diff options
Diffstat (limited to 'rand/src/lib.rs')
-rw-r--r-- | rand/src/lib.rs | 720 |
1 files changed, 0 insertions, 720 deletions
diff --git a/rand/src/lib.rs b/rand/src/lib.rs deleted file mode 100644 index b4167c3..0000000 --- a/rand/src/lib.rs +++ /dev/null @@ -1,720 +0,0 @@ -// Copyright 2018 Developers of the Rand project. -// Copyright 2013-2017 The Rust Project Developers. -// -// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or -// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license -// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your -// option. This file may not be copied, modified, or distributed -// except according to those terms. - -//! Utilities for random number generation -//! -//! Rand provides utilities to generate random numbers, to convert them to -//! useful types and distributions, and some randomness-related algorithms. -//! -//! # Quick Start -//! -//! To get you started quickly, the easiest and highest-level way to get -//! a random value is to use [`random()`]; alternatively you can use -//! [`thread_rng()`]. The [`Rng`] trait provides a useful API on all RNGs, while -//! the [`distributions`] and [`seq`] modules provide further -//! functionality on top of RNGs. -//! -//! ``` -//! use rand::prelude::*; -//! -//! if rand::random() { // generates a boolean -//! // Try printing a random unicode code point (probably a bad idea)! -//! println!("char: {}", rand::random::<char>()); -//! } -//! -//! let mut rng = rand::thread_rng(); -//! let y: f64 = rng.gen(); // generates a float between 0 and 1 -//! -//! let mut nums: Vec<i32> = (1..100).collect(); -//! nums.shuffle(&mut rng); -//! ``` -//! -//! # The Book -//! -//! For the user guide and futher documentation, please read -//! [The Rust Rand Book](https://rust-random.github.io/book). - - -#![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk.png", - html_favicon_url = "https://www.rust-lang.org/favicon.ico", - html_root_url = "https://rust-random.github.io/rand/")] - -#![deny(missing_docs)] -#![deny(missing_debug_implementations)] -#![doc(test(attr(allow(unused_variables), deny(warnings))))] - -#![cfg_attr(not(feature="std"), no_std)] -#![cfg_attr(all(feature="simd_support", feature="nightly"), feature(stdsimd))] - -#![allow(clippy::excessive_precision, clippy::unreadable_literal, clippy::float_cmp)] - -#[cfg(all(feature="alloc", not(feature="std")))] -extern crate alloc; - -#[cfg(feature = "getrandom")] -use getrandom_package as getrandom; - -#[allow(unused)] -macro_rules! trace { ($($x:tt)*) => ( - #[cfg(feature = "log")] { - log::trace!($($x)*) - } -) } -#[allow(unused)] -macro_rules! debug { ($($x:tt)*) => ( - #[cfg(feature = "log")] { - log::debug!($($x)*) - } -) } -#[allow(unused)] -macro_rules! info { ($($x:tt)*) => ( - #[cfg(feature = "log")] { - log::info!($($x)*) - } -) } -#[allow(unused)] -macro_rules! warn { ($($x:tt)*) => ( - #[cfg(feature = "log")] { - log::warn!($($x)*) - } -) } -#[allow(unused)] -macro_rules! error { ($($x:tt)*) => ( - #[cfg(feature = "log")] { - log::error!