summaryrefslogtreecommitdiff
path: root/rand/src/lib.rs
diff options
context:
space:
mode:
Diffstat (limited to 'rand/src/lib.rs')
-rw-r--r--rand/src/lib.rs720
1 files changed, 0 insertions, 720 deletions
diff --git a/rand/src/lib.rs b/rand/src/lib.rs
deleted file mode 100644
index b4167c3..0000000
--- a/rand/src/lib.rs
+++ /dev/null
@@ -1,720 +0,0 @@
-// Copyright 2018 Developers of the Rand project.
-// Copyright 2013-2017 The Rust Project Developers.
-//
-// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
-// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
-// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
-// option. This file may not be copied, modified, or distributed
-// except according to those terms.
-
-//! Utilities for random number generation
-//!
-//! Rand provides utilities to generate random numbers, to convert them to
-//! useful types and distributions, and some randomness-related algorithms.
-//!
-//! # Quick Start
-//!
-//! To get you started quickly, the easiest and highest-level way to get
-//! a random value is to use [`random()`]; alternatively you can use
-//! [`thread_rng()`]. The [`Rng`] trait provides a useful API on all RNGs, while
-//! the [`distributions`] and [`seq`] modules provide further
-//! functionality on top of RNGs.
-//!
-//! ```
-//! use rand::prelude::*;
-//!
-//! if rand::random() { // generates a boolean
-//! // Try printing a random unicode code point (probably a bad idea)!
-//! println!("char: {}", rand::random::<char>());
-//! }
-//!
-//! let mut rng = rand::thread_rng();
-//! let y: f64 = rng.gen(); // generates a float between 0 and 1
-//!
-//! let mut nums: Vec<i32> = (1..100).collect();
-//! nums.shuffle(&mut rng);
-//! ```
-//!
-//! # The Book
-//!
-//! For the user guide and futher documentation, please read
-//! [The Rust Rand Book](https://rust-random.github.io/book).
-
-
-#![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk.png",
- html_favicon_url = "https://www.rust-lang.org/favicon.ico",
- html_root_url = "https://rust-random.github.io/rand/")]
-
-#![deny(missing_docs)]
-#![deny(missing_debug_implementations)]
-#![doc(test(attr(allow(unused_variables), deny(warnings))))]
-
-#![cfg_attr(not(feature="std"), no_std)]
-#![cfg_attr(all(feature="simd_support", feature="nightly"), feature(stdsimd))]
-
-#![allow(clippy::excessive_precision, clippy::unreadable_literal, clippy::float_cmp)]
-
-#[cfg(all(feature="alloc", not(feature="std")))]
-extern crate alloc;
-
-#[cfg(feature = "getrandom")]
-use getrandom_package as getrandom;
-
-#[allow(unused)]
-macro_rules! trace { ($($x:tt)*) => (
- #[cfg(feature = "log")] {
- log::trace!($($x)*)
- }
-) }
-#[allow(unused)]
-macro_rules! debug { ($($x:tt)*) => (
- #[cfg(feature = "log")] {
- log::debug!($($x)*)
- }
-) }
-#[allow(unused)]
-macro_rules! info { ($($x:tt)*) => (
- #[cfg(feature = "log")] {
- log::info!($($x)*)
- }
-) }
-#[allow(unused)]
-macro_rules! warn { ($($x:tt)*) => (
- #[cfg(feature = "log")] {
- log::warn!($($x)*)
- }
-) }
-#[allow(unused)]
-macro_rules! error { ($($x:tt)*) => (
- #[cfg(feature = "log")] {
- log::error!($($x)*)
- }
-) }
-
-// Re-exports from rand_core
-pub use rand_core::{RngCore, CryptoRng, SeedableRng, Error};
-
-// Public exports
-#[cfg(feature="std")] pub use crate::rngs::thread::thread_rng;
-
-// Public modules
-pub mod distributions;
-pub mod prelude;
-pub mod rngs;
-pub mod seq;
-
-
-use core::{mem, slice};
-use core::num::Wrapping;
-use crate::distributions::{Distribution, Standard};
-use crate::distributions::uniform::{SampleUniform, UniformSampler, SampleBorrow};
-
-/// An automatically-implemented extension trait on [`RngCore`] providing high-level
-/// generic methods for sampling values and other convenience methods.
