diff options
Diffstat (limited to 'rand/src/distributions/uniform.rs')
-rw-r--r-- | rand/src/distributions/uniform.rs | 1270 |
1 files changed, 0 insertions, 1270 deletions
diff --git a/rand/src/distributions/uniform.rs b/rand/src/distributions/uniform.rs deleted file mode 100644 index 8c90f4e..0000000 --- a/rand/src/distributions/uniform.rs +++ /dev/null @@ -1,1270 +0,0 @@ -// Copyright 2018 Developers of the Rand project. -// Copyright 2017 The Rust Project Developers. -// -// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or -// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license -// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your -// option. This file may not be copied, modified, or distributed -// except according to those terms. - -//! A distribution uniformly sampling numbers within a given range. -//! -//! [`Uniform`] is the standard distribution to sample uniformly from a range; -//! e.g. `Uniform::new_inclusive(1, 6)` can sample integers from 1 to 6, like a -//! standard die. [`Rng::gen_range`] supports any type supported by -//! [`Uniform`]. -//! -//! This distribution is provided with support for several primitive types -//! (all integer and floating-point types) as well as [`std::time::Duration`], -//! and supports extension to user-defined types via a type-specific *back-end* -//! implementation. -//! -//! The types [`UniformInt`], [`UniformFloat`] and [`UniformDuration`] are the -//! back-ends supporting sampling from primitive integer and floating-point -//! ranges as well as from [`std::time::Duration`]; these types do not normally -//! need to be used directly (unless implementing a derived back-end). -//! -//! # Example usage -//! -//! ``` -//! use rand::{Rng, thread_rng}; -//! use rand::distributions::Uniform; -//! -//! let mut rng = thread_rng(); -//! let side = Uniform::new(-10.0, 10.0); -//! -//! // sample between 1 and 10 points -//! for _ in 0..rng.gen_range(1, 11) { -//! // sample a point from the square with sides -10 - 10 in two dimensions -//! let (x, y) = (rng.sample(side), rng.sample(side)); -//! println!("Point: {}, {}", x, y); -//! } -//! ``` -//! -//! # Extending `Uniform` to support a custom type -//! -//! To extend [`Uniform`] to support your own types, write a back-end which -//! implements the [`UniformSampler`] trait, then implement the [`SampleUniform`] -//! helper trait to "register" your back-end. See the `MyF32` example below. -//! -//! At a minimum, the back-end needs to store any parameters needed for sampling -//! (e.g. the target range) and implement `new`, `new_inclusive` and `sample`. -//! Those methods should include an assert to check the range is valid (i.e. -//! `low < high`). The example below merely wraps another back-end. -//! -//! The `new`, `new_inclusive` and `sample_single` functions use arguments of -//! type SampleBorrow<X> in order to support passing in values by reference or -//! by value. In the implementation of these functions, you can choose to -//! simply use the reference returned by [`SampleBorrow::borrow`], or you can choose -//! to copy or clone the value, whatever is appropriate for your type. -//! -//! ``` -//! use rand::prelude::*; -//! use rand::distributions::uniform::{Uniform, SampleUniform, -//! UniformSampler, UniformFloat, SampleBorrow}; -//! -//! struct MyF32(f32); -//! -//! #[derive(Clone, Copy, Debug)] -//! struct UniformMyF32 { -//! inner: UniformFloat<f32>, -//! } -//! -//! impl UniformSampler for UniformMyF32 { -//! type X = MyF32; -//! fn new<B1, B2>(low: B1, high: B2) -> Self -//! where B1: SampleBorrow<Self::X> + Sized, -//! B2: SampleBorrow<Self::X> + Sized -//! { -//! UniformMyF32 { -//! inner: UniformFloat::<f32>::new(low.borrow().0, high.borrow().0), -//! } -//! } -//! fn new_inclusive<B1, B2>(low: B1, high: B2) -> Self -//! where B1: SampleBorrow<Self::X> + Sized, -//! B2: SampleBorrow<Self::X> + Sized -//! { -//! UniformSampler::new(low, high) -//! } -//! fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X { -//! MyF32(self.inner.sample(rng)) -//! } -//! } -//! -//! impl SampleUniform for MyF32 { -//! type Sampler = UniformMyF32; -//! } -//! -//! let (low, high) = (MyF32(17.0f32), MyF32(22.0f32)); -//! let uniform = Uniform::new(low, high); -//! let x = uniform.sample(&mut thread_rng()); -//! ``` -//! -//! [`SampleUniform`]: crate::distributions::uniform::SampleUniform -//! [`UniformSampler`]: crate::distributions::uniform::UniformSampler -//! [`UniformInt`]: crate::distributions::uniform::UniformInt -//! [`UniformFloat`]: crate::distributions::uniform::UniformFloat -//! [`UniformDuration`]: crate::distributions::uniform::UniformDuration -//! [`SampleBorrow::borrow`]: crate::distributions::uniform::SampleBorrow::borrow - -#[cfg(feature = "std")] -use std::time::Duration; -#[cfg(not(feature = "std"))] -use core::time::Duration; - -use crate::Rng; -use crate::distributions::Distribution; -use crate::distributions::float::IntoFloat; -use crate::distributions::utils::{WideningMultiply, FloatSIMDUtils, FloatAsSIMD, BoolAsSIMD}; - -#[cfg(not(feature = "std"))] -#[allow(unused_imports)] // rustc doesn't detect that this is actually