($($x)*) - } -) } - -// Re-exports from rand_core -pub use rand_core::{RngCore, CryptoRng, SeedableRng, Error}; - -// Public exports -#[cfg(feature="std")] pub use crate::rngs::thread::thread_rng; - -// Public modules -pub mod distributions; -pub mod prelude; -pub mod rngs; -pub mod seq; - - -use core::{mem, slice}; -use core::num::Wrapping; -use crate::distributions::{Distribution, Standard}; -use crate::distributions::uniform::{SampleUniform, UniformSampler, SampleBorrow}; - -/// An automatically-implemented extension trait on [`RngCore`] providing high-level -/// generic methods for sampling values and other convenience methods. -/// -/// This is the primary trait to use when generating random values. -/// -/// # Generic usage -/// -/// The basic pattern is `fn foo<R: Rng + ?Sized>(rng: &mut R)`. Some -/// things are worth noting here: -/// -/// - Since `Rng: RngCore` and every `RngCore` implements `Rng`, it makes no -/// difference whether we use `R: Rng` or `R: RngCore`. -/// - The `+ ?Sized` un-bounding allows functions to be called directly on -/// type-erased references; i.e. `foo(r)` where `r: &mut RngCore`. Without -/// this it would be necessary to write `foo(&mut r)`. -/// -/// An alternative pattern is possible: `fn foo<R: Rng>(rng: R)`. This has some -/// trade-offs. It allows the argument to be consumed directly without a `&mut` -/// (which is how `from_rng(thread_rng())` works); also it still works directly -/// on references (including type-erased references). Unfortunately within the -/// function `foo` it is not known whether `rng` is a reference type or not, -/// hence many uses of `rng` require an extra reference, either explicitly -/// (`distr.sample(&mut rng)`) or implicitly (`rng.gen()`); one may hope the -/// optimiser can remove redundant references later. -/// -/// Example: -/// -/// ``` -/// # use rand::thread_rng; -/// use rand::Rng; -/// -/// fn foo<R: Rng + ?Sized>(rng: &mut R) -> f32 { -/// rng.gen() -/// } -/// -/// # let v = foo(&mut thread_rng()); -/// ``` -pub trait Rng: RngCore { - /// Return a random value supporting the [`Standard`] distribution. - /// - /// # Example - /// - /// ``` - /// use rand::{thread_rng, Rng}; - /// - /// let mut rng = thread_rng(); - /// let x: u32 = rng.gen(); - /// println!("{}", x); - /// println!("{:?}", rng.gen::<(f64, bool)>()); - /// ``` - /// - /// # Arrays and tuples - /// - /// The `rng.gen()` method is able to generate arrays (up to 32 elements) - /// and tuples (up to 12 elements), so long as all element types can be - /// generated. - /// - /// For arrays of integers, especially for those with small element types - /// (< 64 bit), it will likely be faster to instead use [`Rng::fill`]. - /// - /// ``` - /// use rand::{thread_rng, Rng}; - /// - /// let mut rng = thread_rng(); - /// let tuple: (u8, i32, char) = rng.gen(); // arbitrary tuple support - /// - /// let arr1: [f32; 32] = rng.gen(); // array construction - /// let mut arr2 = [0u8; 128]; - /// rng.fill(&mut arr2); // array fill - /// ``` - /// - /// [`Standard`]: distributions::Standard - #[inline] - fn gen<T>(&mut self) -> T - where Standard: Distribution<T> { - Standard.sample(self) - } - - /// Generate a random value in the range [`low`, `high`), i.e. inclusive of - /// `low` and exclusive of `high`. - /// - /// This function is optimised for the case that only a single sample is - /// made from the given range. See also the [`Uniform`] distribution - /// type which may be faster if sampling from the same range repeatedly. - /// - /// # Panics - /// - /// Panics if `low >= high`. - /// - /// # Example - /// - /// ``` - /// use rand::{thread_rng, Rng}; - /// - /// let mut rng = thread_rng(); - /// let n: u32 = rng.gen_range(0, 10); - /// println!("{}", n); - /// let m: f64 = rng.gen_range(-40.0f64, 1.3e5f64); - /// println!