summaryrefslogtreecommitdiff
path: root/rand/src/distributions/uniform.rs
diff options
context:
space:
mode:
Diffstat (limited to 'rand/src/distributions/uniform.rs')
-rw-r--r--rand/src/distributions/uniform.rs1297
1 files changed, 1297 insertions, 0 deletions
diff --git a/rand/src/distributions/uniform.rs b/rand/src/distributions/uniform.rs
new file mode 100644
index 0000000..5fb89e3
--- /dev/null
+++ b/rand/src/distributions/uniform.rs
@@ -0,0 +1,1297 @@
+// Copyright 2018 Developers of the Rand project.
+// Copyright 2017 The Rust Project Developers.
+//
+// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
+// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
+// option. This file may not be copied, modified, or distributed
+// except according to those terms.
+
+//! A distribution uniformly sampling numbers within a given range.
+//!
+//! [`Uniform`] is the standard distribution to sample uniformly from a range;
+//! e.g. `Uniform::new_inclusive(1, 6)` can sample integers from 1 to 6, like a
+//! standard die. [`Rng::gen_range`] supports any type supported by
+//! [`Uniform`].
+//!
+//! This distribution is provided with support for several primitive types
+//! (all integer and floating-point types) as well as `std::time::Duration`,
+//! and supports extension to user-defined types via a type-specific *back-end*
+//! implementation.
+//!
+//! The types [`UniformInt`], [`UniformFloat`] and [`UniformDuration`] are the
+//! back-ends supporting sampling from primitive integer and floating-point
+//! ranges as well as from `std::time::Duration`; these types do not normally
+//! need to be used directly (unless implementing a derived back-end).
+//!
+//! # Example usage
+//!
+//! ```
+//! use rand::{Rng, thread_rng};
+//! use rand::distributions::Uniform;
+//!
+//! let mut rng = thread_rng();
+//! let side = Uniform::new(-10.0, 10.0);
+//!
+//! // sample between 1 and 10 points
+//! for _ in 0..rng.gen_range(1, 11) {
+//! // sample a point from the square with sides -10 - 10 in two dimensions
+//! let (x, y) = (rng.sample(side), rng.sample(side));
+//! println!("Point: {}, {}", x, y);
+//! }
+//! ```
+//!
+//! # Extending `Uniform` to support a custom type
+//!
+//! To extend [`Uniform`] to support your own types, write a back-end which
+//! implements the [`UniformSampler`] trait, then implement the [`SampleUniform`]
+//! helper trait to "register" your back-end. See the `MyF32` example below.
+//!
+//! At a minimum, the back-end needs to store any parameters needed for sampling
+//! (e.g. the target range) and implement `new`, `new_inclusive` and `sample`.
+//! Those methods should include an assert to check the range is valid (i.e.
+//! `low < high`). The example below merely wraps another back-end.
+//!
+//! The `new`, `new_inclusive` and `sample_single` functions use arguments of
+//! type SampleBorrow<X> in order to support passing in values by reference or
+//! by value. In the implementation of these functions, you can choose to
+//! simply use the reference returned by [`SampleBorrow::borrow`], or you can choose
+//! to copy or clone the value, whatever is appropriate for your type.
+//!
+//! ```
+//! use rand::prelude::*;
+//! use rand::distributions::uniform::{Uniform, SampleUniform,
+//! UniformSampler, UniformFloat, SampleBorrow};
+//!
+//! struct MyF32(f32);
+//!
+//! #[derive(Clone, Copy, Debug)]
+//! struct UniformMyF32 {
+//! inner: UniformFloat<f32>,
+//! }
+//!
+//! impl UniformSampler for UniformMyF32 {
+//! type X = MyF32;
+//! fn new<B1, B2>(low: B1, high: B2) -> Self
+//! where B1: SampleBorrow<Self::X> + Sized,
+//! B2: SampleBorrow<Self::X> + Sized
+//! {
+//! UniformMyF32 {
+//! inner: UniformFloat::<f32>::new(low.borrow().0, high.borrow().0),
+//! }
+//! }
+//! fn new_inclusive<B1, B2>(low: B1, high: B2) -> Self
+//! where B1: SampleBorrow<Self::X> + Sized,
+//! B2: SampleBorrow<Self::X> + Sized
+//! {
+//! UniformSampler::new(low, high)
+//! }
+//! fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
+//! MyF32(self.inner.sample(rng))
+//! }
+//! }
+//!
+//! impl SampleUniform for MyF32 {
+//! type Sampler = UniformMyF32;
+//! }
+//!
+//! let (low, high) = (MyF32(17.0f32), MyF32(22.0f32));
+//! let uniform = Uniform::new(low, high);
+//! let x = uniform.sample(&mut thread_rng());
+//! ```
+//!
+//! [`Uniform`]: struct.Uniform.html
+//! [`Rng::gen_range`]: ../../trait.Rng.html#method.gen_range
+//! [`SampleUniform`]: trait.SampleUniform.html
+//! [`UniformSampler`]: trait.UniformSampler.html
+//! [`UniformInt`]: struct.UniformInt.html
+//! [`UniformFloat`]: struct.UniformFloat.html
+//! [`UniformDuration`]: struct.UniformDuration.html
+//! [`SampleBorrow::borrow`]: trait.SampleBorrow.html#method.borrow
+
+#[cfg(feature = "std")]
+use std::time::Duration;
+#[cfg(all(not(feature = "std"), rust_1_25))]
+use core::time::Duration;
+
+use Rng;
+use distributions::Distribution;
+use distributions::float::IntoFloat;
+use distributions::utils::{WideningMultiply, FloatSIMDUtils, FloatAsSIMD, BoolAsSIMD};
+
+#[cfg(not(feature = "std"))]
+#[allow(unused_imports)] // rustc doesn't detect that this is actually used
+use distributions::utils::Float;
+
+
+#[cfg(feature="simd_support")]
+use packed_simd::*;
+
+/// Sample values uniformly between two bounds.
+///
+/// [`Uniform::new`] and [`Uniform::new_inclusive`] construct a uniform
+/// distribution sampling from the given range; these functions may do extra
+/// work up front to make sampling of multiple values faster.
+///
+/// When sampling from a constant range, many calculations can happen at
+/// compile-time and all methods should be fast; for floating-point ranges and
+/// the full range of integer types this should have comparable performance to
+/// the `Standard` distribution.
+///
+/// Steps are taken to avoid bias which might be present in naive
+/// implementations; for example `rng.gen::<u8>() % 170` samples from the range
+/// `[0, 169]` but is twice as likely to select numbers less than 85 than other
+/// values. Further, the implementations here give more weight to the high-bits
+/// generated by the RNG than the low bits, since with some RNGs the low-bits
+/// are of lower quality than the high bits.
