/src/seq/mod.rs')
-rw-r--r--rand/src/seq/mod.rs521
1 files changed, 238 insertions, 283 deletions
diff --git a/rand/src/seq/mod.rs b/rand/src/seq/mod.rs
index 9959602..cec9bb1 100644
--- a/rand/src/seq/mod.rs
+++ b/rand/src/seq/mod.rs
@@ -6,25 +6,55 @@
// option. This file may not be copied, modified, or distributed
// except according to those terms.
-//! Functions for randomly accessing and sampling sequences.
+//! Sequence-related functionality
//!
-//! TODO: module doc
+//! This module provides:
+//!
+//! * [`seq::SliceRandom`] slice sampling and mutation
+//! * [`seq::IteratorRandom`] iterator sampling
+//! * [`seq::index::sample`] low-level API to choose multiple indices from
+//! `0..length`
+//!
+//! Also see:
+//!
+//! * [`distributions::weighted`] module which provides implementations of
+//! weighted index sampling.
+//!
+//! In order to make results reproducible across 32-64 bit architectures, all
+//! `usize` indices are sampled as a `u32` where possible (also providing a
+//! small performance boost in some cases).
#[cfg(feature="alloc")] pub mod index;
#[cfg(feature="alloc")] use core::ops::Index;
-#[cfg(all(feature="alloc", not(feature="std")))] use alloc::vec::Vec;
+#[cfg(all(feature="alloc", not(feature="std")))] use crate::alloc::vec::Vec;
-use Rng;
-#[cfg(feature="alloc")] use distributions::WeightedError;
-#[cfg(feature="alloc")] use distributions::uniform::{SampleUniform, SampleBorrow};
+use crate::Rng;
+#[cfg(feature="alloc")] use crate::distributions::WeightedError;
+#[cfg(feature="alloc")] use crate::distributions::uniform::{SampleUniform, SampleBorrow};
/// Extension trait on slices, providing random mutation and sampling methods.
///
-/// An implementation is provided for slices. This may also be implementable for
-/// other types.
+/// This trait is implemented on all `[T]` slice types, providing several
+/// methods for choosing and shuffling elements. You must `use` this trait:
+///
+/// ```
+/// use rand::seq::SliceRandom;
+///
+/// fn main() {
+/// let mut rng = rand::thread_rng();
+/// let mut bytes = "Hello, random!".to_string().into_bytes();
+/// bytes.shuffle(&mut rng);
+/// let str = String::from_utf8(bytes).unwrap();
+/// println!("{}", str);
+/// }
+/// ```
+/// Example output (non-deterministic):
+/// ```none
+/// l,nmroHado !le
+/// ```
pub trait SliceRandom {
/// The element type.
type Item;
@@ -32,7 +62,7 @@ pub trait SliceRandom {
/// Returns a reference to one random element of the slice, or `None` if the
/// slice is empty.
///
- /// Depending on the implementation, complexity is expected to be `O(1)`.
+ /// For slices, complexity is `O(1)`.
///
/// # Example
///
@@ -46,33 +76,33 @@ pub trait SliceRandom {
/// assert_eq!(choices[..0].choose(&mut rng), None);
/// ```
fn choose<R>(&self, rng: &mut R) -> Option<&Self::Item>
- where R: Rng + ?Sized;
+ where R: Rng + ?Sized;
/// Returns a mutable reference to one random element of the slice, or
/// `None` if the slice is empty.
- ///
- /// Depending on the implementation, complexity is expected to be `O(1)`.
+ ///
+ /// For slices, complexity is `O(1)`.
fn choose_mut<R>(&mut self, rng: &mut R) -> Option<&mut Self::Item>
- where R: Rng + ?Sized;
+ where R: Rng + ?Sized;
- /// Produces an iterator that chooses `amount` elements from the slice at
- /// random without repeating any, and returns them in random order.
- ///
- /// In case this API is not sufficiently flexible, use `index::sample` then
- /// apply the indices to the slice.
- ///
- /// Complexity is expected to be the same as `index::sample`.
- ///
+ /// Chooses `amount` elements from the slice at random, without repetition,
+ /// and in random order. The returned iterator is appropriate both for
+ /// collection into a `Vec` and filling an existing buffer (see example).