used -use crate::distributions::utils::Float; - - -#[cfg(feature="simd_support")] -use packed_simd::*; - -/// Sample values uniformly between two bounds. -/// -/// [`Uniform::new`] and [`Uniform::new_inclusive`] construct a uniform -/// distribution sampling from the given range; these functions may do extra -/// work up front to make sampling of multiple values faster. -/// -/// When sampling from a constant range, many calculations can happen at -/// compile-time and all methods should be fast; for floating-point ranges and -/// the full range of integer types this should have comparable performance to -/// the `Standard` distribution. -/// -/// Steps are taken to avoid bias which might be present in naive -/// implementations; for example `rng.gen::<u8>() % 170` samples from the range -/// `[0, 169]` but is twice as likely to select numbers less than 85 than other -/// values. Further, the implementations here give more weight to the high-bits -/// generated by the RNG than the low bits, since with some RNGs the low-bits -/// are of lower quality than the high bits. -/// -/// Implementations must sample in `[low, high)` range for -/// `Uniform::new(low, high)`, i.e., excluding `high`. In particular care must -/// be taken to ensure that rounding never results values `< low` or `>= high`. -/// -/// # Example -/// -/// ``` -/// use rand::distributions::{Distribution, Uniform}; -/// -/// fn main() { -/// let between = Uniform::from(10..10000); -/// let mut rng = rand::thread_rng(); -/// let mut sum = 0; -/// for _ in 0..1000 { -/// sum += between.sample(&mut rng); -/// } -/// println!("{}", sum); -/// } -/// ``` -/// -/// [`new`]: Uniform::new -/// [`new_inclusive`]: Uniform::new_inclusive -#[derive(Clone, Copy, Debug)] -pub struct Uniform<X: SampleUniform> { - inner: X::Sampler, -} - -impl<X: SampleUniform> Uniform<X> { - /// Create a new `Uniform` instance which samples uniformly from the half - /// open range `[low, high)` (excluding `high`). Panics if `low >= high`. - pub fn new<B1, B2>(low: B1, high: B2) -> Uniform<X> - where B1: SampleBorrow<X> + Sized, - B2: SampleBorrow<X> + Sized - { - Uniform { inner: X::Sampler::new(low, high) } - } - - /// Create a new `Uniform` instance which samples uniformly from the closed - /// range `[low, high]` (inclusive). Panics if `low > high`. - pub fn new_inclusive<B1, B2>(low: B1, high: B2) -> Uniform<X> - where B1: SampleBorrow<X> + Sized, - B2: SampleBorrow<X> + Sized - { - Uniform { inner: X::Sampler::new_inclusive(low, high) } - } -} - -impl<X: SampleUniform> Distribution<X> for Uniform<X> { - fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> X { - self.inner.sample(rng) - } -} - -/// Helper trait for creating objects using the correct implementation of -/// [`UniformSampler`] for the sampling type. -/// -/// See the [module documentation] on how to implement [`Uniform`] range -/// sampling for a custom type. -/// -/// [module documentation]: crate::distributions::uniform -pub trait SampleUniform: Sized { - /// The `UniformSampler` implementation supporting type `X`. - type Sampler: UniformSampler<X = Self>; -} - -/// Helper trait handling actual uniform sampling. -/// -/// See the [module documentation] on how to implement [`Uniform`] range -/// sampling for a custom type. -/// -/// Implementation of [`sample_single`] is optional, and is only useful when -/// the implementation can be faster than `Self::new(low, high).sample(rng)`. -/// -/// [module documentation]: crate::distributions::uniform -/// [`sample_single`]: UniformSampler::sample_single -pub trait UniformSampler: Sized { - /// The type sampled by this implementation. - type X; - - /// Construct self, with inclusive lower bound and exclusive upper bound - /// `[low, high)`. - /// - /// Usually users should not call this directly but instead use - /// `Uniform::new`, which asserts that `low < high` before calling this. - fn new<B1, B2>(low: B1, high: B2) -> Self - where B1: SampleBorrow<Self::X> + Sized, - B2: SampleBorrow<Self::X> + Sized; - - /// Construct self, with inclusive bounds `[low, high]`. - /// - /// Usually users should not call this directly but instead use - /// `Uniform::new_inclusive`, which asserts that `low <= high` before - /// calling this. - fn new_inclusive<B1, B2>(low: B1, high: B2) -> Self - where B1: SampleBorrow<Self::X> + Sized, - B2: SampleBorrow<Self::X> + Sized; - - /// Sample a value. - fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X; - - /// Sample a single value uniformly from a range with inclusive lower bound - /// and exclusive upper bound `[low, high)`. - /// - /// By default this is implemented using - /// `UniformSampler::new(low, high).sample(rng)`. However, for some types - /// more optimal implementations for single usage may be provided via this - /// method (which is the case for integers and floats). - /// Results may not be identical. - fn sample_single<R: Rng + ?Sized, B1, B2>(low: B1, high: B2, rng: &mut R) - -> Self::X - where B1: SampleBorrow<Self::X> + Sized, - B2: SampleBorrow<Self::X> + Sized - { - let uniform: Self = UniformSampler::new(low, high); - uniform.sample(rng) - } -} - -impl<X: SampleUniform> From<::core::ops::Range<X>> for Uniform<X> { - fn from(r: ::core::ops::Range<X>) -> Uniform<X> { - Uniform::new(r.start, r.end) - } -} - -impl<X: SampleUniform> From<::core::ops::RangeInclusive<X>> for Uniform<X> { - fn from(r: ::core::ops::RangeInclusive<X>) -> Uniform<X> { - Uniform::new_inclusive(r.start(), r.end()) - } -} - -/// Helper trait similar to [`Borrow`] but implemented -/// only for SampleUniform and references to SampleUniform in -/// order to resolve ambiguity issues. -/// -/// [`Borrow`]: std::borrow::Borrow -pub trait SampleBorrow<Borrowed> { - /// Immutably borrows from an owned value. See [`Borrow::borrow`] - /// - /// [`Borrow::borrow`]: std::borrow::Borrow::borrow - fn borrow(&self) -> &Borrowed; -} -impl<Borrowed> SampleBorrow<Borrowed> for Borrowed where Borrowed: SampleUniform { - #[inline(always)] - fn borrow(&self) -> &Borrowed { self } -} -impl<'a, Borrowed> SampleBorrow<Borrowed> for &'a Borrowed where Borrowed: SampleUniform { - #[inline(always)] - fn borrow(&self) -> &Borrowed { *self } -} - -//////////////////////////////////////////////////////////////////////////////// - -// What follows are all back-ends. - - -/// The back-end implementing [`UniformSampler`] for integer types. -/// -/// Unless you are implementing [`UniformSampler`] for your own type, this type -/// should not be used directly, use [`Uniform`] instead. -/// -/// # Implementation notes -/// -/// For simplicity, we use the same generic struct `UniformInt<X>` for all -/// integer types `X`. This gives us only one field type, `X`; to store unsigned -/// values of this size, we take use the fact that these conversions are no-ops. -/// -/// For a closed range, the number of possible numbers we should generate is -/// `range = (high - low + 1)`. To avoid bias, we must ensure that the size of -/// our sample space, `zone`, is a multiple of `range`; other values must be -/// rejected (by replacing with a new random sample). -/// -/// As a special case, we use `range = 0` to represent the full range of the -/// result type (i.e. for `new_inclusive($ty::MIN, $ty::MAX)`). -/// -/// The optimum `zone` is the largest product of `range` which fits in our -/// (unsigned) target type. We calculate this by calculating how many numbers we -/// must reject: `reject = (MAX + 1) % range = (MAX - range + 1) % range`. Any (large) -/// product of `range` will suffice, thus in `sample_single` we multiply by a -/// power of 2 via bit-shifting (faster but may cause more rejections). -/// -/// The smallest integer PRNGs generate is `u32`. For 8- and 16-bit outputs we -/// use `u32` for our `zone` and samples (because it's not slower and because -/// it reduces the chance of having to reject a sample). In this case we cannot -/// store `zone` in the target type since it is too large, however we know -/// `ints_to_reject < range <= $unsigned::MAX`. -/// -/// An alternative to using a modulus is widening multiply: After a widening -/// multiply by `range`, the result is in the high word. Then comparing the low -/// word against `zone` makes sure our distribution is uniform. -#[derive(Clone, Copy, Debug)] -pub struct UniformInt<X> { - low: X, - range: X, - z: X, // either ints_to_reject or zone depending on implementation -} - -macro_rules! uniform_int_impl { - ($ty:ty, $unsigned:ident, $u_large:ident) => { - impl SampleUniform for $ty { - type Sampler = UniformInt<$ty>; - } - - impl UniformSampler for UniformInt<$ty> { - // We play free and fast with unsigned vs signed here - // (when $ty is signed), but that's fine, since the - // contract of this macro is for $ty and $unsigned to be - // "bit-equal", so casting between them is a no-op. - - type X = $ty; - - #[inline] // if the range is constant, this helps LLVM to do the - // calculations at compile-time. - fn new<B1, B2>(low_b: B1, high_b: B2) -> Self - where B1: SampleBorrow<Self::X> + Sized, - B2: SampleBorrow<Self::X> + Sized - { - let low = *low_b.borrow(); - let high = *high_b.borrow(); - assert!(low < high, "Uniform::new called with `low >= high`"); - UniformSampler::new_inclusive(low, high - 1) - } - - #[inline] // if the range is constant, this helps LLVM to do the - // calculations at compile-time. - fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self - where B1: SampleBorrow<Self::X> + Sized, - B2: SampleBorrow<Self::X> + Sized - { - let low = *low_b.borrow(); - let high = *high_b.borrow(); - assert!(low <= high, - "Uniform::new_inclusive called with `low > high`"); - let unsigned_max = ::core::$u_large::MAX; - - let range = high.wrapping_sub(low).wrapping_add(1) as $unsigned; - let ints_to_reject = - if range > 0 { - let range = $u_large::from(range); - (unsigned_max - range + 1) % range - } else { - 0 - }; - - UniformInt { - low: low, - // These are really $unsigned values, but store as $ty: - range: range as $ty, - z: ints_to_reject as $unsigned as $ty - } - } - - fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X { - let range = self.range as $unsigned as $u_large; - if range > 0 { - let unsigned_max = ::core::$u_large::MAX; - let zone = unsigned_max - (self.z as $unsigned as $u_large); - loop { - let v: $u_large = rng.gen(); - let (hi, lo) = v.wmul(range); - if lo <= zone { - return self.low.wrapping_add(hi as $ty); - } - } - } else { - // Sample from the entire integer range. - rng.gen() - } - } - - fn sample_single<R: Rng + ?Sized, B1, B2>(low_b: B1, high_b: B2, rng: &mut R) - -> Self::X - where B1: SampleBorrow<Self::X> + Sized, - B2: SampleBorrow<Self::X> + Sized - { - let low = *low_b.borrow(); - let high = *high_b.borrow(); - assert!