+///
+/// Implementations must sample in `[low, high)` range for
+/// `Uniform::new(low, high)`, i.e., excluding `high`. In particular care must
+/// be taken to ensure that rounding never results values `< low` or `>= high`.
+///
+/// # Example
+///
+/// ```
+/// use rand::distributions::{Distribution, Uniform};
+///
+/// fn main() {
+/// let between = Uniform::from(10..10000);
+/// let mut rng = rand::thread_rng();
+/// let mut sum = 0;
+/// for _ in 0..1000 {
+/// sum += between.sample(&mut rng);
+/// }
+/// println!("{}", sum);
+/// }
+/// ```
+///
+/// [`Uniform::new`]: struct.Uniform.html#method.new
+/// [`Uniform::new_inclusive`]: struct.Uniform.html#method.new_inclusive
+/// [`new`]: struct.Uniform.html#method.new
+/// [`new_inclusive`]: struct.Uniform.html#method.new_inclusive
+#[derive(Clone, Copy, Debug)]
+pub struct Uniform<X: SampleUniform> {
+ inner: X::Sampler,
+}
+
+impl<X: SampleUniform> Uniform<X> {
+ /// Create a new `Uniform` instance which samples uniformly from the half
+ /// open range `[low, high)` (excluding `high`). Panics if `low >= high`.
+ pub fn new<B1, B2>(low: B1, high: B2) -> Uniform<X>
+ where B1: SampleBorrow<X> + Sized,
+ B2: SampleBorrow<X> + Sized
+ {
+ Uniform { inner: X::Sampler::new(low, high) }
+ }
+
+ /// Create a new `Uniform` instance which samples uniformly from the closed
+ /// range `[low, high]` (inclusive). Panics if `low > high`.
+ pub fn new_inclusive<B1, B2>(low: B1, high: B2) -> Uniform<X>
+ where B1: SampleBorrow<X> + Sized,
+ B2: SampleBorrow<X> + Sized
+ {
+ Uniform { inner: X::Sampler::new_inclusive(low, high) }
+ }
+}
+
+impl<X: SampleUniform> Distribution<X> for Uniform<X> {
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> X {
+ self.inner.sample(rng)
+ }
+}
+
+/// Helper trait for creating objects using the correct implementation of
+/// [`UniformSampler`] for the sampling type.
+///
+/// See the [module documentation] on how to implement [`Uniform`] range
+/// sampling for a custom type.
+///
+/// [`UniformSampler`]: trait.UniformSampler.html
+/// [module documentation]: index.html
+/// [`Uniform`]: struct.Uniform.html
+pub trait SampleUniform: Sized {
+ /// The `UniformSampler` implementation supporting type `X`.
+ type Sampler: UniformSampler<X = Self>;
+}
+
+/// Helper trait handling actual uniform sampling.
+///
+/// See the [module documentation] on how to implement [`Uniform`] range
+/// sampling for a custom type.
+///
+/// Implementation of [`sample_single`] is optional, and is only useful when
+/// the implementation can be faster than `Self::new(low, high).sample(rng)`.
+///
+/// [module documentation]: index.html
+/// [`Uniform`]: struct.Uniform.html
+/// [`sample_single`]: trait.UniformSampler.html#method.sample_single
+pub trait UniformSampler: Sized {
+ /// The type sampled by this implementation.
+ type X;
+
+ /// Construct self, with inclusive lower bound and exclusive upper bound
+ /// `[low, high)`.
+ ///
+ /// Usually users should not call this directly but instead use
+ /// `Uniform::new`, which asserts that `low < high` before calling this.
+ fn new<B1, B2>(low: B1, high: B2) -> Self
+ where B1: SampleBorrow<Self::X> + Sized,
+ B2: SampleBorrow<Self::X> + Sized;
+
+ /// Construct self, with inclusive bounds `[low, high]`.
+ ///
+ /// Usually users should not call this directly but instead use
+ /// `Uniform::new_inclusive`, which asserts that `low <= high` before
+ /// calling this.
+ fn new_inclusive<B1, B2>(low: B1, high: B2) -> Self
+ where B1: SampleBorrow<Self::X> + Sized,
+ B2: SampleBorrow<Self::X> + Sized;
+
+ /// Sample a value.
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X;
+
+ /// Sample a single value uniformly from a range with inclusive lower bound
+ /// and exclusive upper bound `[low, high)`.
+ ///
+ /// Usually users should not call this directly but instead use
+ /// `Uniform::sample_single`, which asserts that `low < high` before calling
+ /// this.
+ ///
+ /// Via this method, implementations can provide a method optimized for
+ /// sampling only a single value from the specified range. The default
+ /// implementation simply calls `UniformSampler::new` then `sample` on the
+ /// result.
+ fn sample_single<R: Rng + ?Sized, B1, B2>(low: B1, high: B2, rng: &mut R)
+ -> Self::X
+ where B1: SampleBorrow<Self::X> + Sized,
+ B2: SampleBorrow<Self::X> + Sized
+ {
+ let uniform: Self = UniformSampler::new(low, high);
+ uniform.sample(rng)
+ }
+}
+
+impl<X: SampleUniform> From<::core::ops::Range<X>> for Uniform<X> {
+ fn from(r: ::core::ops::Range<X>) -> Uniform<X> {
+ Uniform::new(r.start, r.end)
+ }
+}
+
+#[cfg(rust_1_27)]
+impl<X: SampleUniform> From<::core::ops::RangeInclusive<X>> for Uniform<X> {
+ fn from(r: ::core::ops::RangeInclusive<X>) -> Uniform<X> {
+ Uniform::new_inclusive(r.start(), r.end())
+ }
+}
+
+/// Helper trait similar to [`Borrow`] but implemented
+/// only for SampleUniform and references to SampleUniform in
+/// order to resolve ambiguity issues.
+///
+/// [`Borrow`]: https://doc.rust-lang.org/std/borrow/trait.Borrow.html
+pub trait SampleBorrow<Borrowed> {
+ /// Immutably borrows from an owned value. See [`Borrow::borrow`]
+ ///
+ /// [`Borrow::borrow`]: https://doc.rust-lang.org/std/borrow/trait.Borrow.html#tymethod.borrow
+ fn borrow(&self) -> &Borrowed;
+}
+impl<Borrowed> SampleBorrow<Borrowed> for Borrowed where Borrowed: SampleUniform {
+ #[inline(always)]
+ fn borrow(&self) -> &Borrowed { self }
+}
+impl<'a, Borrowed> SampleBorrow<Borrowed> for &'a Borrowed where Borrowed: SampleUniform {
+ #[inline(always)]
+ fn borrow(&self) -> &Borrowed { *self }
+}
+
+////////////////////////////////////////////////////////////////////////////////
+
+// What follows are all back-ends.