-///
-/// This is the primary trait to use when generating random values.
-///
-/// # Generic usage
-///
-/// The basic pattern is `fn foo<R: Rng + ?Sized>(rng: &mut R)`. Some
-/// things are worth noting here:
-///
-/// - Since `Rng: RngCore` and every `RngCore` implements `Rng`, it makes no
-/// difference whether we use `R: Rng` or `R: RngCore`.
-/// - The `+ ?Sized` un-bounding allows functions to be called directly on
-/// type-erased references; i.e. `foo(r)` where `r: &mut RngCore`. Without
-/// this it would be necessary to write `foo(&mut r)`.
-///
-/// An alternative pattern is possible: `fn foo<R: Rng>(rng: R)`. This has some
-/// trade-offs. It allows the argument to be consumed directly without a `&mut`
-/// (which is how `from_rng(thread_rng())` works); also it still works directly
-/// on references (including type-erased references). Unfortunately within the
-/// function `foo` it is not known whether `rng` is a reference type or not,
-/// hence many uses of `rng` require an extra reference, either explicitly
-/// (`distr.sample(&mut rng)`) or implicitly (`rng.gen()`); one may hope the
-/// optimiser can remove redundant references later.
-///
-/// Example:
-///
-/// ```
-/// # use rand::thread_rng;
-/// use rand::Rng;
-///
-/// fn foo<R: Rng + ?Sized>(rng: &mut R) -> f32 {
-/// rng.gen()
-/// }
-///
-/// # let v = foo(&mut thread_rng());
-/// ```
-pub trait Rng: RngCore {
- /// Return a random value supporting the [`Standard`] distribution.
- ///
- /// # Example
- ///
- /// ```
- /// use rand::{thread_rng, Rng};
- ///
- /// let mut rng = thread_rng();
- /// let x: u32 = rng.gen();
- /// println!("{}", x);
- /// println!("{:?}", rng.gen::<(f64, bool)>());
- /// ```
- ///
- /// # Arrays and tuples
- ///
- /// The `rng.gen()` method is able to generate arrays (up to 32 elements)
- /// and tuples (up to 12 elements), so long as all element types can be
- /// generated.
- ///
- /// For arrays of integers, especially for those with small element types
- /// (< 64 bit), it will likely be faster to instead use [`Rng::fill`].
- ///
- /// ```
- /// use rand::{thread_rng, Rng};
- ///
- /// let mut rng = thread_rng();
- /// let tuple: (u8, i32, char) = rng.gen(); // arbitrary tuple support
- ///
- /// let arr1: [f32; 32] = rng.gen(); // array construction
- /// let mut arr2 = [0u8; 128];
- /// rng.fill(&mut arr2); // array fill
- /// ```
- ///
- /// [`Standard`]: distributions::Standard
- #[inline]
- fn gen<T>(&mut self) -> T
- where Standard: Distribution<T> {
- Standard.sample(self)
- }
-
- /// Generate a random value in the range [`low`, `high`), i.e. inclusive of
- /// `low` and exclusive of `high`.
- ///
- /// This function is optimised for the case that only a single sample is
- /// made from the given range. See also the [`Uniform`] distribution
- /// type which may be faster if sampling from the same range repeatedly.
- ///
- /// # Panics
- ///
- /// Panics if `low >= high`.
- ///
- /// # Example
- ///
- /// ```
- /// use rand::{thread_rng, Rng};
- ///
- /// let mut rng = thread_rng();
- /// let n: u32 = rng.gen_range(0, 10);
- /// println!("{}", n);
- /// let m: f64 = rng.gen_range(-40.0f64, 1.3e5f64);
- /// println!("{}", m);
- /// ```
- ///
- /// [`Uniform`]: distributions::uniform::Uniform
- fn gen_range<T: SampleUniform, B1, B2>(&mut self, low: B1, high: B2) -> T
- where
- B1: SampleBorrow<T> + Sized,
- B2: SampleBorrow<T> + Sized,
- {
- T::Sampler::sample_single(low, high, self)
- }
-
- /// Sample a new value, using the given distribution.