(low < high, - "UniformSampler::sample_single: low >= high"); - let range = high.wrapping_sub(low) as $unsigned as $u_large; - let zone = - if ::core::$unsigned::MAX <= ::core::u16::MAX as $unsigned { - // Using a modulus is faster than the approximation for - // i8 and i16. I suppose we trade the cost of one - // modulus for near-perfect branch prediction. - let unsigned_max: $u_large = ::core::$u_large::MAX; - let ints_to_reject = (unsigned_max - range + 1) % range; - unsigned_max - ints_to_reject - } else { - // conservative but fast approximation. `- 1` is necessary to allow the - // same comparison without bias. - (range << range.leading_zeros()).wrapping_sub(1) - }; - - loop { - let v: $u_large = rng.gen(); - let (hi, lo) = v.wmul(range); - if lo <= zone { - return low.wrapping_add(hi as $ty); - } - } - } - } - } -} - -uniform_int_impl! { i8, u8, u32 } -uniform_int_impl! { i16, u16, u32 } -uniform_int_impl! { i32, u32, u32 } -uniform_int_impl! { i64, u64, u64 } -#[cfg(not(target_os = "emscripten"))] -uniform_int_impl! { i128, u128, u128 } -uniform_int_impl! { isize, usize, usize } -uniform_int_impl! { u8, u8, u32 } -uniform_int_impl! { u16, u16, u32 } -uniform_int_impl! { u32, u32, u32 } -uniform_int_impl! { u64, u64, u64 } -uniform_int_impl! { usize, usize, usize } -#[cfg(not(target_os = "emscripten"))] -uniform_int_impl! { u128, u128, u128 } - -#[cfg(all(feature = "simd_support", feature = "nightly"))] -macro_rules! uniform_simd_int_impl { - ($ty:ident, $unsigned:ident, $u_scalar:ident) => { - // The "pick the largest zone that can fit in an `u32`" optimization - // is less useful here. Multiple lanes complicate things, we don't - // know the PRNG's minimal output size, and casting to a larger vector - // is generally a bad idea for SIMD performance. The user can still - // implement it manually. - - // TODO: look into `Uniform::<u32x4>::new(0u32, 100)` functionality - // perhaps `impl SampleUniform for $u_scalar`? - impl SampleUniform for $ty { - type Sampler = UniformInt<$ty>; - } - - impl UniformSampler for UniformInt<$ty> { - type X = $ty; - - #[inline] // if the range is constant, this helps LLVM to do the - // calculations at compile-time. - fn new<B1, B2>(low_b: B1, high_b: B2) -> Self - where B1: SampleBorrow<Self::X> + Sized, - B2: SampleBorrow<Self::X> + Sized - { - let low = *low_b.borrow(); - let high = *high_b.borrow(); - assert!(low.lt(high).all(), "Uniform::new called with `low >= high`"); - UniformSampler::new_inclusive(low, high - 1) - } - - #[inline] // if the range is constant, this helps LLVM to do the - // calculations at compile-time. - fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self - where B1: SampleBorrow<Self::X> + Sized, - B2: SampleBorrow<Self::X> + Sized - { - let low = *low_b.borrow(); - let high = *high_b.borrow(); - assert!(low.le(high).all(), - "Uniform::new_inclusive called with `low > high`"); - let unsigned_max = ::core::$u_scalar::MAX; - - // NOTE: these may need to be replaced with explicitly - // wrapping operations if `packed_simd` changes - let range: $unsigned = ((high - low) + 1).cast(); - // `% 0` will panic at runtime. - let not_full_range = range.gt($unsigned::splat(0)); - // replacing 0 with `unsigned_max` allows a faster `select` - // with bitwise OR - let modulo = not_full_range.select(range, $unsigned::splat(unsigned_max)); - // wrapping addition - let ints_to_reject = (unsigned_max - range + 1) % modulo; - // When `range` is 0, `lo` of `v.wmul(range)` will always be - // zero which means only one sample is needed. - let zone = unsigned_max - ints_to_reject; - - UniformInt { - low: low, - // These are really $unsigned values, but store as $ty: - range: range.cast(), - z: zone.cast(), - } - } - - fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X { - let range: $unsigned = self.range.cast(); - let zone: $unsigned = self.z.cast(); - - // This might seem very slow, generating a whole new - // SIMD vector for every sample rejection. For most uses - // though, the chance of rejection is small and provides good - // general performance. With multiple lanes, that chance is - // multiplied. To mitigate this, we replace only the lanes of - // the vector which fail, iteratively reducing the chance of - // rejection. The replacement method does however add a little - // overhead. Benchmarking or calculating probabilities might - // reveal contexts where this replacement method is slower. - let mut v: $unsigned = rng.gen(); - loop { - let (hi, lo) = v.wmul(range); - let mask = lo.le(zone); - if mask.all() { - let hi: $ty = hi.cast(); - // wrapping addition - let result = self.low + hi; - // `select` here compiles to a blend operation - // When `range.eq(0).none()` the compare and blend - // operations are avoided. - let v: $ty = v.cast(); - return range.gt($unsigned::splat(0)).select(result, v); - } - // Replace only the failing lanes - v = mask.select(v, rng.gen()); - } - } - } - }; - - // bulk implementation - ($(($unsigned:ident, $signed:ident),)+ $u_scalar:ident) => { - $( - uniform_simd_int_impl!