+
+
+/// The back-end implementing [`UniformSampler`] for integer types.
+///
+/// Unless you are implementing [`UniformSampler`] for your own type, this type
+/// should not be used directly, use [`Uniform`] instead.
+///
+/// # Implementation notes
+///
+/// For a closed range, the number of possible numbers we should generate is
+/// `range = (high - low + 1)`. It is not possible to end up with a uniform
+/// distribution if we map *all* the random integers that can be generated to
+/// this range. We have to map integers from a `zone` that is a multiple of the
+/// range. The rest of the integers, that cause a bias, are rejected.
+///
+/// The problem with `range` is that to cover the full range of the type, it has
+/// to store `unsigned_max + 1`, which can't be represented. But if the range
+/// covers the full range of the type, no modulus is needed. A range of size 0
+/// can't exist, so we use that to represent this special case. Wrapping
+/// arithmetic even makes representing `unsigned_max + 1` as 0 simple.
+///
+/// We don't calculate `zone` directly, but first calculate the number of
+/// integers to reject. To handle `unsigned_max + 1` not fitting in the type,
+/// we use:
+/// `ints_to_reject = (unsigned_max + 1) % range;`
+/// `ints_to_reject = (unsigned_max - range + 1) % range;`
+///
+/// The smallest integer PRNGs generate is `u32`. That is why for small integer
+/// sizes (`i8`/`u8` and `i16`/`u16`) there is an optimization: don't pick the
+/// largest zone that can fit in the small type, but pick the largest zone that
+/// can fit in an `u32`. `ints_to_reject` is always less than half the size of
+/// the small integer. This means the first bit of `zone` is always 1, and so
+/// are all the other preceding bits of a larger integer. The easiest way to
+/// grow the `zone` for the larger type is to simply sign extend it.
+///
+/// An alternative to using a modulus is widening multiply: After a widening
+/// multiply by `range`, the result is in the high word. Then comparing the low
+/// word against `zone` makes sure our distribution is uniform.
+///
+/// [`UniformSampler`]: trait.UniformSampler.html
+/// [`Uniform`]: struct.Uniform.html
+#[derive(Clone, Copy, Debug)]
+pub struct UniformInt<X> {
+ low: X,
+ range: X,
+ zone: X,
+}
+
+macro_rules! uniform_int_impl {
+ ($ty:ty, $signed:ty, $unsigned:ident,
+ $i_large:ident, $u_large:ident) => {
+ impl SampleUniform for $ty {
+ type Sampler = UniformInt<$ty>;
+ }
+
+ impl UniformSampler for UniformInt<$ty> {
+ // We play free and fast with unsigned vs signed here
+ // (when $ty is signed), but that's fine, since the
+ // contract of this macro is for $ty and $unsigned to be
+ // "bit-equal", so casting between them is a no-op.
+
+ type X = $ty;
+
+ #[inline] // if the range is constant, this helps LLVM to do the
+ // calculations at compile-time.
+ fn new<B1, B2>(low_b: B1, high_b: B2) -> Self
+ where B1: SampleBorrow<Self::X> + Sized,
+ B2: SampleBorrow<Self::X> + Sized
+ {
+ let low = *low_b.borrow();
+ let high = *high_b.borrow();
+ assert!(low < high, "Uniform::new called with `low >= high`");
+ UniformSampler::new_inclusive(low, high - 1)
+ }
+
+ #[inline] // if the range is constant, this helps LLVM to do the
+ // calculations at compile-time.
+ fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self
+ where B1: SampleBorrow<Self::X> + Sized,
+ B2: SampleBorrow<Self::X> + Sized
+ {
+ let low = *low_b.borrow();
+ let high = *high_b.borrow();
+ assert!(low <= high,
+ "Uniform::new_inclusive called with `low > high`");
+ let unsigned_max = ::core::$unsigned::MAX;
+
+ let range = high.wrapping_sub(low).wrapping_add(1) as $unsigned;
+ let ints_to_reject =
+ if range > 0 {
+ (unsigned_max - range + 1) % range
+ } else {
+ 0
+ };
+ let zone = unsigned_max - ints_to_reject;
+
+ UniformInt {
+ low: low,
+ // These are really $unsigned values, but store as $ty:
+ range: range as $ty,
+ zone: zone as $ty
+ }
+ }
+
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
+ let range = self.range as $unsigned as $u_large;
+ if range > 0 {
+ // Grow `zone` to fit a type of at least 32 bits, by
+ // sign-extending it (the first bit is always 1, so are all
+ // the preceding bits of the larger type).
+ // For types that already have the right size, all the
+ // casting is a no-op.
+ let zone = self.zone as $signed as $i_large as $u_large;
+ loop {
+ let v: $u_large = rng.gen();
+ let (hi, lo) = v.wmul(range);
+ if lo <= zone {
+ return self.low.wrapping_add(hi as $ty);
+ }
+ }
+ } else {
+ // Sample from the entire integer range.
+ rng.gen()
+ }
+ }
+
+ fn sample_single<R: Rng + ?Sized, B1, B2>(low_b: B1, high_b: B2, rng: &mut R)
+ -> Self::X
+ where B1: SampleBorrow<Self::X> + Sized,
+ B2: SampleBorrow<Self::X> + Sized
+ {
+ let low = *low_b.borrow();
+ let high = *high_b.borrow();
+ assert!(low < high,
+ "Uniform::sample_single called with low >= high");
+ let range = high.wrapping_sub(low) as $unsigned as $u_large;
+ let zone =
+ if ::core::$unsigned::MAX <= ::core::u16::MAX as $unsigned {
+ // Using a modulus is faster than the approximation for
+ // i8 and i16. I suppose we trade the cost of one
+ // modulus for near-perfect branch prediction.
