summaryrefslogtreecommitdiff
path: root/rand/src/distributions/uniform.rs
diff options
context:
space:
mode:
Diffstat (limited to 'rand/src/distributions/uniform.rs')
-rw-r--r--rand/src/distributions/uniform.rs1270
1 files changed, 0 insertions, 1270 deletions
diff --git a/rand/src/distributions/uniform.rs b/rand/src/distributions/uniform.rs
deleted file mode 100644
index 8c90f4e..0000000
--- a/rand/src/distributions/uniform.rs
+++ /dev/null
@@ -1,1270 +0,0 @@
-// Copyright 2018 Developers of the Rand project.
-// Copyright 2017 The Rust Project Developers.
-//
-// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
-// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
-// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
-// option. This file may not be copied, modified, or distributed
-// except according to those terms.
-
-//! A distribution uniformly sampling numbers within a given range.
-//!
-//! [`Uniform`] is the standard distribution to sample uniformly from a range;
-//! e.g. `Uniform::new_inclusive(1, 6)` can sample integers from 1 to 6, like a
-//! standard die. [`Rng::gen_range`] supports any type supported by
-//! [`Uniform`].
-//!
-//! This distribution is provided with support for several primitive types
-//! (all integer and floating-point types) as well as [`std::time::Duration`],
-//! and supports extension to user-defined types via a type-specific *back-end*
-//! implementation.
-//!
-//! The types [`UniformInt`], [`UniformFloat`] and [`UniformDuration`] are the
-//! back-ends supporting sampling from primitive integer and floating-point
-//! ranges as well as from [`std::time::Duration`]; these types do not normally
-//! need to be used directly (unless implementing a derived back-end).
-//!
-//! # Example usage
-//!
-//! ```
-//! use rand::{Rng, thread_rng};
-//! use rand::distributions::Uniform;
-//!
-//! let mut rng = thread_rng();
-//! let side = Uniform::new(-10.0, 10.0);
-//!
-//! // sample between 1 and 10 points
-//! for _ in 0..rng.gen_range(1, 11) {
-//! // sample a point from the square with sides -10 - 10 in two dimensions
-//! let (x, y) = (rng.sample(side), rng.sample(side));
-//! println!("Point: {}, {}", x, y);
-//! }
-//! ```
-//!
-//! # Extending `Uniform` to support a custom type
-//!
-//! To extend [`Uniform`] to support your own types, write a back-end which
-//! implements the [`UniformSampler`] trait, then implement the [`SampleUniform`]
-//! helper trait to "register" your back-end. See the `MyF32` example below.
-//!
-//! At a minimum, the back-end needs to store any parameters needed for sampling
-//! (e.g. the target range) and implement `new`, `new_inclusive` and `sample`.
-//! Those methods should include an assert to check the range is valid (i.e.
-//! `low < high`). The example below merely wraps another back-end.
-//!
-//! The `new`, `new_inclusive` and `sample_single` functions use arguments of
-//! type SampleBorrow<X> in order to support passing in values by reference or
-//! by value. In the implementation of these functions, you can choose to
-//! simply use the reference returned by [`SampleBorrow::borrow`], or you can choose
-//! to copy or clone the value, whatever is appropriate for your type.
-//!
-//! ```
-//! use rand::prelude::*;
-//! use rand::distributions::uniform::{Uniform, SampleUniform,
-//! UniformSampler, UniformFloat, SampleBorrow};
-//!
-//! struct MyF32(f32);
-//!
-//! #[derive(Clone, Copy, Debug)]
-//! struct UniformMyF32 {
-//! inner: UniformFloat<f32>,
-//! }
-//!
-//! impl UniformSampler for UniformMyF32 {
-//! type X = MyF32;
-//! fn new<B1, B2>(low: B1, high: B2) -> Self
-//! where B1: SampleBorrow<Self::X> + Sized,
-//! B2: SampleBorrow<Self::X> + Sized
-//! {
-//! UniformMyF32 {
-//! inner: UniformFloat::<f32>::new(low.borrow().0, high.borrow().0),
-//! }
-//! }
-//! fn new_inclusive<B1, B2>(low: B1, high: B2) -> Self
-//! where B1: SampleBorrow<Self::X> + Sized,
-//! B2: SampleBorrow<Self::X> + Sized
-//! {
-//! UniformSampler::new(low, high)
-//! }
-//! fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
-//! MyF32(self.inner.sample(rng))
-//! }
-//! }
-//!
-//! impl SampleUniform for MyF32 {
-//! type Sampler = UniformMyF32;
-//! }
-//!
-//! let (low, high) = (MyF32(17.0f32), MyF32(22.0f32));
-//! let uniform = Uniform::new(low, high);
-//! let x = uniform.sample(&mut thread_rng());
-//! ```
-//!
-//! [`SampleUniform`]: crate::distributions::uniform::SampleUniform
-//! [`UniformSampler`]: crate::distributions::uniform::UniformSampler
-//! [`UniformInt`]: crate::distributions::uniform::UniformInt
-//! [`UniformFloat`]: crate::distributions::uniform::UniformFloat
-//! [`UniformDuration`]: crate::distributions::uniform::UniformDuration
-//! [`SampleBorrow::borrow`]: crate::distributions::uniform::SampleBorrow::borrow
-
-#[cfg(feature = "std")]
-use std::time::Duration;
-#[cfg(not(feature = "std"))]
-use core::time::Duration;
-
-use crate::Rng;
-use crate::distributions::Distribution;
-use crate::distributions::float::IntoFloat;
-use crate::distributions::utils::{WideningMultiply, FloatSIMDUtils, FloatAsSIMD, BoolAsSIMD};
-
-#[cfg(not(feature = "std"))]
-#[allow(unused_imports)] // rustc doesn't detect that this is actually used
-use crate::distributions::utils::Float;
-
-
-#[cfg(feature="simd_support")]
-use packed_simd::*;
-
-/// Sample values uniformly between two bounds.
-///
-/// [`Uniform::new`] and [`Uniform::new_inclusive`] construct a uniform
-/// distribution sampling from the given range; these functions may do extra
-/// work up front to make sampling of multiple values faster.