- ///
- /// ### Example
- ///
- /// ```
- /// use rand::{thread_rng, Rng};
- /// use rand::distributions::Uniform;
- ///
- /// let mut rng = thread_rng();
- /// let x = rng.sample(Uniform::new(10u32, 15));
- /// // Type annotation requires two types, the type and distribution; the
- /// // distribution can be inferred.
- /// let y = rng.sample::<u16, _>(Uniform::new(10, 15));
- /// ```
- fn sample<T, D: Distribution<T>>(&mut self, distr: D) -> T {
- distr.sample(self)
- }
-
- /// Create an iterator that generates values using the given distribution.
- ///
- /// Note that this function takes its arguments by value. This works since
- /// `(&mut R): Rng where R: Rng` and
- /// `(&D): Distribution where D: Distribution`,
- /// however borrowing is not automatic hence `rng.sample_iter(...)` may
- /// need to be replaced with `(&mut rng).sample_iter(...)`.
- ///
- /// # Example
- ///
- /// ```
- /// use rand::{thread_rng, Rng};
- /// use rand::distributions::{Alphanumeric, Uniform, Standard};
- ///
- /// let rng = thread_rng();
- ///
- /// // Vec of 16 x f32:
- /// let v: Vec<f32> = rng.sample_iter(Standard).take(16).collect();
- ///
- /// // String:
- /// let s: String = rng.sample_iter(Alphanumeric).take(7).collect();
- ///
- /// // Combined values
- /// println!("{:?}", rng.sample_iter(Standard).take(5)
- /// .collect::<Vec<(f64, bool)>>());
- ///
- /// // Dice-rolling:
- /// let die_range = Uniform::new_inclusive(1, 6);
- /// let mut roll_die = rng.sample_iter(die_range);
- /// while roll_die.next().unwrap() != 6 {
- /// println!("Not a 6; rolling again!");
- /// }
- /// ```
- fn sample_iter<T, D>(self, distr: D) -> distributions::DistIter<D, Self, T>
- where D: Distribution<T>, Self: Sized {
- distr.sample_iter(self)
- }
-
- /// Fill `dest` entirely with random bytes (uniform value distribution),
- /// where `dest` is any type supporting [`AsByteSliceMut`], namely slices
- /// and arrays over primitive integer types (`i8`, `i16`, `u32`, etc.).
- ///
- /// On big-endian platforms this performs byte-swapping to ensure
- /// portability of results from reproducible generators.
- ///
- /// This uses [`fill_bytes`] internally which may handle some RNG errors
- /// implicitly (e.g. waiting if the OS generator is not ready), but panics
- /// on other errors. See also [`try_fill`] which returns errors.
- ///
- /// # Example
- ///
- /// ```
- /// use rand::{thread_rng, Rng};
- ///
- /// let mut arr = [0i8; 20];
- /// thread_rng().fill(&mut arr[..]);
- /// ```
- ///
- /// [`fill_bytes`]: RngCore::fill_bytes
- /// [`try_fill`]: Rng::try_fill
- fn fill<T: AsByteSliceMut + ?Sized>(&mut self, dest: &mut T) {
- self.fill_bytes(dest.as_byte_slice_mut());
- dest.to_le();
- }
-
- /// Fill `dest` entirely with random bytes (uniform value distribution),
- /// where `dest` is any type supporting [`AsByteSliceMut`], namely slices
- /// and arrays over primitive integer types (`i8`, `i16`, `u32`, etc.).
- ///
- /// On big-endian platforms this performs byte-swapping to ensure
- /// portability of results from reproducible generators.
- ///
- /// This is identical to [`fill`] except that it uses [`try_fill_bytes`]
- /// internally and forwards RNG errors.
- ///
- /// # Example
- ///
- /// ```
- /// # use rand::Error;
- /// use rand::{thread_rng, Rng};
- ///
- /// # fn try_inner() -> Result<(), Error> {
- /// let mut arr = [0u64; 4];
- /// thread_rng().try_fill(&mut arr[..])?;
- /// # Ok(())
- /// # }
- ///
- /// # try_inner().unwrap()
- /// ```
- ///
- /// [`try_fill_bytes`]: RngCore::try_fill_bytes
- /// [`fill`]: Rng::fill
- fn try_fill<T: AsByteSliceMut + ?Sized>(&mut self, dest: &mut T) -> Result<(), Error> {
- self.try_fill_bytes(dest.as_byte_slice_mut())?;
- dest.to_le();
- Ok(())
- }
-
- /// Return a bool with a probability `p` of being true.