+ let unsigned_max: $u_large = ::core::$u_large::MAX;
+ let ints_to_reject = (unsigned_max - range + 1) % range;
+ unsigned_max - ints_to_reject
+ } else {
+ // conservative but fast approximation
+ range << range.leading_zeros()
+ };
+
+ loop {
+ let v: $u_large = rng.gen();
+ let (hi, lo) = v.wmul(range);
+ if lo <= zone {
+ return low.wrapping_add(hi as $ty);
+ }
+ }
+ }
+ }
+ }
+}
+
+uniform_int_impl! { i8, i8, u8, i32, u32 }
+uniform_int_impl! { i16, i16, u16, i32, u32 }
+uniform_int_impl! { i32, i32, u32, i32, u32 }
+uniform_int_impl! { i64, i64, u64, i64, u64 }
+#[cfg(rust_1_26)]
+uniform_int_impl! { i128, i128, u128, u128, u128 }
+uniform_int_impl! { isize, isize, usize, isize, usize }
+uniform_int_impl! { u8, i8, u8, i32, u32 }
+uniform_int_impl! { u16, i16, u16, i32, u32 }
+uniform_int_impl! { u32, i32, u32, i32, u32 }
+uniform_int_impl! { u64, i64, u64, i64, u64 }
+uniform_int_impl! { usize, isize, usize, isize, usize }
+#[cfg(rust_1_26)]
+uniform_int_impl! { u128, u128, u128, i128, u128 }
+
+#[cfg(all(feature = "simd_support", feature = "nightly"))]
+macro_rules! uniform_simd_int_impl {
+ ($ty:ident, $unsigned:ident, $u_scalar:ident) => {
+ // The "pick the largest zone that can fit in an `u32`" optimization
+ // is less useful here. Multiple lanes complicate things, we don't
+ // know the PRNG's minimal output size, and casting to a larger vector
+ // is generally a bad idea for SIMD performance. The user can still
+ // implement it manually.
+
+ // TODO: look into `Uniform::<u32x4>::new(0u32, 100)` functionality
+ // perhaps `impl SampleUniform for $u_scalar`?
+ impl SampleUniform for $ty {
+ type Sampler = UniformInt<$ty>;
+ }
+
+ impl UniformSampler for UniformInt<$ty> {
+ type X = $ty;
+
+ #[inline] // if the range is constant, this helps LLVM to do the
+ // calculations at compile-time.
+ fn new<B1, B2>(low_b: B1, high_b: B2) -> Self
+ where B1: SampleBorrow<Self::X> + Sized,
+ B2: SampleBorrow<Self::X> + Sized
+ {
+ let low = *low_b.borrow();
+ let high = *high_b.borrow();
+ assert!(low.lt(high).all(), "Uniform::new called with `low >= high`");
+ UniformSampler::new_inclusive(low, high - 1)
+ }
+
+ #[inline] // if the range is constant, this helps LLVM to do the
+ // calculations at compile-time.
+ fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self
+ where B1: SampleBorrow<Self::X> + Sized,
+ B2: SampleBorrow<Self::X> + Sized
+ {
+ let low = *low_b.borrow();
+ let high = *high_b.borrow();
+ assert!(low.le(high).all(),
+ "Uniform::new_inclusive called with `low > high`");
+ let unsigned_max = ::core::$u_scalar::MAX;
+
+ // NOTE: these may need to be replaced with explicitly
+ // wrapping operations if `packed_simd` changes
+ let range: $unsigned = ((high - low) + 1).cast();
+ // `% 0` will panic at runtime.
+ let not_full_range = range.gt($unsigned::splat(0));
+ // replacing 0 with `unsigned_max` allows a faster `select`
+ // with bitwise OR
+ let modulo = not_full_range.select(range, $unsigned::splat(unsigned_max));
+ // wrapping addition
+ let ints_to_reject = (unsigned_max - range + 1) % modulo;
+ // When `range` is 0, `lo` of `v.wmul(range)` will always be
+ // zero which means only one sample is needed.
+ let zone = unsigned_max - ints_to_reject;
+
+ UniformInt {
+ low: low,
+ // These are really $unsigned values, but store as $ty:
+ range: range.cast(),
+ zone: zone.cast(),
+ }
+ }
+
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
+ let range: $unsigned = self.range.cast();
+ let zone: $unsigned = self.zone.cast();
+
+ // This might seem very slow, generating a whole new
+ // SIMD vector for every sample rejection. For most uses
+ // though, the chance of rejection is small and provides good
+ // general performance. With multiple lanes, that chance is
+ // multiplied. To mitigate this, we replace only the lanes of
+ // the vector which fail, iteratively reducing the chance of
+ // rejection. The replacement method does however add a little
+ // overhead. Benchmarking or calculating probabilities might
+ // reveal contexts where this replacement method is slower.
+ let mut v: $unsigned = rng.gen();
+ loop {
+ let (hi, lo) = v.wmul(range);
+ let mask = lo.le(zone);
+ if mask.all() {
+ let hi: $ty = hi.cast();
+ // wrapping addition
+ let result = self.low + hi;
+ // `select` here compiles to a blend operation
+ // When `range.eq(0).none()` the compare and blend
+ // operations are avoided.
+ let v: $ty = v.cast();
+ return range.gt($unsigned::splat(0)).select(result, v);
+ }
+ // Replace only the failing lanes
+ v = mask.select(v, rng.gen());
+ }
+ }
+ }
+ };
+
+ // bulk implementation
+ ($(($unsigned:ident, $signed:ident),)+ $u_scalar:ident) => {
+ $(
+ uniform_simd_int_impl!($unsigned, $unsigned, $u_scalar);
+ uniform_simd_int_impl!($signed, $unsigned, $u_scalar);
+ )+
+ };
+}
+
+#[cfg(all(feature = "simd_support", feature = "nightly"))]
+uniform_simd_int_impl! {
+ (u64x2, i64x2),
+ (u64x4, i64x4),
+ (u64x8, i64x8),
+ u64
+}
+
+#[cfg(all(feature = "simd_support", feature = "nightly"))]
+uniform_simd_int_impl! {
+ (u32x2, i32x2),
+ (u32x4, i32x4),
+ (u32x8, i32x8),
+ (u32x16, i32x16),
+ u32
+}
+
+#[cfg(all(feature = "simd_support", feature = "nightly"))]
+uniform_simd_int_impl! {
+ (u16x2, i16x2),
+ (u16x4, i16x4),
+ (u16x8, i16x8),
+ (u16x16, i16x16),
+ (u16x32, i16x32),
+ u16
+}
+
+#[cfg(all(feature = "simd_support", feature = "nightly"))]
+uniform_simd_int_impl! {
+ (u8x2, i8x2),
+ (u8x4, i8x4),
+ (u8x8, i8x8),
+ (u8x16, i8x16),
+ (u8x32, i8x32),
+ (u8x64, i8x64),
+ u8
+}
+
+
+/// The back-end implementing [`UniformSampler`] for floating-point types.
+///
+/// Unless you are implementing [`UniformSampler`] for your own type, this type
+/// should not be used directly, use [`Uniform`] instead.
