diff options
Diffstat (limited to 'rand/src/rngs/adapter/reseeding.rs')
-rw-r--r-- | rand/src/rngs/adapter/reseeding.rs | 370 |
1 files changed, 370 insertions, 0 deletions
diff --git a/rand/src/rngs/adapter/reseeding.rs b/rand/src/rngs/adapter/reseeding.rs new file mode 100644 index 0000000..016afab --- /dev/null +++ b/rand/src/rngs/adapter/reseeding.rs @@ -0,0 +1,370 @@ +// Copyright 2018 Developers of the Rand project. +// Copyright 2013 The Rust Project Developers. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! A wrapper around another PRNG that reseeds it after it +//! generates a certain number of random bytes. + +use core::mem::size_of; + +use rand_core::{RngCore, CryptoRng, SeedableRng, Error, ErrorKind}; +use rand_core::block::{BlockRngCore, BlockRng}; + +/// A wrapper around any PRNG that implements [`BlockRngCore`], that adds the +/// ability to reseed it. +/// +/// `ReseedingRng` reseeds the underlying PRNG in the following cases: +/// +/// - On a manual call to [`reseed()`]. +/// - After `clone()`, the clone will be reseeded on first use. +/// - After a process is forked, the RNG in the child process is reseeded within +/// the next few generated values, depending on the block size of the +/// underlying PRNG. For [`ChaChaCore`] and [`Hc128Core`] this is a maximum of +/// 15 `u32` values before reseeding. +/// - After the PRNG has generated a configurable number of random bytes. +/// +/// # When should reseeding after a fixed number of generated bytes be used? +/// +/// Reseeding after a fixed number of generated bytes is never strictly +/// *necessary*. Cryptographic PRNGs don't have a limited number of bytes they +/// can output, or at least not a limit reachable in any practical way. There is +/// no such thing as 'running out of entropy'. +/// +/// Occasionally reseeding can be seen as some form of 'security in depth'. Even +/// if in the future a cryptographic weakness is found in the CSPRNG being used, +/// or a flaw in the implementation, occasionally reseeding should make +/// exploiting it much more difficult or even impossible. +/// +/// Use [`ReseedingRng::new`] with a `threshold` of `0` to disable reseeding +/// after a fixed number of generated bytes. +/// +/// # Error handling +/// +/// Although unlikely, reseeding the wrapped PRNG can fail. `ReseedingRng` will +/// never panic but try to handle the error intelligently through some +/// combination of retrying and delaying reseeding until later. +/// If handling the source error fails `ReseedingRng` will continue generating +/// data from the wrapped PRNG without reseeding. +/// +/// Manually calling [`reseed()`] will not have this retry or delay logic, but +/// reports the error. +/// +/// # Example +/// +/// ``` +/// # extern crate rand; +/// # extern crate rand_chacha; +/// # fn main() { +/// use rand::prelude::*; +/// use rand_chacha::ChaChaCore; // Internal part of ChaChaRng that +/// // implements BlockRngCore +/// use rand::rngs::OsRng; +/// use rand::rngs::adapter::ReseedingRng; +/// +/// let prng = ChaChaCore::from_entropy(); +// FIXME: it is better to use EntropyRng as reseeder, but that doesn't implement +// clone yet. +/// let reseeder = OsRng::new().unwrap(); +/// let mut reseeding_rng = ReseedingRng::new(prng, 0, reseeder); +/// +/// println!("{}", reseeding_rng.gen::<u64>()); +/// +/// let mut cloned_rng = reseeding_rng.clone(); +/// assert!(reseeding_rng.gen::<u64>() != cloned_rng.gen::<u64>()); +/// # } +/// ``` +/// +/// [`ChaChaCore`]: ../../../rand_chacha/struct.ChaChaCore.html +/// [`Hc128Core`]: ../../../rand_hc/struct.Hc128Core.html +/// [`BlockRngCore`]: ../../../rand_core/block/trait.BlockRngCore.html +/// [`ReseedingRng::new`]: struct.ReseedingRng.html#method.new +/// [`reseed()`]: struct.ReseedingRng.html#method.reseed +#[derive(Debug)] +pub struct ReseedingRng<R, Rsdr>(BlockRng<ReseedingCore<R, Rsdr>>) +where R: BlockRngCore + SeedableRng, + Rsdr: RngCore; + +impl<R, Rsdr> ReseedingRng<R, Rsdr> +where R: BlockRngCore + SeedableRng, + Rsdr: RngCore +{ + /// Create