($unsigned, $unsigned, $u_scalar); - uniform_simd_int_impl!($signed, $unsigned, $u_scalar); - )+ - }; -} - -#[cfg(all(feature = "simd_support", feature = "nightly"))] -uniform_simd_int_impl! { - (u64x2, i64x2), - (u64x4, i64x4), - (u64x8, i64x8), - u64 -} - -#[cfg(all(feature = "simd_support", feature = "nightly"))] -uniform_simd_int_impl! { - (u32x2, i32x2), - (u32x4, i32x4), - (u32x8, i32x8), - (u32x16, i32x16), - u32 -} - -#[cfg(all(feature = "simd_support", feature = "nightly"))] -uniform_simd_int_impl! { - (u16x2, i16x2), - (u16x4, i16x4), - (u16x8, i16x8), - (u16x16, i16x16), - (u16x32, i16x32), - u16 -} - -#[cfg(all(feature = "simd_support", feature = "nightly"))] -uniform_simd_int_impl! { - (u8x2, i8x2), - (u8x4, i8x4), - (u8x8, i8x8), - (u8x16, i8x16), - (u8x32, i8x32), - (u8x64, i8x64), - u8 -} - - -/// The back-end implementing [`UniformSampler`] for floating-point types. -/// -/// Unless you are implementing [`UniformSampler`] for your own type, this type -/// should not be used directly, use [`Uniform`] instead. -/// -/// # Implementation notes -/// -/// Instead of generating a float in the `[0, 1)` range using [`Standard`], the -/// `UniformFloat` implementation converts the output of an PRNG itself. This -/// way one or two steps can be optimized out. -/// -/// The floats are first converted to a value in the `[1, 2)` interval using a -/// transmute-based method, and then mapped to the expected range with a -/// multiply and addition. Values produced this way have what equals 22 bits of -/// random digits for an `f32`, and 52 for an `f64`. -/// -/// [`new`]: UniformSampler::new -/// [`new_inclusive`]: UniformSampler::new_inclusive -/// [`Standard`]: crate::distributions::Standard -#[derive(Clone, Copy, Debug)] -pub struct UniformFloat<X> { - low: X, - scale: X, -} - -macro_rules! uniform_float_impl { - ($ty:ty, $uty:ident, $f_scalar:ident, $u_scalar:ident, $bits_to_discard:expr) => { - impl SampleUniform for $ty { - type Sampler = UniformFloat<$ty>; - } - - impl UniformSampler for UniformFloat<$ty> { - type X = $ty; - - fn new<B1, B2>(low_b: B1, high_b: B2) -> Self - where B1: SampleBorrow<Self::X> + Sized, - B2: SampleBorrow<Self::X> + Sized - { - let low = *low_b.borrow(); - let high = *high_b.borrow(); - assert!(low.all_lt(high), - "Uniform::new called with `low >= high`"); - assert!(low.all_finite() && high.all_finite(), - "Uniform::new called with non-finite boundaries"); - let max_rand = <$ty>::splat((::core::$u_scalar::MAX >> $bits_to_discard) - .into_float_with_exponent(0) - 1.0); - - let mut scale = high - low; - - loop { - let mask = (scale * max_rand + low).ge_mask(high); - if mask.none() { - break; - } - scale = scale.decrease_masked(mask); - } - - debug_assert!(<$ty>::splat(0.0).all_le(scale)); - - UniformFloat { low, scale } - } - - fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self - where B1: SampleBorrow<Self::X> + Sized, - B2: SampleBorrow<Self::X> + Sized - { - let low = *low_b.borrow(); - let high = *high_b.borrow(); - assert!(low.all_le(high), - "Uniform::new_inclusive called with `low > high`"); - assert!(low.all_finite() && high.all_finite(), - "Uniform::new_inclusive called with non-finite boundaries"); - let max_rand = <$ty>::splat((::core::$u_scalar::MAX >> $bits_to_discard) - .into_float_with_exponent(0) - 1.0); - - let mut scale = (high - low) / max_rand; - - loop { - let mask = (scale * max_rand + low).gt_mask(high); - if mask.none() { - break; - } - scale = scale.decrease_masked(mask); - } - - debug_assert!(<$ty>::splat(0.0).all_le(scale)); - - UniformFloat { low, scale } - } - - fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X { - // Generate a value in the range [1, 2) - let value1_2 = (rng.gen::<$uty>() >> $bits_to_discard) - .into_float_with_exponent(0); - - // Get a value in the range [0, 1) in order to avoid - // overflowing into infinity when multiplying with scale - let value0_1 = value1_2 - 1.0; - - // We don't use `f64::mul_add`, because it is not available with - // `no_std`. Furthermore, it is slower for some targets (but - // faster for others). However, the order of multiplication and - // addition is important, because on some platforms (e.g. ARM) - // it will be optimized to a single (non-FMA) instruction. - value0_1 * self.scale + self.low - } - - #[inline] - fn sample_single<R: Rng + ?Sized, B1, B2>(low_b: B1, high_b: B2, rng: &mut R) - -> Self::X - where B1: SampleBorrow<Self::X> + Sized, - B2: SampleBorrow<Self::X> + Sized - { - let low = *low_b.borrow(); - let high = *high_b.borrow(); - assert!