("{}", m); - /// ``` - /// - /// [`Uniform`]: distributions::uniform::Uniform - fn gen_range<T: SampleUniform, B1, B2>(&mut self, low: B1, high: B2) -> T - where - B1: SampleBorrow<T> + Sized, - B2: SampleBorrow<T> + Sized, - { - T::Sampler::sample_single(low, high, self) - } - - /// Sample a new value, using the given distribution. - /// - /// ### Example - /// - /// ``` - /// use rand::{thread_rng, Rng}; - /// use rand::distributions::Uniform; - /// - /// let mut rng = thread_rng(); - /// let x = rng.sample(Uniform::new(10u32, 15)); - /// // Type annotation requires two types, the type and distribution; the - /// // distribution can be inferred. - /// let y = rng.sample::<u16, _>(Uniform::new(10, 15)); - /// ``` - fn sample<T, D: Distribution<T>>(&mut self, distr: D) -> T { - distr.sample(self) - } - - /// Create an iterator that generates values using the given distribution. - /// - /// Note that this function takes its arguments by value. This works since - /// `(&mut R): Rng where R: Rng` and - /// `(&D): Distribution where D: Distribution`, - /// however borrowing is not automatic hence `rng.sample_iter(...)` may - /// need to be replaced with `(&mut rng).sample_iter(...)`. - /// - /// # Example - /// - /// ``` - /// use rand::{thread_rng, Rng}; - /// use rand::distributions::{Alphanumeric, Uniform, Standard}; - /// - /// let rng = thread_rng(); - /// - /// // Vec of 16 x f32: - /// let v: Vec<f32> = rng.sample_iter(Standard).take(16).collect(); - /// - /// // String: - /// let s: String = rng.sample_iter(Alphanumeric).take(7).collect(); - /// - /// // Combined values - /// println!("{:?}", rng.sample_iter(Standard).take(5) - /// .collect::<Vec<(f64, bool)>>()); - /// - /// // Dice-rolling: - /// let die_range = Uniform::new_inclusive(1, 6); - /// let mut roll_die = rng.sample_iter(die_range); - /// while roll_die.next().unwrap() != 6 { - /// println!("Not a 6; rolling again!"); - /// } - /// ``` - fn sample_iter<T, D>(self, distr: D) -> distributions::DistIter<D, Self, T> - where D: Distribution<T>, Self: Sized { - distr.sample_iter(self) - } - - /// Fill `dest` entirely with random bytes (uniform value distribution), - /// where `dest` is any type supporting [`AsByteSliceMut`], namely slices - /// and arrays over primitive integer types (`i8`, `i16`, `u32`, etc.). - /// - /// On big-endian platforms this performs byte-swapping to ensure - /// portability of results from reproducible generators. - /// - /// This uses [`fill_bytes`] internally which may handle some RNG errors - /// implicitly (e.g. waiting if the OS generator is not ready), but panics - /// on other errors. See also [`try_fill`] which returns errors. - /// - /// # Example - /// - /// ``` - /// use rand::{thread_rng, Rng}; - /// - /// let mut arr = [0i8; 20]; - /// thread_rng().fill(&mut arr[..]); - /// ``` - /// - /// [`fill_bytes`]: RngCore::fill_bytes - /// [`try_fill`]: Rng::try_fill - fn fill<T: AsByteSliceMut + ?Sized>(&mut self, dest: &mut T) { - self.fill_bytes(dest.as_byte_slice_mut()); - dest.to_le(); - } - - /// Fill `dest` entirely with random bytes (uniform value distribution), - /// where `dest` is any type supporting [`AsByteSliceMut`], namely slices - /// and arrays over primitive integer types (`i8`, `i16`, `u32`, etc.). - /// - /// On big-endian platforms this performs byte-swapping to ensure - /// portability of results from reproducible generators. - /// - /// This is identical to [`fill`] except that it uses [`try_fill_bytes`] - /// internally and forwards RNG errors. - /// - /// # Example - /// - /// ``` - /// # use rand::Error; - /// use rand::{thread_rng, Rng}; - /// - /// # fn try_inner() -> Result<(), Error> { - /// let mut arr = [0u64; 4]; - /// thread_rng().try_fill(&mut arr[..])