- ///
- /// See also the [`Bernoulli`] distribution, which may be faster if
- /// sampling from the same probability repeatedly.
- ///
- /// # Example
- ///
- /// ```
- /// use rand::{thread_rng, Rng};
- ///
- /// let mut rng = thread_rng();
- /// println!("{}", rng.gen_bool(1.0 / 3.0));
- /// ```
- ///
- /// # Panics
- ///
- /// If `p < 0` or `p > 1`.
- ///
- /// [`Bernoulli`]: distributions::bernoulli::Bernoulli
- #[inline]
- fn gen_bool(&mut self, p: f64) -> bool {
- let d = distributions::Bernoulli::new(p).unwrap();
- self.sample(d)
- }
-
- /// Return a bool with a probability of `numerator/denominator` of being
- /// true. I.e. `gen_ratio(2, 3)` has chance of 2 in 3, or about 67%, of
- /// returning true. If `numerator == denominator`, then the returned value
- /// is guaranteed to be `true`. If `numerator == 0`, then the returned
- /// value is guaranteed to be `false`.
- ///
- /// See also the [`Bernoulli`] distribution, which may be faster if
- /// sampling from the same `numerator` and `denominator` repeatedly.
- ///
- /// # Panics
- ///
- /// If `denominator == 0` or `numerator > denominator`.
- ///
- /// # Example
- ///
- /// ```
- /// use rand::{thread_rng, Rng};
- ///
- /// let mut rng = thread_rng();
- /// println!("{}", rng.gen_ratio(2, 3));
- /// ```
- ///
- /// [`Bernoulli`]: distributions::bernoulli::Bernoulli
- #[inline]
- fn gen_ratio(&mut self, numerator: u32, denominator: u32) -> bool {
- let d = distributions::Bernoulli::from_ratio(numerator, denominator).unwrap();
- self.sample(d)
- }
-}
-
-impl<R: RngCore + ?Sized> Rng for R {}
-
-/// Trait for casting types to byte slices
-///
-/// This is used by the [`Rng::fill`] and [`Rng::try_fill`] methods.
-pub trait AsByteSliceMut {
- /// Return a mutable reference to self as a byte slice
- fn as_byte_slice_mut(&mut self) -> &mut [u8];
-
- /// Call `to_le` on each element (i.e. byte-swap on Big Endian platforms).
- fn to_le(&mut self);
-}
-
-impl AsByteSliceMut for [u8] {
- fn as_byte_slice_mut(&mut self) -> &mut [u8] {
- self
- }
-
- fn to_le(&mut self) {}
-}
-
-macro_rules! impl_as_byte_slice {
- () => {};
- ($t:ty) => {
- impl AsByteSliceMut for [$t] {
- fn as_byte_slice_mut(&mut self) -> &mut [u8] {
- if self.len() == 0 {
- unsafe {
- // must not use null pointer
- slice::from_raw_parts_mut(0x1 as *mut u8, 0)
- }
- } else {
- unsafe {
- slice::from_raw_parts_mut(self.as_mut_ptr()
- as *mut u8,
- self.len() * mem::size_of::<$t>()
- )
- }
- }
- }
-
- fn to_le(&mut self) {
- for x in self {
- *x = x.to_le();
- }
- }
- }
-
- impl AsByteSliceMut for [Wrapping<$t>] {
- fn as_byte_slice_mut(&mut self) -> &mut [u8] {
- if self.len() == 0 {
- unsafe {
- // must not use null pointer
- slice::from_raw_parts_mut(0x1 as *mut u8, 0)
- }
- } else {
- unsafe {
- slice::from_raw_parts_mut(self.as_mut_ptr()
- as *mut u8,
- self.len() * mem::size_of::<$t>()
- )
- }
- }
- }
-
- fn to_le(&mut self) {
- for x in self {
- *x = Wrapping(x.0.to_le());
- }
- }
- }
- };
- ($t:ty, $($tt:ty,)*) => {
- impl_as_byte_slice!($t);
- // TODO: this could replace above impl once Rust #32463 is fixed
- // impl_as_byte_slice!(Wrapping<$t>);
- impl_as_byte_slice!($($tt,)*);
- }
-}
-
-impl_as_byte_slice!(u16, u32, u64, usize,);