+ ///
+ /// In case this API is not sufficiently flexible, use [`index::sample`].
+ ///
+ /// For slices, complexity is the same as [`index::sample`].
+ ///
/// # Example
/// ```
/// use rand::seq::SliceRandom;
- ///
+ ///
/// let mut rng = &mut rand::thread_rng();
/// let sample = "Hello, audience!".as_bytes();
- ///
+ ///
/// // collect the results into a vector:
/// let v: Vec<u8> = sample.choose_multiple(&mut rng, 3).cloned().collect();
- ///
+ ///
/// // store in a buffer:
/// let mut buf = [0u8; 5];
/// for (b, slot) in sample.choose_multiple(&mut rng, buf.len()).zip(buf.iter_mut()) {
@@ -81,13 +111,18 @@ pub trait SliceRandom {
/// ```
#[cfg(feature = "alloc")]
fn choose_multiple<R>(&self, rng: &mut R, amount: usize) -> SliceChooseIter<Self, Self::Item>
- where R: Rng + ?Sized;
+ where R: Rng + ?Sized;
- /// Similar to [`choose`], where the likelihood of each outcome may be
- /// specified. The specified function `weight` maps items `x` to a relative
+ /// Similar to [`choose`], but where the likelihood of each outcome may be
+ /// specified.
+ ///
+ /// The specified function `weight` maps each item `x` to a relative
/// likelihood `weight(x)`. The probability of each item being selected is
/// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`.
///
+ /// For slices of length `n`, complexity is `O(n)`.
+ /// See also [`choose_weighted_mut`], [`distributions::weighted`].
+ ///
/// # Example
///
/// ```
@@ -98,47 +133,59 @@ pub trait SliceRandom {
/// // 50% chance to print 'a', 25% chance to print 'b', 25% chance to print 'c'
/// println!("{:?}", choices.choose_weighted(&mut rng, |item| item.1).unwrap().0);
/// ```
- /// [`choose`]: trait.SliceRandom.html#method.choose
+ /// [`choose`]: SliceRandom::choose
+ /// [`choose_weighted_mut`]: SliceRandom::choose_weighted_mut
+ /// [`distributions::weighted`]: crate::distributions::weighted
#[cfg(feature = "alloc")]
- fn choose_weighted<R, F, B, X>(&self, rng: &mut R, weight: F) -> Result<&Self::Item, WeightedError>
- where R: Rng + ?Sized,
- F: Fn(&Self::Item) -> B,
- B: SampleBorrow<X>,
- X: SampleUniform +
- for<'a> ::core::ops::AddAssign<&'a X> +
- ::core::cmp::PartialOrd<X> +
- Clone +
- Default;
-
- /// Similar to [`choose_mut`], where the likelihood of each outcome may be
- /// specified. The specified function `weight` maps items `x` to a relative
+ fn choose_weighted<R, F, B, X>(
+ &self, rng: &mut R, weight: F,
+ ) -> Result<&Self::Item, WeightedError>
+ where
+ R: Rng + ?Sized,
+ F: Fn(&Self::Item) -> B,
+ B: SampleBorrow<X>,
+ X: SampleUniform
+ + for<'a> ::core::ops::AddAssign<&'a X>
+ + ::core::cmp::PartialOrd<X>
+ + Clone
+ + Default;
+
+ /// Similar to [`choose_mut`], but where the likelihood of each outcome may
+ /// be specified.
+ ///
+ /// The specified function `weight` maps each item `x` to a relative
/// likelihood `weight(x)`. The probability of each item being selected is
/// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`.
///
- /// See also [`choose_weighted`].
+ /// For slices of length `n`, complexity is `O(n)`.
+ /// See also [`choose_weighted`], [`distributions::weighted`].