+///
+/// # Implementation notes
+///
+/// Instead of generating a float in the `[0, 1)` range using [`Standard`], the
+/// `UniformFloat` implementation converts the output of an PRNG itself. This
+/// way one or two steps can be optimized out.
+///
+/// The floats are first converted to a value in the `[1, 2)` interval using a
+/// transmute-based method, and then mapped to the expected range with a
+/// multiply and addition. Values produced this way have what equals 22 bits of
+/// random digits for an `f32`, and 52 for an `f64`.
+///
+/// [`UniformSampler`]: trait.UniformSampler.html
+/// [`new`]: trait.UniformSampler.html#tymethod.new
+/// [`new_inclusive`]: trait.UniformSampler.html#tymethod.new_inclusive
+/// [`Uniform`]: struct.Uniform.html
+/// [`Standard`]: ../struct.Standard.html
+#[derive(Clone, Copy, Debug)]
+pub struct UniformFloat<X> {
+ low: X,
+ scale: X,
+}
+
+macro_rules! uniform_float_impl {
+ ($ty:ty, $uty:ident, $f_scalar:ident, $u_scalar:ident, $bits_to_discard:expr) => {
+ impl SampleUniform for $ty {
+ type Sampler = UniformFloat<$ty>;
+ }
+
+ impl UniformSampler for UniformFloat<$ty> {
+ type X = $ty;
+
+ fn new<B1, B2>(low_b: B1, high_b: B2) -> Self
+ where B1: SampleBorrow<Self::X> + Sized,
+ B2: SampleBorrow<Self::X> + Sized
+ {
+ let low = *low_b.borrow();
+ let high = *high_b.borrow();
+ assert!(low.all_lt(high),
+ "Uniform::new called with `low >= high`");
+ assert!(low.all_finite() && high.all_finite(),
+ "Uniform::new called with non-finite boundaries");
+ let max_rand = <$ty>::splat((::core::$u_scalar::MAX >> $bits_to_discard)
+ .into_float_with_exponent(0) - 1.0);
+
+ let mut scale = high - low;
+
+ loop {
+ let mask = (scale * max_rand + low).ge_mask(high);
+ if mask.none() {
+ break;
+ }
+ scale = scale.decrease_masked(mask);
+ }
+
+ debug_assert!(<$ty>::splat(0.0).all_le(scale));
+
+ UniformFloat { low, scale }
+ }
+
+ fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self
+ where B1: SampleBorrow<Self::X> + Sized,
+ B2: SampleBorrow<Self::X> + Sized
+ {
+ let low = *low_b.borrow();
+ let high = *high_b.borrow();
+ assert!(low.all_le(high),
+ "Uniform::new_inclusive called with `low > high`");
+ assert!(low.all_finite() && high.all_finite(),
+ "Uniform::new_inclusive called with non-finite boundaries");
+ let max_rand = <$ty>::splat((::core::$u_scalar::MAX >> $bits_to_discard)
+ .into_float_with_exponent(0) - 1.0);
+
+ let mut scale = (high - low) / max_rand;
+
+ loop {
+ let mask = (scale * max_rand + low).gt_mask(high);
+ if mask.none() {
+ break;
+ }
+ scale = scale.decrease_masked(mask);
+ }
+
+ debug_assert!(<$ty>::splat(0.0).all_le(scale));
+
+ UniformFloat { low, scale }
+ }
+
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
+ // Generate a value in the range [1, 2)
+ let value1_2 = (rng.gen::<$uty>() >> $bits_to_discard)
+ .into_float_with_exponent(0);
+
+ // Get a value in the range [0, 1) in order to avoid
+ // overflowing into infinity when multiplying with scale
+ let value0_1 = value1_2 - 1.0;
+
+ // We don't use `f64::mul_add`, because it is not available with
+ // `no_std`. Furthermore, it is slower for some targets (but
+ // faster for others). However, the order of multiplication and
+ // addition is important, because on some platforms (e.g. ARM)
+ // it will be optimized to a single (non-FMA) instruction.
+ value0_1 * self.scale + self.low
+ }
+
+ #[inline]
+ fn sample_single<R: Rng + ?Sized, B1, B2>(low_b: B1, high_b: B2, rng: &mut R)
+ -> Self::X
+ where B1: SampleBorrow<Self::X> + Sized,
+ B2: SampleBorrow<Self::X> + Sized
+ {
+ let low = *low_b.borrow();
+ let high = *high_b.borrow();
+ assert!(low.all_lt(high),
+ "Uniform::sample_single called with low >= high");
+ let mut scale = high - low;
+
+ loop {
+ // Generate a value in the range [1, 2)
+ let value1_2 = (rng.gen::<$uty>() >> $bits_to_discard)
+ .into_float_with_exponent(0);
+
+ // Get a value in the range [0, 1) in order to avoid
+ // overflowing into infinity when multiplying with scale
+ let value0_1 = value1_2 - 1.0;
+
+ // Doing multiply before addition allows some architectures
+ // to use a single instruction.
+ let res = value0_1 * scale + low;
+
+ debug_assert!(low.all_le(res) || !scale.all_finite());
+ if res.all_lt(high) {
+ return res;
+ }
+
+ // This handles a number of edge cases.
+ // * `low` or `high` is NaN. In this case `scale` and
+ // `res` are going to end up as NaN.
+ // * `low` is negative infinity and `high` is finite.
+ // `scale` is going to be infinite and `res` will be
+ // NaN.
+ // * `high` is positive infinity and `low` is finite.
+ // `scale` is going to be infinite and `res` will
+ // be infinite or NaN (if value0_1 is 0).
+ // * `low` is negative infinity and `high` is positive
+ // infinity. `scale` will be infinite and `res` will
+ // be NaN.
+ // * `low` and `high` are finite, but `high - low`
+ // overflows to infinite. `scale` will be infinite
+ // and `res` will be infinite or NaN (if value0_1 is 0).
+ // So if `high` or `low` are non-finite, we are guaranteed
+ // to fail the `res < high` check above and end up here.
+ //
+ // While we technically should check for non-finite `low`
+ // and `high` before entering the loop, by doing the checks
+ // here instead, we allow the common case to avoid these
+ // checks. But we are still guaranteed that if `low` or
+ // `high` are non-finite we'll end up here and can do the
+ // appropriate checks.
+ //
+ // Likewise `high - low` overflowing to infinity is also
+ // rare, so handle it here after the common case.