-#[cfg(not(target_os = "emscripten"))] impl_as_byte_slice!(u128);
-impl_as_byte_slice!(i8, i16, i32, i64, isize,);
-#[cfg(not(target_os = "emscripten"))] impl_as_byte_slice!(i128);
-
-macro_rules! impl_as_byte_slice_arrays {
- ($n:expr,) => {};
- ($n:expr, $N:ident) => {
- impl<T> AsByteSliceMut for [T; $n] where [T]: AsByteSliceMut {
- fn as_byte_slice_mut(&mut self) -> &mut [u8] {
- self[..].as_byte_slice_mut()
- }
-
- fn to_le(&mut self) {
- self[..].to_le()
- }
- }
- };
- ($n:expr, $N:ident, $($NN:ident,)*) => {
- impl_as_byte_slice_arrays!($n, $N);
- impl_as_byte_slice_arrays!($n - 1, $($NN,)*);
- };
- (!div $n:expr,) => {};
- (!div $n:expr, $N:ident, $($NN:ident,)*) => {
- impl_as_byte_slice_arrays!($n, $N);
- impl_as_byte_slice_arrays!(!div $n / 2, $($NN,)*);
- };
-}
-impl_as_byte_slice_arrays!(32, N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,);
-impl_as_byte_slice_arrays!(!div 4096, N,N,N,N,N,N,N,);
-
-/// Generates a random value using the thread-local random number generator.
-///
-/// This is simply a shortcut for `thread_rng().gen()`. See [`thread_rng`] for
-/// documentation of the entropy source and [`Standard`] for documentation of
-/// distributions and type-specific generation.
-///
-/// # Examples
-///
-/// ```
-/// let x = rand::random::<u8>();
-/// println!("{}", x);
-///
-/// let y = rand::random::<f64>();
-/// println!("{}", y);
-///
-/// if rand::random() { // generates a boolean
-/// println!("Better lucky than good!");
-/// }
-/// ```
-///
-/// If you're calling `random()` in a loop, caching the generator as in the
-/// following example can increase performance.
-///
-/// ```
-/// use rand::Rng;
-///
-/// let mut v = vec![1, 2, 3];
-///
-/// for x in v.iter_mut() {
-/// *x = rand::random()
-/// }
-///
-/// // can be made faster by caching thread_rng
-///
-/// let mut rng = rand::thread_rng();
-///
-/// for x in v.iter_mut() {
-/// *x = rng.gen();
-/// }
-/// ```
-///
-/// [`Standard`]: distributions::Standard
-#[cfg(feature="std")]
-#[inline]
-pub fn random<T>() -> T
-where Standard: Distribution<T> {
- thread_rng().gen()
-}
-
-#[cfg(test)]
-mod test {
- use crate::rngs::mock::StepRng;
- use super::*;
- #[cfg(all(not(feature="std"), feature="alloc"))] use alloc::boxed::Box;
-
- /// Construct a deterministic RNG with the given seed
- pub fn rng(seed: u64) -> impl RngCore {
- // For tests, we want a statistically good, fast, reproducible RNG.
- // PCG32 will do fine, and will be easy to embed if we ever need to.
- const INC: u64 = 11634580027462260723;
- rand_pcg::Pcg32::new(seed, INC)
- }
-
- #[test]
- fn test_fill_bytes_default() {
- let mut r = StepRng::new(0x11_22_33_44_55_66_77_88, 0);
-
- // check every remainder mod 8, both in small and big vectors.
- let lengths = [0, 1, 2, 3, 4, 5, 6, 7,
- 80, 81, 82, 83, 84, 85, 86, 87];
- for &n in lengths.iter() {
- let mut buffer = [0u8; 87];
- let v = &mut buffer[0..n];
- r.fill_bytes(v);
-
- // use this to get nicer error messages.
- for (i, &byte) in v.iter().enumerate() {
- if byte == 0 {
- panic!("byte {} of {} is zero", i, n)
- }
- }
- }
- }
-
- #[test]
- fn test_fill() {
- let x = 9041086907909331047; // a random u64
- let mut rng = StepRng::new(x, 0);
-
- // Convert to byte sequence and back to u64; byte-swap twice if BE.