///
- /// [`choose_mut`]: trait.SliceRandom.html#method.choose_mut
- /// [`choose_weighted`]: trait.SliceRandom.html#method.choose_weighted
+ /// [`choose_mut`]: SliceRandom::choose_mut
+ /// [`choose_weighted`]: SliceRandom::choose_weighted
+ /// [`distributions::weighted`]: crate::distributions::weighted
#[cfg(feature = "alloc")]
- fn choose_weighted_mut<R, F, B, X>(&mut self, rng: &mut R, weight: F) -> Result<&mut Self::Item, WeightedError>
- where R: Rng + ?Sized,
- F: Fn(&Self::Item) -> B,
- B: SampleBorrow<X>,
- X: SampleUniform +
- for<'a> ::core::ops::AddAssign<&'a X> +
- ::core::cmp::PartialOrd<X> +
- Clone +
- Default;
+ fn choose_weighted_mut<R, F, B, X>(
+ &mut self, rng: &mut R, weight: F,
+ ) -> Result<&mut Self::Item, WeightedError>
+ where
+ R: Rng + ?Sized,
+ F: Fn(&Self::Item) -> B,
+ B: SampleBorrow<X>,
+ X: SampleUniform
+ + for<'a> ::core::ops::AddAssign<&'a X>
+ + ::core::cmp::PartialOrd<X>
+ + Clone
+ + Default;
/// Shuffle a mutable slice in place.
- ///
- /// Depending on the implementation, complexity is expected to be `O(1)`.
+ ///
+ /// For slices of length `n`, complexity is `O(n)`.
///
/// # Example
///
/// ```
- /// use rand::thread_rng;
/// use rand::seq::SliceRandom;
+ /// use rand::thread_rng;
///
/// let mut rng = thread_rng();
/// let mut y = [1, 2, 3, 4, 5];
@@ -146,7 +193,8 @@ pub trait SliceRandom {
/// y.shuffle(&mut rng);
/// println!("Shuffled: {:?}", y);
/// ```
- fn shuffle<R>(&mut self, rng: &mut R) where R: Rng + ?Sized;
+ fn shuffle<R>(&mut self, rng: &mut R)
+ where R: Rng + ?Sized;
/// Shuffle a slice in place, but exit early.
///
@@ -164,47 +212,65 @@ pub trait SliceRandom {
/// If `amount` is greater than the number of elements in the slice, this
/// will perform a full shuffle.
///
- /// Complexity is expected to be `O(m)` where `m = amount`.
- fn partial_shuffle<R>(&mut self, rng: &mut R, amount: usize)
- -> (&mut [Self::Item], &mut [Self::Item]) where R: Rng + ?Sized;
+ /// For slices, complexity is `O(m)` where `m = amount`.
+ fn partial_shuffle<R>(
+ &mut self, rng: &mut R, amount: usize,
+ ) -> (&mut [Self::Item], &mut [Self::Item])
+ where R: Rng + ?Sized;
}
/// Extension trait on iterators, providing random sampling methods.
+///
+/// This trait is implemented on all sized iterators, providing methods for
+/// choosing one or more elements. You must `use` this trait:
+///
+/// ```
+/// use rand::seq::IteratorRandom;
+///
+/// fn main() {
+/// let mut rng = rand::thread_rng();
+///
+/// let faces = "πŸ˜€πŸ˜ŽπŸ˜πŸ˜•πŸ˜ πŸ˜’";
+/// println!("I am {}!", faces.chars().choose(&mut rng).unwrap());
+/// }
+/// ```
+/// Example output (non-deterministic):
+/// ```none
+/// I am πŸ˜€!
+/// ```
pub trait IteratorRandom: Iterator + Sized {
- /// Choose one element at random from the iterator. If you have a slice,
- /// it's significantly faster to call the [`choose`] or [`choose_mut`]
- /// functions using the slice instead.
- ///
- /// Returns `None` if and only if the iterator is empty.
+ /// Choose one element at random from the iterator.
///
- /// Complexity is `O(n)`, where `n` is the length of the iterator.
- /// This likely consumes multiple random numbers, but the exact number
- /// is unspecified.
+ /// Returns `None` if and only if the iterator is empty.
///
- /// [`choose`]: trait.SliceRandom.html#method.choose
- /// [`choose_mut`]: trait.SliceRandom.html#method.choose_mut
+ /// This method uses [`Iterator::size_hint`] for optimisation. With an
+ /// accurate hint and where [`Iterator::nth`] is a constant-time operation
+ /// this method can offer `O(1)` performance. Where no size hint is
+ /// available, complexity is `O(n)` where `n` is the iterator length.
+ /// Partial hints (where `lower > 0`) also improve performance.