-///
-/// When sampling from a constant range, many calculations can happen at
-/// compile-time and all methods should be fast; for floating-point ranges and
-/// the full range of integer types this should have comparable performance to
-/// the `Standard` distribution.
-///
-/// Steps are taken to avoid bias which might be present in naive
-/// implementations; for example `rng.gen::<u8>() % 170` samples from the range
-/// `[0, 169]` but is twice as likely to select numbers less than 85 than other
-/// values. Further, the implementations here give more weight to the high-bits
-/// generated by the RNG than the low bits, since with some RNGs the low-bits
-/// are of lower quality than the high bits.
-///
-/// Implementations must sample in `[low, high)` range for
-/// `Uniform::new(low, high)`, i.e., excluding `high`. In particular care must
-/// be taken to ensure that rounding never results values `< low` or `>= high`.
-///
-/// # Example
-///
-/// ```
-/// use rand::distributions::{Distribution, Uniform};
-///
-/// fn main() {
-/// let between = Uniform::from(10..10000);
-/// let mut rng = rand::thread_rng();
-/// let mut sum = 0;
-/// for _ in 0..1000 {
-/// sum += between.sample(&mut rng);
-/// }
-/// println!("{}", sum);
-/// }
-/// ```
-///
-/// [`new`]: Uniform::new
-/// [`new_inclusive`]: Uniform::new_inclusive
-#[derive(Clone, Copy, Debug)]
-pub struct Uniform<X: SampleUniform> {
- inner: X::Sampler,
-}
-
-impl<X: SampleUniform> Uniform<X> {
- /// Create a new `Uniform` instance which samples uniformly from the half
- /// open range `[low, high)` (excluding `high`). Panics if `low >= high`.
- pub fn new<B1, B2>(low: B1, high: B2) -> Uniform<X>
- where B1: SampleBorrow<X> + Sized,
- B2: SampleBorrow<X> + Sized
- {
- Uniform { inner: X::Sampler::new(low, high) }
- }
-
- /// Create a new `Uniform` instance which samples uniformly from the closed
- /// range `[low, high]` (inclusive). Panics if `low > high`.
- pub fn new_inclusive<B1, B2>(low: B1, high: B2) -> Uniform<X>
- where B1: SampleBorrow<X> + Sized,
- B2: SampleBorrow<X> + Sized
- {
- Uniform { inner: X::Sampler::new_inclusive(low, high) }
- }
-}
-
-impl<X: SampleUniform> Distribution<X> for Uniform<X> {
- fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> X {
- self.inner.sample(rng)
- }
-}
-
-/// Helper trait for creating objects using the correct implementation of
-/// [`UniformSampler`] for the sampling type.
-///
-/// See the [module documentation] on how to implement [`Uniform`] range
-/// sampling for a custom type.
-///
-/// [module documentation]: crate::distributions::uniform
-pub trait SampleUniform: Sized {
- /// The `UniformSampler` implementation supporting type `X`.
- type Sampler: UniformSampler<X = Self>;
-}
-
-/// Helper trait handling actual uniform sampling.
-///
-/// See the [module documentation] on how to implement [`Uniform`] range
-/// sampling for a custom type.
-///
-/// Implementation of [`sample_single`] is optional, and is only useful when
-/// the implementation can be faster than `Self::new(low, high).sample(rng)`.
-///
-/// [module documentation]: crate::distributions::uniform
-/// [`sample_single`]: UniformSampler::sample_single
-pub trait UniformSampler: Sized {
- /// The type sampled by this implementation.
- type X;
-
- /// Construct self, with inclusive lower bound and exclusive upper bound
- /// `[low, high)`.
- ///
- /// Usually users should not call this directly but instead use
- /// `Uniform::new`, which asserts that `low < high` before calling this.
- fn new<B1, B2>(low: B1, high: B2) -> Self
- where B1: SampleBorrow<Self::X> + Sized,
- B2: SampleBorrow<Self::X> + Sized;
-
- /// Construct self, with inclusive bounds `[low, high]`.
- ///
- /// Usually users should not call this directly but instead use
- /// `Uniform::new_inclusive`, which asserts that `low <= high` before
- /// calling this.
- fn new_inclusive<B1, B2>(low: B1, high: B2) -> Self
- where B1: SampleBorrow<Self::X> + Sized,
- B2: SampleBorrow<Self::X> + Sized;
-
- /// Sample a value.
- fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X;
-
- /// Sample a single value uniformly from a range with inclusive lower bound
- /// and exclusive upper bound `[low, high)`.
- ///
- /// By default this is implemented using
- /// `UniformSampler::new(low, high).sample(rng)`. However, for some types
- /// more optimal implementations for single usage may be provided via this
- /// method (which is the case for integers and floats).
- /// Results may not be identical.
- fn sample_single<R: Rng + ?Sized, B1, B2>(low: B1, high: B2, rng: &mut R)
- -> Self::X
- where B1: SampleBorrow<Self::X> + Sized,
- B2: SampleBorrow<Self::X> + Sized
- {
- let uniform: Self = UniformSampler::new(low, high);
- uniform.sample(rng)
- }
-}
-
-impl<X: SampleUniform> From<::core::ops::Range<X>> for Uniform<X> {
- fn from(r: ::core::ops::Range<X>) -> Uniform<X> {
- Uniform::new(r.start, r.end)
- }
-}
-
-impl<X: SampleUniform> From<::core::ops::RangeInclusive<X>> for Uniform<X> {
- fn from(r: ::core::ops::RangeInclusive<X>) -> Uniform<X> {
- Uniform::new_inclusive(r.start(), r.end())
- }
-}
-
-/// Helper trait similar to [`Borrow`] but implemented
-/// only for SampleUniform and references to SampleUniform in
-/// order to resolve ambiguity issues.
-///
-/// [`Borrow`]: std::borrow::Borrow
-pub trait SampleBorrow<Borrowed> {
- /// Immutably borrows from an owned value. See [`Borrow::borrow`]
- ///
- /// [`Borrow::borrow`]: std::borrow::Borrow::borrow
- fn borrow(&self) -> &Borrowed;
-}
-impl<Borrowed> SampleBorrow<Borrowed> for Borrowed where Borrowed: SampleUniform {
- #[inline(always)]
- fn borrow(&self) -> &Borrowed { self }
-}
-impl<'a, Borrowed> SampleBorrow<Borrowed> for &'a Borrowed where Borrowed: SampleUniform {
- #[inline(always)]
- fn borrow(&self) -> &Borrowed { *self }
-}
-
-////////////////////////////////////////////////////////////////////////////////
-
-// What follows are all back-ends.