+ let mask = !scale.finite_mask();
+ if mask.any() {
+ assert!(low.all_finite() && high.all_finite(),
+ "Uniform::sample_single called with non-finite boundaries");
+ scale = scale.decrease_masked(mask);
+ }
+ }
+ }
+ }
+ }
+}
+
+uniform_float_impl! { f32, u32, f32, u32, 32 - 23 }
+uniform_float_impl! { f64, u64, f64, u64, 64 - 52 }
+
+#[cfg(feature="simd_support")]
+uniform_float_impl! { f32x2, u32x2, f32, u32, 32 - 23 }
+#[cfg(feature="simd_support")]
+uniform_float_impl! { f32x4, u32x4, f32, u32, 32 - 23 }
+#[cfg(feature="simd_support")]
+uniform_float_impl! { f32x8, u32x8, f32, u32, 32 - 23 }
+#[cfg(feature="simd_support")]
+uniform_float_impl! { f32x16, u32x16, f32, u32, 32 - 23 }
+
+#[cfg(feature="simd_support")]
+uniform_float_impl! { f64x2, u64x2, f64, u64, 64 - 52 }
+#[cfg(feature="simd_support")]
+uniform_float_impl! { f64x4, u64x4, f64, u64, 64 - 52 }
+#[cfg(feature="simd_support")]
+uniform_float_impl! { f64x8, u64x8, f64, u64, 64 - 52 }
+
+
+
+/// The back-end implementing [`UniformSampler`] for `Duration`.
+///
+/// Unless you are implementing [`UniformSampler`] for your own types, this type
+/// should not be used directly, use [`Uniform`] instead.
+///
+/// [`UniformSampler`]: trait.UniformSampler.html
+/// [`Uniform`]: struct.Uniform.html
+#[cfg(any(feature = "std", rust_1_25))]
+#[derive(Clone, Copy, Debug)]
+pub struct UniformDuration {
+ mode: UniformDurationMode,
+ offset: u32,
+}
+
+#[cfg(any(feature = "std", rust_1_25))]
+#[derive(Debug, Copy, Clone)]
+enum UniformDurationMode {
+ Small {
+ secs: u64,
+ nanos: Uniform<u32>,
+ },
+ Medium {
+ nanos: Uniform<u64>,
+ },
+ Large {
+ max_secs: u64,
+ max_nanos: u32,
+ secs: Uniform<u64>,
+ }
+}
+
+#[cfg(any(feature = "std", rust_1_25))]
+impl SampleUniform for Duration {
+ type Sampler = UniformDuration;
+}
+
+#[cfg(any(feature = "std", rust_1_25))]
+impl UniformSampler for UniformDuration {
+ type X = Duration;
+
+ #[inline]
+ fn new<B1, B2>(low_b: B1, high_b: B2) -> Self
+ where B1: SampleBorrow<Self::X> + Sized,
+ B2: SampleBorrow<Self::X> + Sized
+ {
+ let low = *low_b.borrow();
+ let high = *high_b.borrow();
+ assert!(low < high, "Uniform::new called with `low >= high`");
+ UniformDuration::new_inclusive(low, high - Duration::new(0, 1))
+ }
+
+ #[inline]
+ fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self
+ where B1: SampleBorrow<Self::X> + Sized,
+ B2: SampleBorrow<Self::X> + Sized
+ {
+ let low = *low_b.borrow();
+ let high = *high_b.borrow();
+ assert!(low <= high, "Uniform::new_inclusive called with `low > high`");
+
+ let low_s = low.as_secs();
+ let low_n = low.subsec_nanos();
+ let mut high_s = high.as_secs();
+ let mut high_n = high.subsec_nanos();
+
+ if high_n < low_n {
+ high_s = high_s - 1;
+ high_n = high_n + 1_000_000_000;
+ }
+
+ let mode = if low_s == high_s {
+ UniformDurationMode::Small {
+ secs: low_s,
+ nanos: Uniform::new_inclusive(low_n, high_n),
+ }
+ } else {
+ let max = high_s
+ .checked_mul(1_000_000_000)
+ .and_then(|n| n.checked_add(high_n as u64));
+
+ if let Some(higher_bound) = max {
+ let lower_bound = low_s * 1_000_000_000 + low_n as u64;
+ UniformDurationMode::Medium {
+ nanos: Uniform::new_inclusive(lower_bound, higher_bound),
+ }
+ } else {
+ // An offset is applied to simplify generation of nanoseconds
+ let max_nanos = high_n - low_n;
+ UniformDurationMode::Large {
+ max_secs: high_s,
+ max_nanos,
+ secs: Uniform::new_inclusive(low_s, high_s),
+ }
+ }
+ };
+ UniformDuration {
+ mode,
+ offset: low_n,
+ }
+ }
+
+ #[inline]
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Duration {
+ match self.mode {
+ UniformDurationMode::Small { secs, nanos } => {
+ let n = nanos.sample(rng);
+ Duration::new(secs, n)
+ }
+ UniformDurationMode::Medium { nanos } => {
+ let nanos = nanos.sample(rng);
+ Duration::new(nanos / 1_000_000_000, (nanos % 1_000_000_000) as u32)
+ }
+ UniformDurationMode::Large { max_secs, max_nanos, secs } => {
+ // constant folding means this is at least as fast as `gen_range`
+ let nano_range = Uniform::new(0, 1_000_000_000);
+ loop {
+ let s = secs.sample(rng);
+ let n = nano_range.sample(rng);
+ if !(s == max_secs && n > max_nanos) {
+ let sum = n + self.offset;
+ break Duration::new(s, sum);
+ }
+ }
+ }
+ }
+ }
+}
+
+#[cfg(test)]
+mod tests {
+ use Rng;
+ use rngs::mock::StepRng;
+ use distributions::uniform::Uniform;
+ use distributions::utils::FloatAsSIMD;
+ #[cfg(feature="simd_support")] use packed_simd::*;
+
+ #[should_panic]
+ #[test]