+ ///
+ /// For slices, prefer [`SliceRandom::choose`] which guarantees `O(1)`
+ /// performance.
fn choose<R>(mut self, rng: &mut R) -> Option<Self::Item>
- where R: Rng + ?Sized
- {
+ where R: Rng + ?Sized {
let (mut lower, mut upper) = self.size_hint();
let mut consumed = 0;
let mut result = None;
if upper == Some(lower) {
- return if lower == 0 { None } else { self.nth(rng.gen_range(0, lower)) };
+ return if lower == 0 { None } else { self.nth(gen_index(rng, lower)) };
}
// Continue until the iterator is exhausted
loop {
if lower > 1 {
- let ix = rng.gen_range(0, lower + consumed);
- let skip;
- if ix < lower {
+ let ix = gen_index(rng, lower + consumed);
+ let skip = if ix < lower {
result = self.nth(ix);
- skip = lower - (ix + 1);
+ lower - (ix + 1)
} else {
- skip = lower;
- }
+ lower
+ };
if upper == Some(lower) {
return result;
}
@@ -230,21 +296,21 @@ pub trait IteratorRandom: Iterator + Sized {
}
}
- /// Collects `amount` values at random from the iterator into a supplied
- /// buffer.
- ///
+ /// Collects values at random from the iterator into a supplied buffer
+ /// until that buffer is filled.
+ ///
/// Although the elements are selected randomly, the order of elements in
/// the buffer is neither stable nor fully random. If random ordering is
/// desired, shuffle the result.
- ///
- /// Returns the number of elements added to the buffer. This equals `amount`
- /// unless the iterator contains insufficient elements, in which case this
- /// equals the number of elements available.
- ///
+ ///
+ /// Returns the number of elements added to the buffer. This equals the length
+ /// of the buffer unless the iterator contains insufficient elements, in which
+ /// case this equals the number of elements available.
+ ///
/// Complexity is `O(n)` where `n` is the length of the iterator.
- fn choose_multiple_fill<R>(mut self, rng: &mut R, buf: &mut [Self::Item])
- -> usize where R: Rng + ?Sized
- {
+ /// For slices, prefer [`SliceRandom::choose_multiple`].
+ fn choose_multiple_fill<R>(mut self, rng: &mut R, buf: &mut [Self::Item]) -> usize
+ where R: Rng + ?Sized {
let amount = buf.len();
let mut len = 0;
while len < amount {
@@ -259,7 +325,7 @@ pub trait IteratorRandom: Iterator + Sized {
// Continue, since the iterator was not exhausted
for (i, elem) in self.enumerate() {
- let k = rng.gen_range(0, i + 1 + amount);
+ let k = gen_index(rng, i + 1 + amount);
if let Some(slot) = buf.get_mut(k) {
*slot = elem;
}
@@ -274,16 +340,16 @@ pub trait IteratorRandom: Iterator + Sized {
/// Although the elements are selected randomly, the order of elements in
/// the buffer is neither stable nor fully random. If random ordering is
/// desired, shuffle the result.
- ///
+ ///
/// The length of the returned vector equals `amount` unless the iterator
/// contains insufficient elements, in which case it equals the number of
/// elements available.
- ///
+ ///
/// Complexity is `O(n)` where `n` is the length of the iterator.
+ /// For slices, prefer [`SliceRandom::choose_multiple`].
#[cfg(feature = "alloc")]
fn choose_multiple<R>(mut self, rng: &mut R, amount: usize) -> Vec<Self::Item>
- where R: Rng + ?Sized
- {
+ where R: Rng + ?Sized {
let mut reservoir = Vec::with_capacity(amount);
reservoir.extend(self.by_ref().take(amount));
@@ -293,7 +359,7 @@ pub trait IteratorRandom: Iterator + Sized {
// If the iterator stops once, then so do we.