-
-
-/// The back-end implementing [`UniformSampler`] for integer types.
-///
-/// Unless you are implementing [`UniformSampler`] for your own type, this type
-/// should not be used directly, use [`Uniform`] instead.
-///
-/// # Implementation notes
-///
-/// For simplicity, we use the same generic struct `UniformInt<X>` for all
-/// integer types `X`. This gives us only one field type, `X`; to store unsigned
-/// values of this size, we take use the fact that these conversions are no-ops.
-///
-/// For a closed range, the number of possible numbers we should generate is
-/// `range = (high - low + 1)`. To avoid bias, we must ensure that the size of
-/// our sample space, `zone`, is a multiple of `range`; other values must be
-/// rejected (by replacing with a new random sample).
-///
-/// As a special case, we use `range = 0` to represent the full range of the
-/// result type (i.e. for `new_inclusive($ty::MIN, $ty::MAX)`).
-///
-/// The optimum `zone` is the largest product of `range` which fits in our
-/// (unsigned) target type. We calculate this by calculating how many numbers we
-/// must reject: `reject = (MAX + 1) % range = (MAX - range + 1) % range`. Any (large)
-/// product of `range` will suffice, thus in `sample_single` we multiply by a
-/// power of 2 via bit-shifting (faster but may cause more rejections).
-///
-/// The smallest integer PRNGs generate is `u32`. For 8- and 16-bit outputs we
-/// use `u32` for our `zone` and samples (because it's not slower and because
-/// it reduces the chance of having to reject a sample). In this case we cannot
-/// store `zone` in the target type since it is too large, however we know
-/// `ints_to_reject < range <= $unsigned::MAX`.
-///
-/// An alternative to using a modulus is widening multiply: After a widening
-/// multiply by `range`, the result is in the high word. Then comparing the low
-/// word against `zone` makes sure our distribution is uniform.
-#[derive(Clone, Copy, Debug)]
-pub struct UniformInt<X> {
- low: X,
- range: X,
- z: X, // either ints_to_reject or zone depending on implementation
-}
-
-macro_rules! uniform_int_impl {
- ($ty:ty, $unsigned:ident, $u_large:ident) => {
- impl SampleUniform for $ty {
- type Sampler = UniformInt<$ty>;
- }
-
- impl UniformSampler for UniformInt<$ty> {
- // We play free and fast with unsigned vs signed here
- // (when $ty is signed), but that's fine, since the
- // contract of this macro is for $ty and $unsigned to be
- // "bit-equal", so casting between them is a no-op.
-
- type X = $ty;
-
- #[inline] // if the range is constant, this helps LLVM to do the
- // calculations at compile-time.
- fn new<B1, B2>(low_b: B1, high_b: B2) -> Self
- where B1: SampleBorrow<Self::X> + Sized,
- B2: SampleBorrow<Self::X> + Sized
- {
- let low = *low_b.borrow();
- let high = *high_b.borrow();
- assert!(low < high, "Uniform::new called with `low >= high`");
- UniformSampler::new_inclusive(low, high - 1)
- }
-
- #[inline] // if the range is constant, this helps LLVM to do the
- // calculations at compile-time.
- fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self
- where B1: SampleBorrow<Self::X> + Sized,
- B2: SampleBorrow<Self::X> + Sized
- {
- let low = *low_b.borrow();
- let high = *high_b.borrow();
- assert!(low <= high,
- "Uniform::new_inclusive called with `low > high`");
- let unsigned_max = ::core::$u_large::MAX;
-
- let range = high.wrapping_sub(low).wrapping_add(1) as $unsigned;
- let ints_to_reject =
- if range > 0 {
- let range = $u_large::from(range);
- (unsigned_max - range + 1) % range
- } else {
- 0
- };
-
- UniformInt {
- low: low,
- // These are really $unsigned values, but store as $ty:
- range: range as $ty,
- z: ints_to_reject as $unsigned as $ty
- }
- }
-
- fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
- let range = self.range as $unsigned as $u_large;
- if range > 0 {
- let unsigned_max = ::core::$u_large::MAX;
- let zone = unsigned_max - (self.z as $unsigned as $u_large);
- loop {
- let v: $u_large = rng.gen();
- let (hi, lo) = v.wmul(range);
- if lo <= zone {
- return self.low.wrapping_add(hi as $ty);
- }
- }
- } else {
- // Sample from the entire integer range.
- rng.gen()
- }
- }
-
- fn sample_single<R: Rng + ?Sized, B1, B2>(low_b: B1, high_b: B2, rng: &mut R)
- -> Self::X
- where B1: SampleBorrow<Self::X> + Sized,
- B2: SampleBorrow<Self::X> + Sized
- {
- let low = *low_b.borrow();
- let high = *high_b.borrow();
- assert!(low < high,
- "UniformSampler::sample_single: low >= high");
- let range = high.wrapping_sub(low) as $unsigned as $u_large;
- let zone =
- if ::core::$unsigned::MAX <= ::core::u16::MAX as $unsigned {
- // Using a modulus is faster than the approximation for
- // i8 and i16. I suppose we trade the cost of one
- // modulus for near-perfect branch prediction.
- let unsigned_max: $u_large = ::core::$u_large::MAX;
- let ints_to_reject = (unsigned_max - range + 1) % range;
- unsigned_max - ints_to_reject
- } else {
- // conservative but fast approximation. `- 1` is necessary to allow the
- // same comparison without bias.