+ fn test_uniform_bad_limits_equal_int() {
+ Uniform::new(10, 10);
+ }
+
+ #[test]
+ fn test_uniform_good_limits_equal_int() {
+ let mut rng = ::test::rng(804);
+ let dist = Uniform::new_inclusive(10, 10);
+ for _ in 0..20 {
+ assert_eq!(rng.sample(dist), 10);
+ }
+ }
+
+ #[should_panic]
+ #[test]
+ fn test_uniform_bad_limits_flipped_int() {
+ Uniform::new(10, 5);
+ }
+
+ #[test]
+ fn test_integers() {
+ use core::{i8, i16, i32, i64, isize};
+ use core::{u8, u16, u32, u64, usize};
+ #[cfg(rust_1_26)]
+ use core::{i128, u128};
+
+ let mut rng = ::test::rng(251);
+ macro_rules! t {
+ ($ty:ident, $v:expr, $le:expr, $lt:expr) => {{
+ for &(low, high) in $v.iter() {
+ let my_uniform = Uniform::new(low, high);
+ for _ in 0..1000 {
+ let v: $ty = rng.sample(my_uniform);
+ assert!($le(low, v) && $lt(v, high));
+ }
+
+ let my_uniform = Uniform::new_inclusive(low, high);
+ for _ in 0..1000 {
+ let v: $ty = rng.sample(my_uniform);
+ assert!($le(low, v) && $le(v, high));
+ }
+
+ let my_uniform = Uniform::new(&low, high);
+ for _ in 0..1000 {
+ let v: $ty = rng.sample(my_uniform);
+ assert!($le(low, v) && $lt(v, high));
+ }
+
+ let my_uniform = Uniform::new_inclusive(&low, &high);
+ for _ in 0..1000 {
+ let v: $ty = rng.sample(my_uniform);
+ assert!($le(low, v) && $le(v, high));
+ }
+
+ for _ in 0..1000 {
+ let v: $ty = rng.gen_range(low, high);
+ assert!($le(low, v) && $lt(v, high));
+ }
+ }
+ }};
+
+ // scalar bulk
+ ($($ty:ident),*) => {{
+ $(t!(
+ $ty,
+ [(0, 10), (10, 127), ($ty::MIN, $ty::MAX)],
+ |x, y| x <= y,
+ |x, y| x < y
+ );)*
+ }};
+
+ // simd bulk
+ ($($ty:ident),* => $scalar:ident) => {{
+ $(t!(
+ $ty,
+ [
+ ($ty::splat(0), $ty::splat(10)),
+ ($ty::splat(10), $ty::splat(127)),
+ ($ty::splat($scalar::MIN), $ty::splat($scalar::MAX)),
+ ],
+ |x: $ty, y| x.le(y).all(),
+ |x: $ty, y| x.lt(y).all()
+ );)*
+ }};
+ }
+ t!(i8, i16, i32, i64, isize,
+ u8, u16, u32, u64, usize);
+ #[cfg(rust_1_26)]
+ t!(i128, u128);
+
+ #[cfg(all(feature = "simd_support", feature = "nightly"))]
+ {
+ t!(u8x2, u8x4, u8x8, u8x16, u8x32, u8x64 => u8);
+ t!(i8x2, i8x4, i8x8, i8x16, i8x32, i8x64 => i8);
+ t!(u16x2, u16x4, u16x8, u16x16, u16x32 => u16);
+ t!(i16x2, i16x4, i16x8, i16x16, i16x32 => i16);
+ t!(u32x2, u32x4, u32x8, u32x16 => u32);
+ t!(i32x2, i32x4, i32x8, i32x16 => i32);
+ t!(u64x2, u64x4, u64x8 => u64);
+ t!(i64x2, i64x4, i64x8 => i64);
+ }
+ }
+
+ #[test]
+ fn test_floats() {
+ let mut rng = ::test::rng(252);
+ let mut zero_rng = StepRng::new(0, 0);
+ let mut max_rng = StepRng::new(0xffff_ffff_ffff_ffff, 0);
+ macro_rules! t {
+ ($ty:ty, $f_scalar:ident, $bits_shifted:expr) => {{
+ let v: &[($f_scalar, $f_scalar)]=
+ &[(0.0, 100.0),
+ (-1e35, -1e25),
+ (1e-35, 1e-25),
+ (-1e35, 1e35),
+ (<$f_scalar>::from_bits(0), <$f_scalar>::from_bits(3)),
+ (-<$f_scalar>::from_bits(10), -<$f_scalar>::from_bits(1)),
+ (-<$f_scalar>::from_bits(5), 0.0),
+ (-<$f_scalar>::from_bits(7), -0.0),
+ (10.0, ::core::$f_scalar::MAX),
+ (-100.0, ::core::$f_scalar::MAX),
+ (-::core::$f_scalar::MAX / 5.0, ::core::$f_scalar::MAX),
+ (-::core::$f_scalar::MAX, ::core::$f_scalar::MAX / 5.0),
+ (-::core::$f_scalar::MAX * 0.8, ::core::$f_scalar::MAX * 0.7),
+ (-::core::$f_scalar::MAX, ::core::$f_scalar::MAX),
+ ];
+ for &(low_scalar, high_scalar) in v.iter() {
+ for lane in 0..<$ty>::lanes() {
+ let low = <$ty>::splat(0.0 as $f_scalar).replace(lane, low_scalar);
+ let high = <$ty>::splat(1.0 as $f_scalar).replace(lane, high_scalar);
+ let my_uniform = Uniform::new(low, high);
+ let my_incl_uniform = Uniform::new_inclusive(low, high);
+ for _ in 0..100 {
+ let v = rng.sample(my_uniform).extract(lane);
+ assert!(low_scalar <= v && v < high_scalar);
+ let v = rng.sample(my_incl_uniform).extract(lane);
+ assert!(low_scalar <= v && v <= high_scalar);
+ let v = rng.gen_range(low, high).extract(lane);
+ assert!(low_scalar <= v && v < high_scalar);
+ }
+
+ assert_eq!(rng.sample(Uniform::new_inclusive(low, low)).extract(lane), low_scalar);
+
+ assert_eq!(zero_rng.sample(my_uniform).extract(lane), low_scalar);
+ assert_eq!(zero_rng.sample(my_incl_uniform).extract(lane), low_scalar);
+ assert_eq!(zero_rng.gen_range(low, high).extract(lane), low_scalar);
+ assert!(max_rng.sample(my_uniform).extract(lane) < high_scalar);
+ assert!(max_rng.sample(my_incl_uniform).extract(lane) <= high_scalar);
+
+ // Don't run this test for really tiny differences between high and low
+ // since for those rounding might result in selecting high for a very
+ // long time.