if reservoir.len() == amount {
for (i, elem) in self.enumerate() {
- let k = rng.gen_range(0, i + 1 + amount);
+ let k = gen_index(rng, i + 1 + amount);
if let Some(slot) = reservoir.get_mut(k) {
*slot = elem;
}
@@ -312,31 +378,27 @@ impl<T> SliceRandom for [T] {
type Item = T;
fn choose<R>(&self, rng: &mut R) -> Option<&Self::Item>
- where R: Rng + ?Sized
- {
+ where R: Rng + ?Sized {
if self.is_empty() {
None
} else {
- Some(&self[rng.gen_range(0, self.len())])
+ Some(&self[gen_index(rng, self.len())])
}
}
fn choose_mut<R>(&mut self, rng: &mut R) -> Option<&mut Self::Item>
- where R: Rng + ?Sized
- {
+ where R: Rng + ?Sized {
if self.is_empty() {
None
} else {
let len = self.len();
- Some(&mut self[rng.gen_range(0, len)])
+ Some(&mut self[gen_index(rng, len)])
}
}
#[cfg(feature = "alloc")]
- fn choose_multiple<R>(&self, rng: &mut R, amount: usize)
- -> SliceChooseIter<Self, Self::Item>
- where R: Rng + ?Sized
- {
+ fn choose_multiple<R>(&self, rng: &mut R, amount: usize) -> SliceChooseIter<Self, Self::Item>
+ where R: Rng + ?Sized {
let amount = ::core::cmp::min(amount, self.len());
SliceChooseIter {
slice: self,
@@ -346,57 +408,66 @@ impl<T> SliceRandom for [T] {
}
#[cfg(feature = "alloc")]
- fn choose_weighted<R, F, B, X>(&self, rng: &mut R, weight: F) -> Result<&Self::Item, WeightedError>
- where R: Rng + ?Sized,
- F: Fn(&Self::Item) -> B,
- B: SampleBorrow<X>,
- X: SampleUniform +
- for<'a> ::core::ops::AddAssign<&'a X> +
- ::core::cmp::PartialOrd<X> +
- Clone +
- Default {
- use distributions::{Distribution, WeightedIndex};
+ fn choose_weighted<R, F, B, X>(
+ &self, rng: &mut R, weight: F,
+ ) -> Result<&Self::Item, WeightedError>
+ where
+ R: Rng + ?Sized,
+ F: Fn(&Self::Item) -> B,
+ B: SampleBorrow<X>,
+ X: SampleUniform
+ + for<'a> ::core::ops::AddAssign<&'a X>
+ + ::core::cmp::PartialOrd<X>
+ + Clone
+ + Default,
+ {
+ use crate::distributions::{Distribution, WeightedIndex};
let distr = WeightedIndex::new(self.iter().map(weight))?;
Ok(&self[distr.sample(rng)])
}
#[cfg(feature = "alloc")]
- fn choose_weighted_mut<R, F, B, X>(&mut self, rng: &mut R, weight: F) -> Result<&mut Self::Item, WeightedError>
- where R: Rng + ?Sized,
- F: Fn(&Self::Item) -> B,
- B: SampleBorrow<X>,
- X: SampleUniform +
- for<'a> ::core::ops::AddAssign<&'a X> +
- ::core::cmp::PartialOrd<X> +
- Clone +
- Default {
- use distributions::{Distribution, WeightedIndex};
+ fn choose_weighted_mut<R, F, B, X>(
+ &mut self, rng: &mut R, weight: F,
+ ) -> Result<&mut Self::Item, WeightedError>
+ where
+ R: Rng + ?Sized,
+ F: Fn(&Self::Item) -> B,
+ B: SampleBorrow<X>,
+ X: SampleUniform
+ + for<'a> ::core::ops::AddAssign<&'a X>
+ + ::core::cmp::PartialOrd<X>
+ + Clone
+ + Default,
+ {
+ use crate::distributions::{Distribution, WeightedIndex};
let distr = WeightedIndex::new(self.iter().map(weight))?;
Ok(&mut self[distr.sample(rng)])
}
- fn shuffle<R>(&mut self, rng: &mut R) where R: Rng + ?Sized
- {
+ fn shuffle<R>(&mut self, rng: &mut R)
+ where R: Rng + ?Sized {
for i in (1..self.len()).rev() {
// invariant: elements with index > i have been locked in place.