- (range << range.leading_zeros()).wrapping_sub(1)
- };
-
- loop {
- let v: $u_large = rng.gen();
- let (hi, lo) = v.wmul(range);
- if lo <= zone {
- return low.wrapping_add(hi as $ty);
- }
- }
- }
- }
- }
-}
-
-uniform_int_impl! { i8, u8, u32 }
-uniform_int_impl! { i16, u16, u32 }
-uniform_int_impl! { i32, u32, u32 }
-uniform_int_impl! { i64, u64, u64 }
-#[cfg(not(target_os = "emscripten"))]
-uniform_int_impl! { i128, u128, u128 }
-uniform_int_impl! { isize, usize, usize }
-uniform_int_impl! { u8, u8, u32 }
-uniform_int_impl! { u16, u16, u32 }
-uniform_int_impl! { u32, u32, u32 }
-uniform_int_impl! { u64, u64, u64 }
-uniform_int_impl! { usize, usize, usize }
-#[cfg(not(target_os = "emscripten"))]
-uniform_int_impl! { u128, u128, u128 }
-
-#[cfg(all(feature = "simd_support", feature = "nightly"))]
-macro_rules! uniform_simd_int_impl {
- ($ty:ident, $unsigned:ident, $u_scalar:ident) => {
- // The "pick the largest zone that can fit in an `u32`" optimization
- // is less useful here. Multiple lanes complicate things, we don't
- // know the PRNG's minimal output size, and casting to a larger vector
- // is generally a bad idea for SIMD performance. The user can still
- // implement it manually.
-
- // TODO: look into `Uniform::<u32x4>::new(0u32, 100)` functionality
- // perhaps `impl SampleUniform for $u_scalar`?
- impl SampleUniform for $ty {
- type Sampler = UniformInt<$ty>;
- }
-
- impl UniformSampler for UniformInt<$ty> {
- type X = $ty;
-
- #[inline] // if the range is constant, this helps LLVM to do the
- // calculations at compile-time.
- fn new<B1, B2>(low_b: B1, high_b: B2) -> Self
- where B1: SampleBorrow<Self::X> + Sized,
- B2: SampleBorrow<Self::X> + Sized
- {
- let low = *low_b.borrow();
- let high = *high_b.borrow();
- assert!(low.lt(high).all(), "Uniform::new called with `low >= high`");
- UniformSampler::new_inclusive(low, high - 1)
- }
-
- #[inline] // if the range is constant, this helps LLVM to do the
- // calculations at compile-time.
- fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self
- where B1: SampleBorrow<Self::X> + Sized,
- B2: SampleBorrow<Self::X> + Sized
- {
- let low = *low_b.borrow();
- let high = *high_b.borrow();
- assert!(low.le(high).all(),
- "Uniform::new_inclusive called with `low > high`");
- let unsigned_max = ::core::$u_scalar::MAX;
-
- // NOTE: these may need to be replaced with explicitly
- // wrapping operations if `packed_simd` changes
- let range: $unsigned = ((high - low) + 1).cast();
- // `% 0` will panic at runtime.
- let not_full_range = range.gt($unsigned::splat(0));
- // replacing 0 with `unsigned_max` allows a faster `select`
- // with bitwise OR
- let modulo = not_full_range.select(range, $unsigned::splat(unsigned_max));
- // wrapping addition
- let ints_to_reject = (unsigned_max - range + 1) % modulo;
- // When `range` is 0, `lo` of `v.wmul(range)` will always be
- // zero which means only one sample is needed.
- let zone = unsigned_max - ints_to_reject;
-
- UniformInt {
- low: low,
- // These are really $unsigned values, but store as $ty:
- range: range.cast(),
- z: zone.cast(),
- }
- }
-
- fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
- let range: $unsigned = self.range.cast();
- let zone: $unsigned = self.z.cast();
-
- // This might seem very slow, generating a whole new
- // SIMD vector for every sample rejection. For most uses
- // though, the chance of rejection is small and provides good
- // general performance. With multiple lanes, that chance is
- // multiplied. To mitigate this, we replace only the lanes of
- // the vector which fail, iteratively reducing the chance of
- // rejection. The replacement method does however add a little
- // overhead. Benchmarking or calculating probabilities might
- // reveal contexts where this replacement method is slower.
- let mut v: $unsigned = rng.gen();
- loop {
- let (hi, lo) = v.wmul(range);
- let mask = lo.le(zone);
- if mask.all() {
- let hi: $ty = hi.cast();
- // wrapping addition
- let result = self.low + hi;
- // `select` here compiles to a blend operation
- // When `range.eq(0).none()` the compare and blend
- // operations are avoided.
- let v: $ty = v.cast();
- return range.gt($unsigned::splat(0)).select(result, v);
- }
- // Replace only the failing lanes
- v = mask.select(v, rng.gen());
- }
- }
- }
- };
-
- // bulk implementation
- ($(($unsigned:ident, $signed:ident),)+ $u_scalar:ident) => {
- $(
- uniform_simd_int_impl!($unsigned, $unsigned, $u_scalar);
- uniform_simd_int_impl!($signed, $unsigned, $u_scalar);
- )+
- };
-}
-
-#[cfg(all(feature = "simd_support", feature = "nightly"))]
-uniform_simd_int_impl! {
- (u64x2, i64x2),
- (u64x4, i64x4),
- (u64x8, i64x8),
- u64
-}
-
-#[cfg(all(feature = "simd_support", feature = "nightly"))]
-uniform_simd_int_impl! {
- (u32x2, i32x2),
- (u32x4, i32x4),
- (u32x8, i32x8),
- (u32x16, i32x16),
- u32
-}
-
-#[cfg(all(feature = "simd_support", feature = "nightly"))]
-uniform_simd_int_impl! {
- (u16x2, i16x2),
- (u16x4, i16x4),
- (u16x8, i16x8),
- (u16x16, i16x16),
- (u16x32, i16x32),
- u16
-}
-
-#[cfg(all(feature = "simd_support", feature = "nightly"))]
-uniform_simd_int_impl! {
- (u8x2, i8x2),
- (u8x4, i8x4),
- (u8x8, i8x8),
- (u8x16, i8x16),
- (u8x32, i8x32),
- (u8x64, i8x64),
- u8
-}
-
-
-/// The back-end implementing [`UniformSampler`] for floating-point types.
-///
-/// Unless you are implementing [`UniformSampler`] for your own type, this type
-/// should not be used directly, use [`Uniform`] instead.