?; - /// # Ok(()) - /// # } - /// - /// # try_inner().unwrap() - /// ``` - /// - /// [`try_fill_bytes`]: RngCore::try_fill_bytes - /// [`fill`]: Rng::fill - fn try_fill<T: AsByteSliceMut + ?Sized>(&mut self, dest: &mut T) -> Result<(), Error> { - self.try_fill_bytes(dest.as_byte_slice_mut())?; - dest.to_le(); - Ok(()) - } - - /// Return a bool with a probability `p` of being true. - /// - /// See also the [`Bernoulli`] distribution, which may be faster if - /// sampling from the same probability repeatedly. - /// - /// # Example - /// - /// ``` - /// use rand::{thread_rng, Rng}; - /// - /// let mut rng = thread_rng(); - /// println!("{}", rng.gen_bool(1.0 / 3.0)); - /// ``` - /// - /// # Panics - /// - /// If `p < 0` or `p > 1`. - /// - /// [`Bernoulli`]: distributions::bernoulli::Bernoulli - #[inline] - fn gen_bool(&mut self, p: f64) -> bool { - let d = distributions::Bernoulli::new(p).unwrap(); - self.sample(d) - } - - /// Return a bool with a probability of `numerator/denominator` of being - /// true. I.e. `gen_ratio(2, 3)` has chance of 2 in 3, or about 67%, of - /// returning true. If `numerator == denominator`, then the returned value - /// is guaranteed to be `true`. If `numerator == 0`, then the returned - /// value is guaranteed to be `false`. - /// - /// See also the [`Bernoulli`] distribution, which may be faster if - /// sampling from the same `numerator` and `denominator` repeatedly. - /// - /// # Panics - /// - /// If `denominator == 0` or `numerator > denominator`. - /// - /// # Example - /// - /// ``` - /// use rand::{thread_rng, Rng}; - /// - /// let mut rng = thread_rng(); - /// println!("{}", rng.gen_ratio(2, 3)); - /// ``` - /// - /// [`Bernoulli`]: distributions::bernoulli::Bernoulli - #[inline] - fn gen_ratio(&mut self, numerator: u32, denominator: u32) -> bool { - let d = distributions::Bernoulli::from_ratio(numerator, denominator).unwrap(); - self.sample(d) - } -} - -impl<R: RngCore + ?Sized> Rng for R {} - -/// Trait for casting types to byte slices -/// -/// This is used by the [`Rng::fill`] and [`Rng::try_fill`] methods. -pub trait AsByteSliceMut { - /// Return a mutable reference to self as a byte slice - fn as_byte_slice_mut(&mut self) -> &mut [u8]; - - /// Call `to_le` on each element (i.e. byte-swap on Big Endian platforms). - fn to_le(&mut self); -} - -impl AsByteSliceMut for [u8] { - fn as_byte_slice_mut(&mut self) -> &mut [u8] { - self - } - - fn to_le(&mut self) {} -} - -macro_rules! impl_as_byte_slice { - () => {}; - ($t:ty) => { - impl AsByteSliceMut for [$t] { - fn as_byte_slice_mut(&mut self) -> &mut [u8] { - if self.len() == 0 { - unsafe { - // must not use null pointer - slice::from_raw_parts_mut(0x1 as *mut u8, 0) - } - } else { - unsafe { - slice::from_raw_parts_mut(self.as_mut_ptr() - as *mut u8, - self.len() * mem::size_of::<$t>() - ) - } - } - } - - fn to_le(&mut self) { - for x in self { - *x = x.to_le(); - } - } - } - - impl AsByteSliceMut for [Wrapping<$t>] { - fn as_byte_slice_mut(&mut self) -> &mut [u8] { - if self.len() == 0 { - unsafe { - // must not use null pointer - slice::from_raw_parts_mut(0x1 as *mut u8, 0) - } - } else { - unsafe { - slice::from_raw_parts_mut(self.as_mut_ptr() - as *mut u8, - self.len() * mem::size_of::<$t>() - ) - } - } - } - - fn to_le(&mut self) { - for x in self { - *x = Wrapping(x.0.to_le()); - } - } - } - }; - ($t:ty, $($tt:ty,)*) => { - impl_as_byte_slice!