- self.swap(i, rng.gen_range(0, i + 1));
+ self.swap(i, gen_index(rng, i + 1));
}
}
- fn partial_shuffle<R>(&mut self, rng: &mut R, amount: usize)
- -> (&mut [Self::Item], &mut [Self::Item]) where R: Rng + ?Sized
- {
+ fn partial_shuffle<R>(
+ &mut self, rng: &mut R, amount: usize,
+ ) -> (&mut [Self::Item], &mut [Self::Item])
+ where R: Rng + ?Sized {
// This applies Durstenfeld's algorithm for the
// [Fisher–Yates shuffle](https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle#The_modern_algorithm)
// for an unbiased permutation, but exits early after choosing `amount`
// elements.
-
+
let len = self.len();
let end = if amount >= len { 0 } else { len - amount };
-
+
for i in (end..len).rev() {
// invariant: elements with index > i have been locked in place.
- self.swap(i, rng.gen_range(0, i + 1));
+ self.swap(i, gen_index(rng, i + 1));
}
let r = self.split_at_mut(end);
(r.1, r.0)
@@ -406,8 +477,10 @@ impl<T> SliceRandom for [T] {
impl<I> IteratorRandom for I where I: Iterator + Sized {}
-/// Iterator over multiple choices, as returned by [`SliceRandom::choose_multiple](
-/// trait.SliceRandom.html#method.choose_multiple).
+/// An iterator over multiple slice elements.
+///
+/// This struct is created by
+/// [`SliceRandom::choose_multiple`](trait.SliceRandom.html#tymethod.choose_multiple).
#[cfg(feature = "alloc")]
#[derive(Debug)]
pub struct SliceChooseIter<'a, S: ?Sized + 'a, T: 'a> {
@@ -424,7 +497,7 @@ impl<'a, S: Index<usize, Output = T> + ?Sized + 'a, T: 'a> Iterator for SliceCho
// TODO: investigate using SliceIndex::get_unchecked when stable
self.indices.next().map(|i| &self.slice[i as usize])
}
-
+
fn size_hint(&self) -> (usize, Option<usize>) {
(self.indices.len(), Some(self.indices.len()))
}
@@ -440,94 +513,39 @@ impl<'a, S: Index<usize, Output = T> + ?Sized + 'a, T: 'a> ExactSizeIterator
}
-/// Randomly sample `amount` elements from a finite iterator.
-///
-/// Deprecated: use [`IteratorRandom::choose_multiple`] instead.
-///
-/// [`IteratorRandom::choose_multiple`]: trait.IteratorRandom.html#method.choose_multiple
-#[cfg(feature = "alloc")]
-#[deprecated(since="0.6.0", note="use IteratorRandom::choose_multiple instead")]
-pub fn sample_iter<T, I, R>(rng: &mut R, iterable: I, amount: usize) -> Result<Vec<T>, Vec<T>>
- where I: IntoIterator<Item=T>,
- R: Rng + ?Sized,
-{
- use seq::IteratorRandom;
- let iter = iterable.into_iter();
- let result = iter.choose_multiple(rng, amount);
- if result.len() == amount {
- Ok(result)
+// Sample a number uniformly between 0 and `ubound`. Uses 32-bit sampling where
+// possible, primarily in order to produce the same output on 32-bit and 64-bit
+// platforms.
+#[inline]
+fn gen_index<R: Rng + ?Sized>(rng: &mut R, ubound: usize) -> usize {
+ if ubound <= (core::u32::MAX as usize) {
+ rng.gen_range(0, ubound as u32) as usize
} else {
- Err(result)
+ rng.gen_range(0, ubound)
}
}
-/// Randomly sample exactly `amount` values from `slice`.
-///
-/// The values are non-repeating and in random order.
-///
-/// This implementation uses `O(amount)` time and memory.
-///
-/// Panics if `amount > slice.len()`
-///
-/// Deprecated: use [`SliceRandom::choose_multiple`] instead.
-///
-/// [`SliceRandom::choose_multiple`]: trait.SliceRandom.html#method.choose_multiple
-#[cfg(feature = "alloc")]
-#[deprecated(since="0.6.0", note="use SliceRandom::choose_multiple instead")]
-pub fn sample_slice<R, T>(rng: &mut R, slice: &[T], amount: usize) -> Vec<T>
- where R: Rng + ?Sized,
- T: Clone
-{
- let indices = index::sample(rng, slice.len(), amount).into_iter();
-
- let mut out = Vec::with_capacity(amount);
- out.extend(indices.map(|i| slice[i].clone()));
- out
-}
-
-/// Randomly sample exactly `amount` references from `slice`.