-///
-/// # Implementation notes
-///
-/// Instead of generating a float in the `[0, 1)` range using [`Standard`], the
-/// `UniformFloat` implementation converts the output of an PRNG itself. This
-/// way one or two steps can be optimized out.
-///
-/// The floats are first converted to a value in the `[1, 2)` interval using a
-/// transmute-based method, and then mapped to the expected range with a
-/// multiply and addition. Values produced this way have what equals 22 bits of
-/// random digits for an `f32`, and 52 for an `f64`.
-///
-/// [`new`]: UniformSampler::new
-/// [`new_inclusive`]: UniformSampler::new_inclusive
-/// [`Standard`]: crate::distributions::Standard
-#[derive(Clone, Copy, Debug)]
-pub struct UniformFloat<X> {
- low: X,
- scale: X,
-}
-
-macro_rules! uniform_float_impl {
- ($ty:ty, $uty:ident, $f_scalar:ident, $u_scalar:ident, $bits_to_discard:expr) => {
- impl SampleUniform for $ty {
- type Sampler = UniformFloat<$ty>;
- }
-
- impl UniformSampler for UniformFloat<$ty> {
- type X = $ty;
-
- fn new<B1, B2>(low_b: B1, high_b: B2) -> Self
- where B1: SampleBorrow<Self::X> + Sized,
- B2: SampleBorrow<Self::X> + Sized
- {
- let low = *low_b.borrow();
- let high = *high_b.borrow();
- assert!(low.all_lt(high),
- "Uniform::new called with `low >= high`");
- assert!(low.all_finite() && high.all_finite(),
- "Uniform::new called with non-finite boundaries");
- let max_rand = <$ty>::splat((::core::$u_scalar::MAX >> $bits_to_discard)
- .into_float_with_exponent(0) - 1.0);
-
- let mut scale = high - low;
-
- loop {
- let mask = (scale * max_rand + low).ge_mask(high);
- if mask.none() {
- break;
- }
- scale = scale.decrease_masked(mask);
- }
-
- debug_assert!(<$ty>::splat(0.0).all_le(scale));
-
- UniformFloat { low, scale }
- }
-
- fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self
- where B1: SampleBorrow<Self::X> + Sized,
- B2: SampleBorrow<Self::X> + Sized
- {
- let low = *low_b.borrow();
- let high = *high_b.borrow();
- assert!(low.all_le(high),
- "Uniform::new_inclusive called with `low > high`");
- assert!(low.all_finite() && high.all_finite(),
- "Uniform::new_inclusive called with non-finite boundaries");
- let max_rand = <$ty>::splat((::core::$u_scalar::MAX >> $bits_to_discard)
- .into_float_with_exponent(0) - 1.0);
-
- let mut scale = (high - low) / max_rand;
-
- loop {
- let mask = (scale * max_rand + low).gt_mask(high);
- if mask.none() {
- break;
- }
- scale = scale.decrease_masked(mask);
- }
-
- debug_assert!(<$ty>::splat(0.0).all_le(scale));
-
- UniformFloat { low, scale }
- }
-
- fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
- // Generate a value in the range [1, 2)
- let value1_2 = (rng.gen::<$uty>() >> $bits_to_discard)
- .into_float_with_exponent(0);
-
- // Get a value in the range [0, 1) in order to avoid
- // overflowing into infinity when multiplying with scale
- let value0_1 = value1_2 - 1.0;
-
- // We don't use `f64::mul_add`, because it is not available with
- // `no_std`. Furthermore, it is slower for some targets (but
- // faster for others). However, the order of multiplication and
- // addition is important, because on some platforms (e.g. ARM)
- // it will be optimized to a single (non-FMA) instruction.
- value0_1 * self.scale + self.low
- }
-
- #[inline]
- fn sample_single<R: Rng + ?Sized, B1, B2>(low_b: B1, high_b: B2, rng: &mut R)
- -> Self::X
- where B1: SampleBorrow<Self::X> + Sized,
- B2: SampleBorrow<Self::X> + Sized
- {
- let low = *low_b.borrow();
- let high = *high_b.borrow();
- assert!(low.all_lt(high),
- "UniformSampler::sample_single: low >= high");
- let mut scale = high - low;
-
- loop {
- // Generate a value in the range [1, 2)
- let value1_2 = (rng.gen::<$uty>() >> $bits_to_discard)
- .into_float_with_exponent(0);
-
- // Get a value in the range [0, 1) in order to avoid
- // overflowing into infinity when multiplying with scale
- let value0_1 = value1_2 - 1.0;
-
- // Doing multiply before addition allows some architectures
- // to use a single instruction.
- let res = value0_1 * scale + low;
-
- debug_assert!(low.all_le(res) || !scale.all_finite());
- if res.all_lt(high) {
- return res;
- }
-
- // This handles a number of edge cases.
- // * `low` or `high` is NaN. In this case `scale` and
- // `res` are going to end up as NaN.
- // * `low` is negative infinity and `high` is finite.
- // `scale` is going to be infinite and `res` will be
- // NaN.
- // * `high` is positive infinity and `low` is finite.
- // `scale` is going to be infinite and `res` will
- // be infinite or NaN (if value0_1 is 0).
- // * `low` is negative infinity and `high` is positive
- // infinity. `scale` will be infinite and `res` will
- // be NaN.
- // * `low` and `high` are finite, but `high - low`
- // overflows to infinite. `scale` will be infinite
- // and `res` will be infinite or NaN (if value0_1 is 0).
- // So if `high` or `low` are non-finite, we are guaranteed
- // to fail the `res < high` check above and end up here.
- //
- // While we technically should check for non-finite `low`
- // and `high` before entering the loop, by doing the checks
- // here instead, we allow the common case to avoid these
- // checks. But we are still guaranteed that if `low` or
- // `high` are non-finite we'll end up here and can do the
- // appropriate checks.
- //
- // Likewise `high - low` overflowing to infinity is also
- // rare, so handle it here after the common case.