($t); - // TODO: this could replace above impl once Rust #32463 is fixed - // impl_as_byte_slice!(Wrapping<$t>); - impl_as_byte_slice!($($tt,)*); - } -} - -impl_as_byte_slice!(u16, u32, u64, usize,); -#[cfg(not(target_os = "emscripten"))] impl_as_byte_slice!(u128); -impl_as_byte_slice!(i8, i16, i32, i64, isize,); -#[cfg(not(target_os = "emscripten"))] impl_as_byte_slice!(i128); - -macro_rules! impl_as_byte_slice_arrays { - ($n:expr,) => {}; - ($n:expr, $N:ident) => { - impl<T> AsByteSliceMut for [T; $n] where [T]: AsByteSliceMut { - fn as_byte_slice_mut(&mut self) -> &mut [u8] { - self[..].as_byte_slice_mut() - } - - fn to_le(&mut self) { - self[..].to_le() - } - } - }; - ($n:expr, $N:ident, $($NN:ident,)*) => { - impl_as_byte_slice_arrays!($n, $N); - impl_as_byte_slice_arrays!($n - 1, $($NN,)*); - }; - (!div $n:expr,) => {}; - (!div $n:expr, $N:ident, $($NN:ident,)*) => { - impl_as_byte_slice_arrays!($n, $N); - impl_as_byte_slice_arrays!(!div $n / 2, $($NN,)*); - }; -} -impl_as_byte_slice_arrays!(32, N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,); -impl_as_byte_slice_arrays!(!div 4096, N,N,N,N,N,N,N,); - -/// Generates a random value using the thread-local random number generator. -/// -/// This is simply a shortcut for `thread_rng().gen()`. See [`thread_rng`] for -/// documentation of the entropy source and [`Standard`] for documentation of -/// distributions and type-specific generation. -/// -/// # Examples -/// -/// ``` -/// let x = rand::random::<u8>(); -/// println!("{}", x); -/// -/// let y = rand::random::<f64>(); -/// println!("{}", y); -/// -/// if rand::random() { // generates a boolean -/// println!("Better lucky than good!"); -/// } -/// ``` -/// -/// If you're calling `random()` in a loop, caching the generator as in the -/// following example can increase performance. -/// -/// ``` -/// use rand::Rng; -/// -/// let mut v = vec![1, 2, 3]; -/// -/// for x in v.iter_mut() { -/// *x = rand::random() -/// } -/// -/// // can be made faster by caching thread_rng -/// -/// let mut rng = rand::thread_rng(); -/// -/// for x in v.iter_mut() { -/// *x = rng.gen(); -/// } -/// ``` -/// -/// [`Standard`]: distributions::Standard -#[cfg(feature="std")] -#[inline] -pub fn random<T>() -> T -where Standard: Distribution<T> { - thread_rng().gen() -} - -#[cfg(test)] -mod test { - use crate::rngs::mock::StepRng; - use super::*; - #[cfg(all(not(feature="std"), feature="alloc"))] use alloc::boxed::Box; - - /// Construct a deterministic RNG with the given seed - pub fn rng(seed: u64) -> impl RngCore { - // For tests, we want a statistically good, fast, reproducible RNG. - // PCG32 will do fine, and will be easy to embed if we ever need to. - const INC: u64 = 11634580027462260723; - rand_pcg::Pcg32::new(seed, INC) - } - - #[test] - fn test_fill_bytes_default() { - let mut r = StepRng::new(0x11_22_33_44_55_66_77_88, 0); - - // check every remainder mod 8, both in small and big vectors. - let lengths = [0, 1, 2, 3, 4, 5, 6, 7, - 80, 81, 82, 83, 84, 85, 86, 87]; - for &n in lengths.iter() { - let mut buffer = [0u8; 87]; - let v = &mut buffer[0..n]; - r.fill_bytes(v); - - // use this to get nicer error messages. - for (i, &byte) in v.iter().enumerate() { - if byte == 0 { - panic!