a new `ReseedingRng` from an existing PRNG, combined with a RNG + /// to use as reseeder. + /// + /// `threshold` sets the number of generated bytes after which to reseed the + /// PRNG. Set it to zero to never reseed based on the number of generated + /// values. + pub fn new(rng: R, threshold: u64, reseeder: Rsdr) -> Self { + ReseedingRng(BlockRng::new(ReseedingCore::new(rng, threshold, reseeder))) + } + + /// Reseed the internal PRNG. + pub fn reseed(&mut self) -> Result<(), Error> { + self.0.core.reseed() + } +} + +// TODO: this should be implemented for any type where the inner type +// implements RngCore, but we can't specify that because ReseedingCore is private +impl<R, Rsdr: RngCore> RngCore for ReseedingRng<R, Rsdr> +where R: BlockRngCore<Item = u32> + SeedableRng, + <R as BlockRngCore>::Results: AsRef<[u32]> + AsMut<[u32]> +{ + #[inline(always)] + fn next_u32(&mut self) -> u32 { + self.0.next_u32() + } + + #[inline(always)] + fn next_u64(&mut self) -> u64 { + self.0.next_u64() + } + + fn fill_bytes(&mut self, dest: &mut [u8]) { + self.0.fill_bytes(dest) + } + + fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { + self.0.try_fill_bytes(dest) + } +} + +impl<R, Rsdr> Clone for ReseedingRng<R, Rsdr> +where R: BlockRngCore + SeedableRng + Clone, + Rsdr: RngCore + Clone +{ + fn clone(&self) -> ReseedingRng<R, Rsdr> { + // Recreating `BlockRng` seems easier than cloning it and resetting + // the index. + ReseedingRng(BlockRng::new(self.0.core.clone())) + } +} + +impl<R, Rsdr> CryptoRng for ReseedingRng<R, Rsdr> +where R: BlockRngCore + SeedableRng + CryptoRng, + Rsdr: RngCore + CryptoRng {} + +#[derive(Debug)] +struct ReseedingCore<R, Rsdr> { + inner: R, + reseeder: Rsdr, + threshold: i64, + bytes_until_reseed: i64, + fork_counter: usize, +} + +impl<R, Rsdr> BlockRngCore for ReseedingCore<R, Rsdr> +where R: BlockRngCore + SeedableRng, + Rsdr: RngCore +{ + type Item = <R as BlockRngCore>::Item; + type Results = <R as BlockRngCore>::Results; + + fn generate(&mut self, results: &mut Self::Results) { + let global_fork_counter = fork::get_fork_counter(); + if self.bytes_until_reseed <= 0 || + self.is_forked(global_fork_counter) { + // We get better performance by not calling only `reseed` here + // and continuing with the rest of the function, but by directly + // returning from a non-inlined function. + return self.reseed_and_generate(results, global_fork_counter); + } + let num_bytes = results.as_ref().len() * size_of::<Self::Item>(); + self.bytes_until_reseed -= num_bytes as i64; + self.inner.generate(results); + } +} + +impl<R, Rsdr> ReseedingCore<R, Rsdr> +where R: BlockRngCore + SeedableRng, + Rsdr: RngCore +{ + /// Create a new `ReseedingCore`. + fn new(rng: R, threshold: u64, reseeder: Rsdr) -> Self { + use ::core::i64::MAX; + fork::register_fork_handler(); + + // Because generating more values than `i64::MAX` takes centuries on + // current hardware, we just clamp to that value. + // Also we set a threshold of 0, which indicates no limit, to that + // value. + let threshold = + if threshold == 0 { MAX } + else if threshold <= MAX as u64 { threshold as i64 } + else { MAX }; + + ReseedingCore { + inner: rng, + reseeder, + threshold: threshold as i64, + bytes_until_reseed: threshold as i64, + fork_counter: 0, + } + } + + /// Reseed the internal PRNG. + fn reseed(&mut self) -> Result<(), Error> { + R::from_rng(&mut self.reseeder).map(|result| { + self.bytes_until_reseed = self.threshold; + self.inner = result + }) + } + + fn is_forked(&self, global_fork_counter: usize) -> bool { + // In theory, on 32-bit platforms, it is possible for + // `global_fork_counter` to wrap around after ~4e9 forks. + // + // This check will detect a fork in the normal case where + // `fork_counter < global_fork_counter`, and also when the difference + // between both is greater than `isize::MAX` (wrapped around). + // + // It will still fail to detect a fork if there have been more than + // `isize::MAX` forks, without any reseed in between. Seems unlikely + // enough. + (self.fork_counter.wrapping_sub(global_fork_counter) as isize) < 0 + } + + #[inline(never)] + fn reseed_and_generate(&mut self, + results: &mut <Self as BlockRngCore>::Results, + global_fork_counter: usize) + { + if self.is_forked(global_fork_counter) { + info!