(low.all_lt(high), - "UniformSampler::sample_single: low >= high"); - let mut scale = high - low; - - loop { - // Generate a value in the range [1, 2) - let value1_2 = (rng.gen::<$uty>() >> $bits_to_discard) - .into_float_with_exponent(0); - - // Get a value in the range [0, 1) in order to avoid - // overflowing into infinity when multiplying with scale - let value0_1 = value1_2 - 1.0; - - // Doing multiply before addition allows some architectures - // to use a single instruction. - let res = value0_1 * scale + low; - - debug_assert!(low.all_le(res) || !scale.all_finite()); - if res.all_lt(high) { - return res; - } - - // This handles a number of edge cases. - // * `low` or `high` is NaN. In this case `scale` and - // `res` are going to end up as NaN. - // * `low` is negative infinity and `high` is finite. - // `scale` is going to be infinite and `res` will be - // NaN. - // * `high` is positive infinity and `low` is finite. - // `scale` is going to be infinite and `res` will - // be infinite or NaN (if value0_1 is 0). - // * `low` is negative infinity and `high` is positive - // infinity. `scale` will be infinite and `res` will - // be NaN. - // * `low` and `high` are finite, but `high - low` - // overflows to infinite. `scale` will be infinite - // and `res` will be infinite or NaN (if value0_1 is 0). - // So if `high` or `low` are non-finite, we are guaranteed - // to fail the `res < high` check above and end up here. - // - // While we technically should check for non-finite `low` - // and `high` before entering the loop, by doing the checks - // here instead, we allow the common case to avoid these - // checks. But we are still guaranteed that if `low` or - // `high` are non-finite we'll end up here and can do the - // appropriate checks. - // - // Likewise `high - low` overflowing to infinity is also - // rare, so handle it here after the common case. - let mask = !scale.finite_mask(); - if mask.any() { - assert!(low.all_finite() && high.all_finite(), - "Uniform::sample_single: low and high must be finite"); - scale = scale.decrease_masked(mask); - } - } - } - } - } -} - -uniform_float_impl! { f32, u32, f32, u32, 32 - 23 } -uniform_float_impl! { f64, u64, f64, u64, 64 - 52 } - -#[cfg(feature="simd_support")] -uniform_float_impl! { f32x2, u32x2, f32, u32, 32 - 23 } -#[cfg(feature="simd_support")] -uniform_float_impl! { f32x4, u32x4, f32, u32, 32 - 23 } -#[cfg(feature="simd_support")] -uniform_float_impl! { f32x8, u32x8, f32, u32, 32 - 23 } -#[cfg(feature="simd_support")] -uniform_float_impl! { f32x16, u32x16, f32, u32, 32 - 23 } - -#[cfg(feature="simd_support")] -uniform_float_impl! { f64x2, u64x2, f64, u64, 64 - 52 } -#[cfg(feature="simd_support")] -uniform_float_impl! { f64x4, u64x4, f64, u64, 64 - 52 } -#[cfg(feature="simd_support")] -uniform_float_impl! { f64x8, u64x8, f64, u64, 64 - 52 } - - - -/// The back-end implementing [`UniformSampler`] for `Duration`. -/// -/// Unless you are implementing [`UniformSampler`] for your own types, this type -/// should not be used directly, use [`Uniform`] instead. -#[derive(Clone, Copy, Debug)] -pub struct UniformDuration { - mode: UniformDurationMode, - offset: u32, -} - -#[derive(Debug, Copy, Clone)] -enum UniformDurationMode { - Small { - secs: u64, - nanos: Uniform<u32>, - }, - Medium { - nanos: Uniform<u64>, - }, - Large { - max_secs: u64, - max_nanos: u32, - secs: Uniform<u64>, - } -} - -impl SampleUniform for Duration { - type Sampler = UniformDuration; -} - -impl UniformSampler for UniformDuration { - type X = Duration; - - #[inline] - fn new<B1, B2>(low_b: B1, high_b: B2) -> Self - where B1: SampleBorrow<Self::X> + Sized, - B2: SampleBorrow<Self::X> + Sized - { - let low = *low_b.borrow(); - let high = *high_b.borrow(); - assert!(low < high, "Uniform::new called with `low >= high`"); - UniformDuration::new_inclusive(low, high - Duration::new(0, 1)) - } - - #[inline] - fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self - where B1: SampleBorrow<Self::X> + Sized, - B2: SampleBorrow<Self::X> + Sized - { - let low = *low_b.borrow(); - let high = *high_b.borrow(); - assert!(low <= high, "Uniform::new_inclusive called with `low > high`"); - - let low_s = low.as_secs(); - let low_n = low.subsec_nanos(); - let mut high_s = high.as_secs(); - let mut high_n = high.subsec_nanos(); - - if high_n < low_n { - high_s -= 1; - high_n += 1_000_000_000; - } - - let mode = if low_s == high_s { - UniformDurationMode::Small { - secs: low_s, - nanos: Uniform::new_inclusive(low_n, high_n), - } - } else { - let max = high_s - .checked_mul(1_000_000_000) - .and_then(|n| n.checked_add(u64::from(high_n))); - - if let Some(higher_bound) = max { - let lower_bound = low_s * 1_000_000_000 + u64::from(low_n); - UniformDurationMode::Medium { - nanos: Uniform::new_inclusive(lower_bound, higher_bound), - } - } else { - // An offset is applied to simplify generation of nanoseconds - let max_nanos = high_n - low_n; - UniformDurationMode::Large { - max_secs: high_s, - max_nanos, - secs: Uniform::new_inclusive(low_s, high_s), - } - } - }; - UniformDuration { - mode, - offset: low_n, - } - } - - #[inline] - fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Duration { - match self.mode { - UniformDurationMode::Small { secs, nanos } => { - let n = nanos.sample(rng); - Duration::new(secs, n) - } - UniformDurationMode::Medium { nanos } => { - let nanos = nanos.sample(rng); - Duration::new(nanos / 1_000_000_000, (nanos % 1_000_000_000) as u32) - } - UniformDurationMode::Large { max_secs, max_nanos, secs } => { - // constant folding means this is at least as fast as `gen_range` - let nano_range = Uniform::new(0, 1_000_000_000); - loop { - let s = secs.sample(rng); - let n = nano_range.sample(rng); - if !