-///
-/// The references are non-repeating and in random order.
-///
-/// This implementation uses `O(amount)` time and memory.
-///
-/// Panics if `amount > slice.len()`
-///
-/// Deprecated: use [`SliceRandom::choose_multiple`] instead.
-///
-/// [`SliceRandom::choose_multiple`]: trait.SliceRandom.html#method.choose_multiple
-#[cfg(feature = "alloc")]
-#[deprecated(since="0.6.0", note="use SliceRandom::choose_multiple instead")]
-pub fn sample_slice_ref<'a, R, T>(rng: &mut R, slice: &'a [T], amount: usize) -> Vec<&'a T>
- where R: Rng + ?Sized
-{
- let indices = index::sample(rng, slice.len(), amount).into_iter();
-
- let mut out = Vec::with_capacity(amount);
- out.extend(indices.map(|i| &slice[i]));
- out
-}
#[cfg(test)]
mod test {
use super::*;
- #[cfg(feature = "alloc")] use {Rng, SeedableRng};
- #[cfg(feature = "alloc")] use rngs::SmallRng;
+ #[cfg(feature = "alloc")] use crate::Rng;
#[cfg(all(feature="alloc", not(feature="std")))]
use alloc::vec::Vec;
#[test]
fn test_slice_choose() {
- let mut r = ::test::rng(107);
+ let mut r = crate::test::rng(107);
let chars = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n'];
let mut chosen = [0i32; 14];
+ // The below all use a binomial distribution with n=1000, p=1/14.
+ // binocdf(40, 1000, 1/14) ~= 2e-5; 1-binocdf(106, ..) ~= 2e-5
for _ in 0..1000 {
let picked = *chars.choose(&mut r).unwrap();
chosen[(picked as usize) - ('a' as usize)] += 1;
}
for count in chosen.iter() {
- let err = *count - (1000 / (chars.len() as i32));
- assert!(-20 <= err && err <= 20);
+ assert!(40 < *count && *count < 106);
}
chosen.iter_mut().for_each(|x| *x = 0);
@@ -535,8 +553,7 @@ mod test {
*chosen.choose_mut(&mut r).unwrap() += 1;
}
for count in chosen.iter() {
- let err = *count - (1000 / (chosen.len() as i32));
- assert!(-20 <= err && err <= 20);
+ assert!(40 < *count && *count < 106);
}
let mut v: [isize; 0] = [];
@@ -597,8 +614,9 @@ mod test {
}
#[test]
+ #[cfg(not(miri))] // Miri is too slow
fn test_iterator_choose() {
- let r = &mut ::test::rng(109);
+ let r = &mut crate::test::rng(109);
fn test_iter<R: Rng + ?Sized, Iter: Iterator<Item=usize> + Clone>(r: &mut R, iter: Iter) {
let mut chosen = [0i32; 9];
for _ in 0..1000 {
@@ -628,8 +646,9 @@ mod test {
}
#[test]
+ #[cfg(not(miri))] // Miri is too slow
fn test_shuffle() {
- let mut r = ::test::rng(108);
+ let mut r = crate::test::rng(108);
let empty: &mut [isize] = &mut [];
empty.shuffle(&mut r);
let mut one = [1];
@@ -669,14 +688,16 @@ mod test {
counts[permutation] += 1;
}
for count in counts.iter() {
- let err = *count - 10000i32 / 24;
- assert!(-50 <= err && err <= 50);
+ // Binomial(10000, 1/24) with average 416.667
+ // Octave: binocdf(n, 10000, 1/24)
+ // 99.9% chance samples lie within this range:
+ assert!(352 <= *count && *count <= 483, "count: {}", count);
}
}
#[test]
fn test_partial_shuffle() {
- let mut r = ::test::rng(118);
+ let mut r = crate::test::rng(118);
let mut empty: [u32; 0] = [];
let res = empty.partial_shuffle(&mut r, 10);
@@ -696,7 +717,7 @@ mod test {
let min_val = 1;
let max_val = 100;
- let mut r = ::test::rng(401);
+ let mut r = crate::test::rng(401);