- let mask = !scale.finite_mask();
- if mask.any() {
- assert!(low.all_finite() && high.all_finite(),
- "Uniform::sample_single: low and high must be finite");
- scale = scale.decrease_masked(mask);
- }
- }
- }
- }
- }
-}
-
-uniform_float_impl! { f32, u32, f32, u32, 32 - 23 }
-uniform_float_impl! { f64, u64, f64, u64, 64 - 52 }
-
-#[cfg(feature="simd_support")]
-uniform_float_impl! { f32x2, u32x2, f32, u32, 32 - 23 }
-#[cfg(feature="simd_support")]
-uniform_float_impl! { f32x4, u32x4, f32, u32, 32 - 23 }
-#[cfg(feature="simd_support")]
-uniform_float_impl! { f32x8, u32x8, f32, u32, 32 - 23 }
-#[cfg(feature="simd_support")]
-uniform_float_impl! { f32x16, u32x16, f32, u32, 32 - 23 }
-
-#[cfg(feature="simd_support")]
-uniform_float_impl! { f64x2, u64x2, f64, u64, 64 - 52 }
-#[cfg(feature="simd_support")]
-uniform_float_impl! { f64x4, u64x4, f64, u64, 64 - 52 }
-#[cfg(feature="simd_support")]
-uniform_float_impl! { f64x8, u64x8, f64, u64, 64 - 52 }
-
-
-
-/// The back-end implementing [`UniformSampler`] for `Duration`.
-///
-/// Unless you are implementing [`UniformSampler`] for your own types, this type
-/// should not be used directly, use [`Uniform`] instead.
-#[derive(Clone, Copy, Debug)]
-pub struct UniformDuration {
- mode: UniformDurationMode,
- offset: u32,
-}
-
-#[derive(Debug, Copy, Clone)]
-enum UniformDurationMode {
- Small {
- secs: u64,
- nanos: Uniform<u32>,
- },
- Medium {
- nanos: Uniform<u64>,
- },
- Large {
- max_secs: u64,
- max_nanos: u32,
- secs: Uniform<u64>,
- }
-}
-
-impl SampleUniform for Duration {
- type Sampler = UniformDuration;
-}
-
-impl UniformSampler for UniformDuration {
- type X = Duration;
-
- #[inline]
- fn new<B1, B2>(low_b: B1, high_b: B2) -> Self
- where B1: SampleBorrow<Self::X> + Sized,
- B2: SampleBorrow<Self::X> + Sized
- {
- let low = *low_b.borrow();
- let high = *high_b.borrow();
- assert!(low < high, "Uniform::new called with `low >= high`");
- UniformDuration::new_inclusive(low, high - Duration::new(0, 1))
- }
-
- #[inline]
- fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self
- where B1: SampleBorrow<Self::X> + Sized,
- B2: SampleBorrow<Self::X> + Sized
- {
- let low = *low_b.borrow();
- let high = *high_b.borrow();
- assert!(low <= high, "Uniform::new_inclusive called with `low > high`");
-
- let low_s = low.as_secs();
- let low_n = low.subsec_nanos();
- let mut high_s = high.as_secs();
- let mut high_n = high.subsec_nanos();
-
- if high_n < low_n {
- high_s -= 1;
- high_n += 1_000_000_000;
- }
-
- let mode = if low_s == high_s {
- UniformDurationMode::Small {
- secs: low_s,
- nanos: Uniform::new_inclusive(low_n, high_n),
- }
- } else {
- let max = high_s
- .checked_mul(1_000_000_000)
- .and_then(|n| n.checked_add(u64::from(high_n)));
-
- if let Some(higher_bound) = max {
- let lower_bound = low_s * 1_000_000_000 + u64::from(low_n);
- UniformDurationMode::Medium {
- nanos: Uniform::new_inclusive(lower_bound, higher_bound),
- }
- } else {
- // An offset is applied to simplify generation of nanoseconds
- let max_nanos = high_n - low_n;
- UniformDurationMode::Large {
- max_secs: high_s,
- max_nanos,
- secs: Uniform::new_inclusive(low_s, high_s),
- }
- }
- };
- UniformDuration {
- mode,
- offset: low_n,
- }
- }
-
- #[inline]
- fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Duration {
- match self.mode {
- UniformDurationMode::Small { secs, nanos } => {
- let n = nanos.sample(rng);
- Duration::new(secs, n)
- }
- UniformDurationMode::Medium { nanos } => {
- let nanos = nanos.sample(rng);
- Duration::new(nanos / 1_000_000_000, (nanos % 1_000_000_000) as u32)
- }
- UniformDurationMode::Large { max_secs, max_nanos, secs } => {
- // constant folding means this is at least as fast as `gen_range`
- let nano_range = Uniform::new(0, 1_000_000_000);
- loop {
- let s = secs.sample(rng);
- let n = nano_range.sample(rng);
- if !(s == max_secs && n > max_nanos) {
- let sum = n + self.offset;
- break Duration::new(s, sum);
- }
- }
- }
- }
- }
-}
-
-#[cfg(test)]
-mod tests {
- use crate::Rng;
- use crate::rngs::mock::StepRng;
- use crate::distributions::uniform::Uniform;
- use crate::distributions::utils::FloatAsSIMD;
- #[cfg(feature="simd_support")] use packed_simd::*;
-
- #[should_panic]
- #[test]
- fn test_uniform_bad_limits_equal_int() {
- Uniform::new(10, 10);
- }
-
- #[test]
- fn test_uniform_good_limits_equal_int() {
- let mut rng = crate::test::rng(804);
- let dist = Uniform::new_inclusive(10, 10);