(s == max_secs && n > max_nanos) { - let sum = n + self.offset; - break Duration::new(s, sum); - } - } - } - } - } -} - -#[cfg(test)] -mod tests { - use crate::Rng; - use crate::rngs::mock::StepRng; - use crate::distributions::uniform::Uniform; - use crate::distributions::utils::FloatAsSIMD; - #[cfg(feature="simd_support")] use packed_simd::*; - - #[should_panic] - #[test] - fn test_uniform_bad_limits_equal_int() { - Uniform::new(10, 10); - } - - #[test] - fn test_uniform_good_limits_equal_int() { - let mut rng = crate::test::rng(804); - let dist = Uniform::new_inclusive(10, 10); - for _ in 0..20 { - assert_eq!(rng.sample(dist), 10); - } - } - - #[should_panic] - #[test] - fn test_uniform_bad_limits_flipped_int() { - Uniform::new(10, 5); - } - - #[test] - #[cfg(not(miri))] // Miri is too slow - fn test_integers() { - use core::{i8, i16, i32, i64, isize}; - use core::{u8, u16, u32, u64, usize}; - #[cfg(not(target_os = "emscripten"))] - use core::{i128, u128}; - - let mut rng = crate::test::rng(251); - macro_rules! t { - ($ty:ident, $v:expr, $le:expr, $lt:expr) => {{ - for &(low, high) in $v.iter() { - let my_uniform = Uniform::new(low, high); - for _ in 0..1000 { - let v: $ty = rng.sample(my_uniform); - assert!($le(low, v) && $lt(v, high)); - } - - let my_uniform = Uniform::new_inclusive(low, high); - for _ in 0..1000 { - let v: $ty = rng.sample(my_uniform); - assert!($le(low, v) && $le(v, high)); - } - - let my_uniform = Uniform::new(&low, high); - for _ in 0..1000 { - let v: $ty = rng.sample(my_uniform); - assert!($le(low, v) && $lt(v, high)); - } - - let my_uniform = Uniform::new_inclusive(&low, &high); - for _ in 0..1000 { - let v: $ty = rng.sample(my_uniform); - assert!($le(low, v) && $le(v, high)); - } - - for _ in 0..1000 { - let v: $ty = rng.gen_range(low, high); - assert!($le(low, v) && $lt(v, high)); - } - } - }}; - - // scalar bulk - ($($ty:ident),*) => {{ - $(t!( - $ty, - [(0, 10), (10, 127), ($ty::MIN, $ty::MAX)], - |x, y| x <= y, - |x, y| x < y - );)* - }}; - - // simd bulk - ($($ty:ident),* => $scalar:ident) => {{ - $(t!( - $ty, - [ - ($ty::splat(0), $ty::splat(10)), - ($ty::splat(10), $ty::splat(127)), - ($ty::splat($scalar::MIN), $ty::splat($scalar::MAX)), - ], - |x: $ty, y| x.le(y).all(), - |x: $ty, y| x.lt(y).all() - );)* - }}; - } - t!(i8, i16, i32, i64, isize, - u8, u16, u32, u64, usize); - #[cfg(not(target_os = "emscripten"))] - t!(i128, u128); - - #[cfg(all(feature = "simd_support", feature = "nightly"))] - { - t!(u8x2, u8x4, u8x8, u8x16, u8x32, u8x64 => u8); - t!(i8x2, i8x4, i8x8, i8x16, i8x32, i8x64 => i8); - t!(u16x2, u16x4, u16x8, u16x16, u16x32 => u16); - t!(i16x2, i16x4, i16x8, i16x16, i16x32 => i16); - t!(u32x2, u32x4, u32x8, u32x16 => u32); - t!(i32x2, i32x4, i32x8, i32x16 => i32); - t!(u64x2, u64x4, u64x8 => u64); - t!(i64x2, i64x4, i64x8 => i64); - } - } - - #[test] - #[cfg(not(miri))] // Miri is too slow - fn test_floats() { - let mut rng = crate::test::rng(252); - let mut zero_rng = StepRng::new(0, 0); - let mut max_rng = StepRng::new(0xffff_ffff_ffff_ffff, 0); - macro_rules! t { - ($ty:ty, $f_scalar:ident, $bits_shifted:expr) => {{ - let v: &[($f_scalar, $f_scalar)]= - &[(0.0, 100.0), - (-1e35, -1e25), - (1e-35, 1e-25), - (-1e35, 1e35), - (<$f_scalar>::from_bits(0), <$f_scalar>::from_bits(3)), - (-<$f_scalar>::from_bits(10), -<$f_scalar>::from_bits(1)), - (-<$f_scalar>::from_bits(5), 0.0), - (-<$f_scalar>::from_bits(7), -0.0), - (10.0, ::core::$f_scalar::MAX), - (-100.0, ::core::$f_scalar::MAX), - (-::core::$f_scalar::MAX / 5.0, ::core::$f_scalar::MAX), - (-::core::$f_scalar::MAX, ::core::$f_scalar::MAX / 5.0), - (-::core::$f_scalar::MAX * 0.8, ::core::$f_scalar::MAX * 0.7), - (-::core::$f_scalar::MAX, ::core::$f_scalar::MAX), - ]; - for &(low_scalar, high_scalar) in v.iter() { - for lane in 0..<$ty>::lanes() { - let low = <$ty>::splat(0.0 as $f_scalar).replace(lane, low_scalar); - let high = <$ty>::splat(1.0 as $f_scalar).replace(lane, high_scalar); - let my_uniform = Uniform::new(low, high); - let my_incl_uniform = Uniform::new_inclusive(low, high); - for _ in 0..100 { - let v = rng.sample(my_uniform).extract(lane); - assert!(low_scalar <= v && v < high_scalar); - let v = rng.sample(my_incl_uniform).extract(lane); - assert!(low_scalar <= v && v <= high_scalar); - let v = rng.gen_range(low, high).extract(lane); - assert!(low_scalar <= v && v < high_scalar); - } - - assert_eq!(rng.sample(Uniform::new_inclusive(low, low)).extract(lane), low_scalar); - - assert_eq!(zero_rng.sample(my_uniform).extract(lane), low_scalar); - assert_eq!(zero_rng.sample(my_incl_uniform).extract(lane), low_scalar); - assert_eq!(zero_rng.gen_range(low, high).extract(lane), low_scalar); - assert!(max_rng.sample(my_uniform).extract(lane) < high_scalar); - assert!