+ if (high_scalar - low_scalar) > 0.0001 {
+ let mut lowering_max_rng =
+ StepRng::new(0xffff_ffff_ffff_ffff,
+ (-1i64 << $bits_shifted) as u64);
+ assert!(lowering_max_rng.gen_range(low, high).extract(lane) < high_scalar);
+ }
+ }
+ }
+
+ assert_eq!(rng.sample(Uniform::new_inclusive(::core::$f_scalar::MAX,
+ ::core::$f_scalar::MAX)),
+ ::core::$f_scalar::MAX);
+ assert_eq!(rng.sample(Uniform::new_inclusive(-::core::$f_scalar::MAX,
+ -::core::$f_scalar::MAX)),
+ -::core::$f_scalar::MAX);
+ }}
+ }
+
+ t!(f32, f32, 32 - 23);
+ t!(f64, f64, 64 - 52);
+ #[cfg(feature="simd_support")]
+ {
+ t!(f32x2, f32, 32 - 23);
+ t!(f32x4, f32, 32 - 23);
+ t!(f32x8, f32, 32 - 23);
+ t!(f32x16, f32, 32 - 23);
+ t!(f64x2, f64, 64 - 52);
+ t!(f64x4, f64, 64 - 52);
+ t!(f64x8, f64, 64 - 52);
+ }
+ }
+
+ #[test]
+ #[cfg(all(feature="std",
+ not(target_arch = "wasm32"),
+ not(target_arch = "asmjs")))]
+ fn test_float_assertions() {
+ use std::panic::catch_unwind;
+ use super::SampleUniform;
+ fn range<T: SampleUniform>(low: T, high: T) {
+ let mut rng = ::test::rng(253);
+ rng.gen_range(low, high);
+ }
+
+ macro_rules! t {
+ ($ty:ident, $f_scalar:ident) => {{
+ let v: &[($f_scalar, $f_scalar)] =
+ &[(::std::$f_scalar::NAN, 0.0),
+ (1.0, ::std::$f_scalar::NAN),
+ (::std::$f_scalar::NAN, ::std::$f_scalar::NAN),
+ (1.0, 0.5),
+ (::std::$f_scalar::MAX, -::std::$f_scalar::MAX),
+ (::std::$f_scalar::INFINITY, ::std::$f_scalar::INFINITY),
+ (::std::$f_scalar::NEG_INFINITY, ::std::$f_scalar::NEG_INFINITY),
+ (::std::$f_scalar::NEG_INFINITY, 5.0),
+ (5.0, ::std::$f_scalar::INFINITY),
+ (::std::$f_scalar::NAN, ::std::$f_scalar::INFINITY),
+ (::std::$f_scalar::NEG_INFINITY, ::std::$f_scalar::NAN),
+ (::std::$f_scalar::NEG_INFINITY, ::std::$f_scalar::INFINITY),
+ ];
+ for &(low_scalar, high_scalar) in v.iter() {
+ for lane in 0..<$ty>::lanes() {
+ let low = <$ty>::splat(0.0 as $f_scalar).replace(lane, low_scalar);
+ let high = <$ty>::splat(1.0 as $f_scalar).replace(lane, high_scalar);
+ assert!(catch_unwind(|| range(low, high)).is_err());
+ assert!(catch_unwind(|| Uniform::new(low, high)).is_err());
+ assert!(catch_unwind(|| Uniform::new_inclusive(low, high)).is_err());
+ assert!(catch_unwind(|| range(low, low)).is_err());
+ assert!(catch_unwind(|| Uniform::new(low, low)).is_err());
+ }
+ }
+ }}
+ }
+
+ t!(f32, f32);
+ t!(f64, f64);
+ #[cfg(feature="simd_support")]
+ {
+ t!(f32x2, f32);
+ t!(f32x4, f32);
+ t!(f32x8, f32);
+ t!(f32x16, f32);
+ t!(f64x2, f64);
+ t!(f64x4, f64);
+ t!(f64x8, f64);
+ }
+ }
+
+
+ #[test]
+ #[cfg(any(feature = "std", rust_1_25))]
+ fn test_durations() {
+ #[cfg(feature = "std")]
+ use std::time::Duration;
+ #[cfg(all(not(feature = "std"), rust_1_25))]
+ use core::time::Duration;
+
+ let mut rng = ::test::rng(253);
+
+ let v = &[(Duration::new(10, 50000), Duration::new(100, 1234)),
+ (Duration::new(0, 100), Duration::new(1, 50)),
+ (Duration::new(0, 0), Duration::new(u64::max_value(), 999_999_999))];
+ for &(low, high) in v.iter() {
+ let my_uniform = Uniform::new(low, high);
+ for _ in 0..1000 {
+ let v = rng.sample(my_uniform);
+ assert!(low <= v && v < high);
+ }
+ }
+ }
+
+ #[test]
+ fn test_custom_uniform() {
+ use distributions::uniform::{UniformSampler, UniformFloat, SampleUniform, SampleBorrow};
+ #[derive(Clone, Copy, PartialEq, PartialOrd)]
+ struct MyF32 {
+ x: f32,
+ }
+ #[derive(Clone, Copy, Debug)]
+ struct UniformMyF32 {
+ inner: UniformFloat<f32>,
+ }
+ impl UniformSampler for UniformMyF32 {
+ type X = MyF32;
+ fn new<B1, B2>(low: B1, high: B2) -> Self
+ where B1: SampleBorrow<Self::X> + Sized,
+ B2: SampleBorrow<Self::X> + Sized
+ {
+ UniformMyF32 {
+ inner: UniformFloat::<f32>::new(low.borrow().x, high.borrow().x),
+ }
+ }
+ fn new_inclusive<B1, B2>(low: B1, high: B2) -> Self
+ where B1: SampleBorrow<Self::X> + Sized,
+ B2: SampleBorrow<Self::X> + Sized
+ {
+ UniformSampler::new(low, high)
+ }
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
+ MyF32 { x: self.inner.sample(rng) }
+ }
+ }
+ impl SampleUniform for MyF32 {
+ type Sampler = UniformMyF32;
+ }
+
+ let (low, high) = (MyF32{ x: 17.0f32 }, MyF32{ x: 22.0f32 });
+ let uniform = Uniform::new(low, high);
+ let mut rng = ::test::rng(804);
+ for _ in 0..100 {
+ let x: MyF32 = rng.sample(uniform);
+ assert!(low <= x && x < high);
+ }
+ }
+
+ #[test]
+ fn test_uniform_from_std_range() {
+ let r = Uniform::from(2u32..7);
+ assert_eq!(r.inner.low, 2);
+ assert_eq!(r.inner.range, 5);
+ let r = Uniform::from(2.0f64..7.0);
+ assert_eq!(r.inner.low, 2.0);
+ assert_eq!(r.inner.scale, 5.0);
+ }
+
+ #[cfg(rust_1_27)]
+ #[test]
+ fn test_uniform_from_std_range_inclusive() {
+ let r = Uniform::from(2u32..=6);
+ assert_eq!(r.inner.low, 2);
+ assert_eq!(r.inner.range, 5);
+ let r = Uniform::from(2.0f64..=7.0);
+ assert_eq!(r.inner.low, 2.0);
+ assert!(r.inner.scale > 5.0);
+ assert!(r.inner.scale < 5.0 + 1e-14);
+ }
+}