- for _ in 0..20 {
- assert_eq!(rng.sample(dist), 10);
- }
- }
-
- #[should_panic]
- #[test]
- fn test_uniform_bad_limits_flipped_int() {
- Uniform::new(10, 5);
- }
-
- #[test]
- #[cfg(not(miri))] // Miri is too slow
- fn test_integers() {
- use core::{i8, i16, i32, i64, isize};
- use core::{u8, u16, u32, u64, usize};
- #[cfg(not(target_os = "emscripten"))]
- use core::{i128, u128};
-
- let mut rng = crate::test::rng(251);
- macro_rules! t {
- ($ty:ident, $v:expr, $le:expr, $lt:expr) => {{
- for &(low, high) in $v.iter() {
- let my_uniform = Uniform::new(low, high);
- for _ in 0..1000 {
- let v: $ty = rng.sample(my_uniform);
- assert!($le(low, v) && $lt(v, high));
- }
-
- let my_uniform = Uniform::new_inclusive(low, high);
- for _ in 0..1000 {
- let v: $ty = rng.sample(my_uniform);
- assert!($le(low, v) && $le(v, high));
- }
-
- let my_uniform = Uniform::new(&low, high);
- for _ in 0..1000 {
- let v: $ty = rng.sample(my_uniform);
- assert!($le(low, v) && $lt(v, high));
- }
-
- let my_uniform = Uniform::new_inclusive(&low, &high);
- for _ in 0..1000 {
- let v: $ty = rng.sample(my_uniform);
- assert!($le(low, v) && $le(v, high));
- }
-
- for _ in 0..1000 {
- let v: $ty = rng.gen_range(low, high);
- assert!($le(low, v) && $lt(v, high));
- }
- }
- }};
-
- // scalar bulk
- ($($ty:ident),*) => {{
- $(t!(
- $ty,
- [(0, 10), (10, 127), ($ty::MIN, $ty::MAX)],
- |x, y| x <= y,
- |x, y| x < y
- );)*
- }};
-
- // simd bulk
- ($($ty:ident),* => $scalar:ident) => {{
- $(t!(
- $ty,
- [
- ($ty::splat(0), $ty::splat(10)),
- ($ty::splat(10), $ty::splat(127)),
- ($ty::splat($scalar::MIN), $ty::splat($scalar::MAX)),
- ],
- |x: $ty, y| x.le(y).all(),
- |x: $ty, y| x.lt(y).all()
- );)*
- }};
- }
- t!(i8, i16, i32, i64, isize,
- u8, u16, u32, u64, usize);
- #[cfg(not(target_os = "emscripten"))]
- t!(i128, u128);
-
- #[cfg(all(feature = "simd_support", feature = "nightly"))]
- {
- t!(u8x2, u8x4, u8x8, u8x16, u8x32, u8x64 => u8);
- t!(i8x2, i8x4, i8x8, i8x16, i8x32, i8x64 => i8);
- t!(u16x2, u16x4, u16x8, u16x16, u16x32 => u16);
- t!(i16x2, i16x4, i16x8, i16x16, i16x32 => i16);
- t!(u32x2, u32x4, u32x8, u32x16 => u32);
- t!(i32x2, i32x4, i32x8, i32x16 => i32);
- t!(u64x2, u64x4, u64x8 => u64);
- t!(i64x2, i64x4, i64x8 => i64);
- }
- }
-
- #[test]
- #[cfg(not(miri))] // Miri is too slow
- fn test_floats() {
- let mut rng = crate::test::rng(252);
- let mut zero_rng = StepRng::new(0, 0);
- let mut max_rng = StepRng::new(0xffff_ffff_ffff_ffff, 0);
- macro_rules! t {
- ($ty:ty, $f_scalar:ident, $bits_shifted:expr) => {{
- let v: &[($f_scalar, $f_scalar)]=
- &[(0.0, 100.0),
- (-1e35, -1e25),
- (1e-35, 1e-25),
- (-1e35, 1e35),
- (<$f_scalar>::from_bits(0), <$f_scalar>::from_bits(3)),
- (-<$f_scalar>::from_bits(10), -<$f_scalar>::from_bits(1)),
- (-<$f_scalar>::from_bits(5), 0.0),
- (-<$f_scalar>::from_bits(7), -0.0),
- (10.0, ::core::$f_scalar::MAX),
- (-100.0, ::core::$f_scalar::MAX),
- (-::core::$f_scalar::MAX / 5.0, ::core::$f_scalar::MAX),
- (-::core::$f_scalar::MAX, ::core::$f_scalar::MAX / 5.0),
- (-::core::$f_scalar::MAX * 0.8, ::core::$f_scalar::MAX * 0.7),
- (-::core::$f_scalar::MAX, ::core::$f_scalar::MAX),
- ];
- for &(low_scalar, high_scalar) in v.iter() {
- for lane in 0..<$ty>::lanes() {
- let low = <$ty>::splat(0.0 as $f_scalar).replace(lane, low_scalar);
- let high = <$ty>::splat(1.0 as $f_scalar).replace(lane, high_scalar);
- let my_uniform = Uniform::new(low, high);
- let my_incl_uniform = Uniform::new_inclusive(low, high);
- for _ in 0..100 {
- let v = rng.sample(my_uniform).extract(lane);
- assert!(low_scalar <= v && v < high_scalar);
- let v = rng.sample(my_incl_uniform).extract(lane);
- assert!(low_scalar <= v && v <= high_scalar);
- let v = rng.gen_range(low, high).extract(lane);
- assert!(low_scalar <= v && v < high_scalar);
- }
-
- assert_eq!(rng.sample(Uniform::new_inclusive(low, low)).extract(lane), low_scalar);
-
- assert_eq!(zero_rng.sample(my_uniform).extract(lane), low_scalar);
- assert_eq!(zero_rng.sample(my_incl_uniform).extract(lane), low_scalar);
- assert_eq!(zero_rng.gen_range(low, high).extract(lane), low_scalar);
- assert!(max_rng.sample(my_uniform).extract(lane) < high_scalar);
- assert!(max_rng.sample(my_incl_uniform).extract(lane) <= high_scalar);
-
- // Don't run this test for really tiny differences between high and low
- // since for those rounding might result in selecting high for a very
- // long time.