(max_rng.sample(my_incl_uniform).extract(lane) <= high_scalar); - - // Don't run this test for really tiny differences between high and low - // since for those rounding might result in selecting high for a very - // long time. - if (high_scalar - low_scalar) > 0.0001 { - let mut lowering_max_rng = - StepRng::new(0xffff_ffff_ffff_ffff, - (-1i64 << $bits_shifted) as u64); - assert!(lowering_max_rng.gen_range(low, high).extract(lane) < high_scalar); - } - } - } - - assert_eq!(rng.sample(Uniform::new_inclusive(::core::$f_scalar::MAX, - ::core::$f_scalar::MAX)), - ::core::$f_scalar::MAX); - assert_eq!(rng.sample(Uniform::new_inclusive(-::core::$f_scalar::MAX, - -::core::$f_scalar::MAX)), - -::core::$f_scalar::MAX); - }} - } - - t!(f32, f32, 32 - 23); - t!(f64, f64, 64 - 52); - #[cfg(feature="simd_support")] - { - t!(f32x2, f32, 32 - 23); - t!(f32x4, f32, 32 - 23); - t!(f32x8, f32, 32 - 23); - t!(f32x16, f32, 32 - 23); - t!(f64x2, f64, 64 - 52); - t!(f64x4, f64, 64 - 52); - t!(f64x8, f64, 64 - 52); - } - } - - #[test] - #[cfg(all(feature="std", - not(target_arch = "wasm32"), - not(target_arch = "asmjs")))] - #[cfg(not(miri))] // Miri does not support catching panics - fn test_float_assertions() { - use std::panic::catch_unwind; - use super::SampleUniform; - fn range<T: SampleUniform>(low: T, high: T) { - let mut rng = crate::test::rng(253); - rng.gen_range(low, high); - } - - macro_rules! t { - ($ty:ident, $f_scalar:ident) => {{ - let v: &[($f_scalar, $f_scalar)] = - &[(::std::$f_scalar::NAN, 0.0), - (1.0, ::std::$f_scalar::NAN), - (::std::$f_scalar::NAN, ::std::$f_scalar::NAN), - (1.0, 0.5), - (::std::$f_scalar::MAX, -::std::$f_scalar::MAX), - (::std::$f_scalar::INFINITY, ::std::$f_scalar::INFINITY), - (::std::$f_scalar::NEG_INFINITY, ::std::$f_scalar::NEG_INFINITY), - (::std::$f_scalar::NEG_INFINITY, 5.0), - (5.0, ::std::$f_scalar::INFINITY), - (::std::$f_scalar::NAN, ::std::$f_scalar::INFINITY), - (::std::$f_scalar::NEG_INFINITY, ::std::$f_scalar::NAN), - (::std::$f_scalar::NEG_INFINITY, ::std::$f_scalar::INFINITY), - ]; - for &(low_scalar, high_scalar) in v.iter() { - for lane in 0..<$ty>::lanes() { - let low = <$ty>::splat(0.0 as $f_scalar).replace(lane, low_scalar); - let high = <$ty>::splat(1.0 as $f_scalar).replace(lane, high_scalar); - assert!(catch_unwind(|| range(low, high)).is_err()); - assert!(catch_unwind(|| Uniform::new(low, high)).is_err()); - assert!(catch_unwind(|| Uniform::new_inclusive(low, high)).is_err()); - assert!(catch_unwind(|| range(low, low)).is_err()); - assert!(catch_unwind(|| Uniform::new(low, low)).is_err()); - } - } - }} - } - - t!(f32, f32); - t!(f64, f64); - #[cfg(feature="simd_support")] - { - t!(f32x2, f32); - t!(f32x4, f32); - t!(f32x8, f32); - t!(f32x16, f32); - t!(f64x2, f64); - t!(f64x4, f64); - t!(f64x8, f64); - } - } - - - #[test] - #[cfg(not(miri))] // Miri is too slow - fn test_durations() { - #[cfg(feature = "std")] - use std::time::Duration; - #[cfg(not(feature = "std"))] - use core::time::Duration; - - let mut rng = crate::test::rng(253); - - let v = &[(Duration::new(10, 50000), Duration::new(100, 1234)), - (Duration::new(0, 100), Duration::new(1, 50)), - (Duration::new(0, 0), Duration::new(u64::max_value(), 999_999_999))]; - for &(low, high) in v.iter() { - let my_uniform = Uniform::new(low, high); - for _ in 0..1000 { - let v = rng.sample(my_uniform); - assert!(low <= v && v < high); - } - } - } - - #[test] - fn test_custom_uniform() { - use crate::distributions::uniform::{UniformSampler, UniformFloat, SampleUniform, SampleBorrow}; - #[derive(Clone, Copy, PartialEq, PartialOrd)] - struct MyF32 { - x: f32, - } - #[derive(Clone, Copy, Debug)] - struct UniformMyF32 { - inner: UniformFloat<f32>, - } - impl UniformSampler for UniformMyF32 { - type X = MyF32; - fn new<B1, B2>(low: B1, high: B2) -> Self - where B1: SampleBorrow<Self::X> + Sized, - B2: SampleBorrow<Self::X> + Sized - { - UniformMyF32 { - inner: UniformFloat::<f32>::new(low.borrow().x, high.borrow().x), - } - } - fn new_inclusive<B1, B2>(low: B1, high: B2) -> Self - where B1: SampleBorrow<Self::X> + Sized, - B2: SampleBorrow<Self::X> + Sized - { - UniformSampler::new(low, high) - } - fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X { - MyF32 { x: self.inner.sample(rng) } - } - } - impl SampleUniform for MyF32 { - type Sampler = UniformMyF32; - } - - let (low, high) = (MyF32{ x: 17.0f32 }, MyF32{ x: 22.0f32 }); - let uniform = Uniform::new(low, high); - let mut rng = crate::test::rng(804); - for _ in 0..100 { - let x: MyF32 = rng.sample(uniform); - assert!(low <= x && x < high); - } - } - - #[test] - fn test_uniform_from_std_range() { - let r = Uniform::from(2u32..7); - assert_eq!(r.inner.low, 2); - assert_eq!(r.inner.range, 5); - let r = Uniform::from(2.0f64..7.0); - assert_eq!(r.inner.low, 2.0); - assert_eq!(r.inner.scale, 5.0); - } - - #[test] - fn test_uniform_from_std_range_inclusive() { - let r = Uniform::from(2u32..=6); - assert_eq!(r.inner.low, 2); - assert_eq!(r.inner.range, 5); - let r = Uniform::from(2.0f64..=7.0); - assert_eq!(r.inner.low, 2.0); - assert!(r.inner.scale > 5.0); - assert!(r.inner.scale < 5.0 + 1e-14); - } -} |