("byte {} of {} is zero", i, n) - } - } - } - } - - #[test] - fn test_fill() { - let x = 9041086907909331047; // a random u64 - let mut rng = StepRng::new(x, 0); - - // Convert to byte sequence and back to u64; byte-swap twice if BE. - let mut array = [0u64; 2]; - rng.fill(&mut array[..]); - assert_eq!(array, [x, x]); - assert_eq!(rng.next_u64(), x); - - // Convert to bytes then u32 in LE order - let mut array = [0u32; 2]; - rng.fill(&mut array[..]); - assert_eq!(array, [x as u32, (x >> 32) as u32]); - assert_eq!(rng.next_u32(), x as u32); - - // Check equivalence using wrapped arrays - let mut warray = [Wrapping(0u32); 2]; - rng.fill(&mut warray[..]); - assert_eq!(array[0], warray[0].0); - assert_eq!(array[1], warray[1].0); - } - - #[test] - fn test_fill_empty() { - let mut array = [0u32; 0]; - let mut rng = StepRng::new(0, 1); - rng.fill(&mut array); - rng.fill(&mut array[..]); - } - - #[test] - fn test_gen_range() { - let mut r = rng(101); - for _ in 0..1000 { - let a = r.gen_range(-4711, 17); - assert!(a >= -4711 && a < 17); - let a = r.gen_range(-3i8, 42); - assert!(a >= -3i8 && a < 42i8); - let a = r.gen_range(&10u16, 99); - assert!(a >= 10u16 && a < 99u16); - let a = r.gen_range(-100i32, &2000); - assert!(a >= -100i32 && a < 2000i32); - let a = r.gen_range(&12u32, &24u32); - assert!(a >= 12u32 && a < 24u32); - - assert_eq!(r.gen_range(0u32, 1), 0u32); - assert_eq!(r.gen_range(-12i64, -11), -12i64); - assert_eq!(r.gen_range(3_000_000, 3_000_001), 3_000_000); - } - } - - #[test] - #[should_panic] - fn test_gen_range_panic_int() { - let mut r = rng(102); - r.gen_range(5, -2); - } - - #[test] - #[should_panic] - fn test_gen_range_panic_usize() { - let mut r = rng(103); - r.gen_range(5, 2); - } - - #[test] - fn test_gen_bool() { - let mut r = rng(105); - for _ in 0..5 { - assert_eq!(r.gen_bool(0.0), false); - assert_eq!(r.gen_bool(1.0), true); - } - } - - #[test] - fn test_rng_trait_object() { - use crate::distributions::{Distribution, Standard}; - let mut rng = rng(109); - let mut r = &mut rng as &mut dyn RngCore; - r.next_u32(); - r.gen::<i32>(); - assert_eq!(r.gen_range(0, 1), 0); - let _c: u8 = Standard.sample(&mut r); - } - - #[test] - #[cfg(feature="alloc")] - fn test_rng_boxed_trait() { - use crate::distributions::{Distribution, Standard}; - let rng = rng(110); - let mut r = Box::new(rng) as Box<dyn RngCore>; - r.next_u32(); - r.gen::<i32>(); - assert_eq!(r.gen_range(0, 1), 0); - let _c: u8 = Standard.sample(&mut r); - } - - #[test] - #[cfg(feature="std")] - fn test_random() { - // not sure how to test this aside from just getting some values - let _n : usize = random(); - let _f : f32 = random(); - let _o : Option<Option<i8>> = random(); - let _many : ((), - (usize, - isize, - Option<(u32, (bool,))>), - (u8, i8, u16, i16, u32, i32, u64, i64), - (f32, (f64, (f64,)))) = random(); - } - - #[test] - #[cfg(not(miri))] // Miri is too slow - fn test_gen_ratio_average() { - const NUM: u32 = 3; - const DENOM: u32 = 10; - const N: u32 = 100_000; - - let mut sum: u32 = 0; - let mut rng = rng(111); - for _ in 0..N { - if rng.gen_ratio(NUM, DENOM) { - sum += 1; - } - } - // Have Binomial(N, NUM/DENOM) distribution - let expected = (NUM * N) / DENOM; // exact integer - assert!(((sum - expected) as i32).abs() < 500); - } -} |