- if (high_scalar - low_scalar) > 0.0001 {
- let mut lowering_max_rng =
- StepRng::new(0xffff_ffff_ffff_ffff,
- (-1i64 << $bits_shifted) as u64);
- assert!(lowering_max_rng.gen_range(low, high).extract(lane) < high_scalar);
- }
- }
- }
-
- assert_eq!(rng.sample(Uniform::new_inclusive(::core::$f_scalar::MAX,
- ::core::$f_scalar::MAX)),
- ::core::$f_scalar::MAX);
- assert_eq!(rng.sample(Uniform::new_inclusive(-::core::$f_scalar::MAX,
- -::core::$f_scalar::MAX)),
- -::core::$f_scalar::MAX);
- }}
- }
-
- t!(f32, f32, 32 - 23);
- t!(f64, f64, 64 - 52);
- #[cfg(feature="simd_support")]
- {
- t!(f32x2, f32, 32 - 23);
- t!(f32x4, f32, 32 - 23);
- t!(f32x8, f32, 32 - 23);
- t!(f32x16, f32, 32 - 23);
- t!(f64x2, f64, 64 - 52);
- t!(f64x4, f64, 64 - 52);
- t!(f64x8, f64, 64 - 52);
- }
- }
-
- #[test]
- #[cfg(all(feature="std",
- not(target_arch = "wasm32"),
- not(target_arch = "asmjs")))]
- #[cfg(not(miri))] // Miri does not support catching panics
- fn test_float_assertions() {
- use std::panic::catch_unwind;
- use super::SampleUniform;
- fn range<T: SampleUniform>(low: T, high: T) {
- let mut rng = crate::test::rng(253);
- rng.gen_range(low, high);
- }
-
- macro_rules! t {
- ($ty:ident, $f_scalar:ident) => {{
- let v: &[($f_scalar, $f_scalar)] =
- &[(::std::$f_scalar::NAN, 0.0),
- (1.0, ::std::$f_scalar::NAN),
- (::std::$f_scalar::NAN, ::std::$f_scalar::NAN),
- (1.0, 0.5),
- (::std::$f_scalar::MAX, -::std::$f_scalar::MAX),
- (::std::$f_scalar::INFINITY, ::std::$f_scalar::INFINITY),
- (::std::$f_scalar::NEG_INFINITY, ::std::$f_scalar::NEG_INFINITY),
- (::std::$f_scalar::NEG_INFINITY, 5.0),
- (5.0, ::std::$f_scalar::INFINITY),
- (::std::$f_scalar::NAN, ::std::$f_scalar::INFINITY),
- (::std::$f_scalar::NEG_INFINITY, ::std::$f_scalar::NAN),
- (::std::$f_scalar::NEG_INFINITY, ::std::$f_scalar::INFINITY),
- ];
- for &(low_scalar, high_scalar) in v.iter() {
- for lane in 0..<$ty>::lanes() {
- let low = <$ty>::splat(0.0 as $f_scalar).replace(lane, low_scalar);
- let high = <$ty>::splat(1.0 as $f_scalar).replace(lane, high_scalar);
- assert!(catch_unwind(|| range(low, high)).is_err());
- assert!(catch_unwind(|| Uniform::new(low, high)).is_err());
- assert!(catch_unwind(|| Uniform::new_inclusive(low, high)).is_err());
- assert!(catch_unwind(|| range(low, low)).is_err());
- assert!(catch_unwind(|| Uniform::new(low, low)).is_err());
- }
- }
- }}
- }
-
- t!(f32, f32);
- t!(f64, f64);
- #[cfg(feature="simd_support")]
- {
- t!(f32x2, f32);
- t!(f32x4, f32);
- t!(f32x8, f32);
- t!(f32x16, f32);
- t!(f64x2, f64);
- t!(f64x4, f64);
- t!(f64x8, f64);
- }
- }
-
-
- #[test]
- #[cfg(not(miri))] // Miri is too slow
- fn test_durations() {
- #[cfg(feature = "std")]
- use std::time::Duration;
- #[cfg(not(feature = "std"))]
- use core::time::Duration;
-
- let mut rng = crate::test::rng(253);
-
- let v = &[(Duration::new(10, 50000), Duration::new(100, 1234)),
- (Duration::new(0, 100), Duration::new(1, 50)),
- (Duration::new(0, 0), Duration::new(u64::max_value(), 999_999_999))];
- for &(low, high) in v.iter() {
- let my_uniform = Uniform::new(low, high);
- for _ in 0..1000 {
- let v = rng.sample(my_uniform);
- assert!(low <= v && v < high);
- }
- }
- }
-
- #[test]
- fn test_custom_uniform() {
- use crate::distributions::uniform::{UniformSampler, UniformFloat, SampleUniform, SampleBorrow};
- #[derive(Clone, Copy, PartialEq, PartialOrd)]
- struct MyF32 {
- x: f32,
- }
- #[derive(Clone, Copy, Debug)]
- struct UniformMyF32 {
- inner: UniformFloat<f32>,
- }
- impl UniformSampler for UniformMyF32 {
- type X = MyF32;
- fn new<B1, B2>(low: B1, high: B2) -> Self
- where B1: SampleBorrow<Self::X> + Sized,
- B2: SampleBorrow<Self::X> + Sized
- {
- UniformMyF32 {
- inner: UniformFloat::<f32>::new(low.borrow().x, high.borrow().x),
- }
- }
- fn new_inclusive<B1, B2>(low: B1, high: B2) -> Self
- where B1: SampleBorrow<Self::X> + Sized,
- B2: SampleBorrow<Self::X> + Sized
- {
- UniformSampler::new(low, high)
- }
- fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
- MyF32 { x: self.inner.sample(rng) }
- }
- }
- impl SampleUniform for MyF32 {
- type Sampler = UniformMyF32;
- }
-
- let (low, high) = (MyF32{ x: 17.0f32 }, MyF32{ x: 22.0f32 });
- let uniform = Uniform::new(low, high);
- let mut rng = crate::test::rng(804);
- for _ in 0..100 {
- let x: MyF32 = rng.sample(uniform);
- assert!(low <= x && x < high);
- }
- }
-
- #[test]
- fn test_uniform_from_std_range() {
- let r = Uniform::from(2u32..7);
- assert_eq!(r.inner.low, 2);
- assert_eq!(r.inner.range, 5);
- let r = Uniform::from(2.0f64..7.0);
- assert_eq!(r.inner.low, 2.0);
- assert_eq!(r.inner.scale, 5.0);
- }
-
- #[test]
- fn test_uniform_from_std_range_inclusive() {
- let r = Uniform::from(2u32..=6);
- assert_eq!(r.inner.low, 2);
- assert_eq!(r.inner.range, 5);
- let r = Uniform::from(2.0f64..=7.0);
- assert_eq!(r.inner.low, 2.0);
- assert!(r.inner.scale > 5.0);
- assert!(r.inner.scale < 5.0 + 1e-14);
- }
-}