("Fork detected, reseeding RNG"); + } else { + trace!("Reseeding RNG (periodic reseed)"); + } + + let num_bytes = + results.as_ref().len() * size_of::<<R as BlockRngCore>::Item>(); + + let threshold = if let Err(e) = self.reseed() { + let delay = match e.kind { + ErrorKind::Transient => num_bytes as i64, + kind @ _ if kind.should_retry() => self.threshold >> 8, + _ => self.threshold, + }; + warn!("Reseeding RNG delayed reseeding by {} bytes due to \ + error from source: {}", delay, e); + delay + } else { + self.fork_counter = global_fork_counter; + self.threshold + }; + + self.bytes_until_reseed = threshold - num_bytes as i64; + self.inner.generate(results); + } +} + +impl<R, Rsdr> Clone for ReseedingCore<R, Rsdr> +where R: BlockRngCore + SeedableRng + Clone, + Rsdr: RngCore + Clone +{ + fn clone(&self) -> ReseedingCore<R, Rsdr> { + ReseedingCore { + inner: self.inner.clone(), + reseeder: self.reseeder.clone(), + threshold: self.threshold, + bytes_until_reseed: 0, // reseed clone on first use + fork_counter: self.fork_counter, + } + } +} + +impl<R, Rsdr> CryptoRng for ReseedingCore<R, Rsdr> +where R: BlockRngCore + SeedableRng + CryptoRng, + Rsdr: RngCore + CryptoRng {} + + +#[cfg(all(feature="std", unix, not(target_os="emscripten")))] +mod fork { + extern crate libc; + + use std::sync::atomic::{AtomicUsize, ATOMIC_USIZE_INIT, Ordering}; + use std::sync::atomic::{AtomicBool, ATOMIC_BOOL_INIT}; + + // Fork protection + // + // We implement fork protection on Unix using `pthread_atfork`. + // When the process is forked, we increment `RESEEDING_RNG_FORK_COUNTER`. + // Every `ReseedingRng` stores the last known value of the static in + // `fork_counter`. If the cached `fork_counter` is less than + // `RESEEDING_RNG_FORK_COUNTER`, it is time to reseed this RNG. + // + // If reseeding fails, we don't deal with this by setting a delay, but just + // don't update `fork_counter`, so a reseed is attempted as soon as + // possible. + + static RESEEDING_RNG_FORK_COUNTER: AtomicUsize = ATOMIC_USIZE_INIT; + + pub fn get_fork_counter() -> usize { + RESEEDING_RNG_FORK_COUNTER.load(Ordering::Relaxed) + } + + static FORK_HANDLER_REGISTERED: AtomicBool = ATOMIC_BOOL_INIT; + + extern fn fork_handler() { + // Note: fetch_add is defined to wrap on overflow + // (which is what we want). + RESEEDING_RNG_FORK_COUNTER.fetch_add(1, Ordering::Relaxed); + } + + pub fn register_fork_handler() { + if FORK_HANDLER_REGISTERED.load(Ordering::Relaxed) == false { + unsafe { libc::pthread_atfork(None, None, Some(fork_handler)) }; + FORK_HANDLER_REGISTERED.store(true, Ordering::Relaxed); + } + } +} + +#[cfg(not(all(feature="std", unix, not(target_os="emscripten"))))] +mod fork { + pub fn get_fork_counter() -> usize { 0 } + pub fn register_fork_handler() {} +} + + +#[cfg(test)] +mod test { + use {Rng, SeedableRng}; + use rand_chacha::ChaChaCore; + use rngs::mock::StepRng; + use super::ReseedingRng; + + #[test] + fn test_reseeding() { + let mut zero = StepRng::new(0, 0); + let rng = ChaChaCore::from_rng(&mut zero).unwrap(); + let mut reseeding = ReseedingRng::new(rng, 32*4, zero); + + // Currently we only support for arrays up to length 32. + // TODO: cannot generate seq via Rng::gen because it uses different alg + let mut buf = [0u32; 32]; // Needs to be a multiple of the RNGs result + // size to test exactly. + reseeding.fill(&mut buf); + let seq = buf; + for _ in 0..10 { + reseeding.fill(&mut buf); + assert_eq!(buf, seq); + } + } + + #[test] + fn test_clone_reseeding() { + let mut zero = StepRng::new(0, 0); + let rng = ChaChaCore::from_rng(&mut zero).unwrap(); + let mut rng1 = ReseedingRng::new(rng, 32*4, zero); + + let first: u32 = rng1.gen(); + for _ in 0..10 { let _ = rng1.gen::<u32>(); } + + let mut rng2 = rng1.clone(); + assert_eq!(first, rng2.gen::<u32>()); + } +} |