let vals = (min_val..max_val).collect::<Vec<i32>>();
let small_sample = vals.iter().choose_multiple(&mut r, 5);
let large_sample = vals.iter().choose_multiple(&mut r, vals.len() + 5);
@@ -713,75 +734,9 @@ mod test {
#[test]
#[cfg(feature = "alloc")]
- #[allow(deprecated)]
- fn test_sample_slice_boundaries() {
- let empty: &[u8] = &[];
-
- let mut r = ::test::rng(402);
-
- // sample 0 items
- assert_eq!(&sample_slice(&mut r, empty, 0)[..], [0u8; 0]);
- assert_eq!(&sample_slice(&mut r, &[42, 2, 42], 0)[..], [0u8; 0]);
-
- // sample 1 item
- assert_eq!(&sample_slice(&mut r, &[42], 1)[..], [42]);
- let v = sample_slice(&mut r, &[1, 42], 1)[0];
- assert!(v == 1 || v == 42);
-
- // sample "all" the items
- let v = sample_slice(&mut r, &[42, 133], 2);
- assert!(&v[..] == [42, 133] || v[..] == [133, 42]);
-
- // Make sure lucky 777's aren't lucky
- let slice = &[42, 777];
- let mut num_42 = 0;
- let total = 1000;
- for _ in 0..total {
- let v = sample_slice(&mut r, slice, 1);
- assert_eq!(v.len(), 1);
- let v = v[0];
- assert!(v == 42 || v == 777);
- if v == 42 {
- num_42 += 1;
- }
- }
- let ratio_42 = num_42 as f64 / 1000 as f64;
- assert!(0.4 <= ratio_42 || ratio_42 <= 0.6, "{}", ratio_42);
- }
-
- #[test]
- #[cfg(feature = "alloc")]
- #[allow(deprecated)]
- fn test_sample_slice() {
- let seeded_rng = SmallRng::from_seed;
-
- let mut r = ::test::rng(403);
-
- for n in 1..20 {
- let length = 5*n - 4; // 1, 6, ...
- let amount = r.gen_range(0, length);
- let mut seed = [0u8; 16];
- r.fill(&mut seed);
-
- // assert the basics work
- let regular = index::sample(&mut seeded_rng(seed), length, amount);
- assert_eq!(regular.len(), amount);
- assert!(regular.iter().all(|e| e < length));
-
- // also test that sampling the slice works
- let vec: Vec<u32> = (0..(length as u32)).collect();
- let result = sample_slice(&mut seeded_rng(seed), &vec, amount);
- assert_eq!(result, regular.iter().map(|i| i as u32).collect::<Vec<_>>());
-
- let result = sample_slice_ref(&mut seeded_rng(seed), &vec, amount);
- assert!(result.iter().zip(regular.iter()).all(|(i,j)| **i == j as u32));
- }
- }
-
- #[test]
- #[cfg(feature = "alloc")]
+ #[cfg(not(miri))] // Miri is too slow
fn test_weighted() {
- let mut r = ::test::rng(406);
+ let mut r = crate::test::rng(406);
const N_REPS: u32 = 3000;
let weights = [1u32, 2, 3, 0, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7];
let total_weight = weights.iter().sum::<u32>() as f32;
@@ -830,7 +785,7 @@ mod test {
assert_eq!(empty_slice.choose_weighted(&mut r, |_| 1), Err(WeightedError::NoItem));
assert_eq!(empty_slice.choose_weighted_mut(&mut r, |_| 1), Err(WeightedError::NoItem));
assert_eq!(['x'].choose_weighted_mut(&mut r, |_| 0), Err(WeightedError::AllWeightsZero));
- assert_eq!([0, -1].choose_weighted_mut(&mut r, |x| *x), Err(WeightedError::NegativeWeight));
- assert_eq!([-1, 0].choose_weighted_mut(&mut r, |x| *x), Err(WeightedError::NegativeWeight));
+ assert_eq!([0, -1].choose_weighted_mut(&mut r, |x| *x), Err(WeightedError::InvalidWeight));
+ assert_eq!([-1, 0].choose_weighted_mut(&mut r, |x| *x), Err(WeightedError::InvalidWeight));
}
}