- let mut array = [0u64; 2];
- rng.fill(&mut array[..]);
- assert_eq!(array, [x, x]);
- assert_eq!(rng.next_u64(), x);
-
- // Convert to bytes then u32 in LE order
- let mut array = [0u32; 2];
- rng.fill(&mut array[..]);
- assert_eq!(array, [x as u32, (x >> 32) as u32]);
- assert_eq!(rng.next_u32(), x as u32);
-
- // Check equivalence using wrapped arrays
- let mut warray = [Wrapping(0u32); 2];
- rng.fill(&mut warray[..]);
- assert_eq!(array[0], warray[0].0);
- assert_eq!(array[1], warray[1].0);
- }
-
- #[test]
- fn test_fill_empty() {
- let mut array = [0u32; 0];
- let mut rng = StepRng::new(0, 1);
- rng.fill(&mut array);
- rng.fill(&mut array[..]);
- }
-
- #[test]
- fn test_gen_range() {
- let mut r = rng(101);
- for _ in 0..1000 {
- let a = r.gen_range(-4711, 17);
- assert!(a >= -4711 && a < 17);
- let a = r.gen_range(-3i8, 42);
- assert!(a >= -3i8 && a < 42i8);
- let a = r.gen_range(&10u16, 99);
- assert!(a >= 10u16 && a < 99u16);
- let a = r.gen_range(-100i32, &2000);
- assert!(a >= -100i32 && a < 2000i32);
- let a = r.gen_range(&12u32, &24u32);
- assert!(a >= 12u32 && a < 24u32);
-
- assert_eq!(r.gen_range(0u32, 1), 0u32);
- assert_eq!(r.gen_range(-12i64, -11), -12i64);
- assert_eq!(r.gen_range(3_000_000, 3_000_001), 3_000_000);
- }
- }
-
- #[test]
- #[should_panic]
- fn test_gen_range_panic_int() {
- let mut r = rng(102);
- r.gen_range(5, -2);
- }
-
- #[test]
- #[should_panic]
- fn test_gen_range_panic_usize() {
- let mut r = rng(103);
- r.gen_range(5, 2);
- }
-
- #[test]
- fn test_gen_bool() {
- let mut r = rng(105);
- for _ in 0..5 {
- assert_eq!(r.gen_bool(0.0), false);
- assert_eq!(r.gen_bool(1.0), true);
- }
- }
-
- #[test]
- fn test_rng_trait_object() {
- use crate::distributions::{Distribution, Standard};
- let mut rng = rng(109);
- let mut r = &mut rng as &mut dyn RngCore;
- r.next_u32();
- r.gen::<i32>();
- assert_eq!(r.gen_range(0, 1), 0);
- let _c: u8 = Standard.sample(&mut r);
- }
-
- #[test]
- #[cfg(feature="alloc")]
- fn test_rng_boxed_trait() {
- use crate::distributions::{Distribution, Standard};
- let rng = rng(110);
- let mut r = Box::new(rng) as Box<dyn RngCore>;
- r.next_u32();
- r.gen::<i32>();
- assert_eq!(r.gen_range(0, 1), 0);
- let _c: u8 = Standard.sample(&mut r);
- }
-
- #[test]
- #[cfg(feature="std")]
- fn test_random() {
- // not sure how to test this aside from just getting some values
- let _n : usize = random();
- let _f : f32 = random();
- let _o : Option<Option<i8>> = random();
- let _many : ((),
- (usize,
- isize,
- Option<(u32, (bool,))>),
- (u8, i8, u16, i16, u32, i32, u64, i64),
- (f32, (f64, (f64,)))) = random();
- }
-
- #[test]
- #[cfg(not(miri))] // Miri is too slow
- fn test_gen_ratio_average() {
- const NUM: u32 = 3;
- const DENOM: u32 = 10;
- const N: u32 = 100_000;
-
- let mut sum: u32 = 0;
- let mut rng = rng(111);
- for _ in 0..N {
- if rng.gen_ratio(NUM, DENOM) {
- sum += 1;
- }
- }
- // Have Binomial(N, NUM/DENOM) distribution
- let expected = (NUM * N) / DENOM; // exact integer
- assert!(((sum - expected) as i32).abs() < 500);
- }
-}