diff options
Diffstat (limited to 'rand/src/distributions/normal.rs')
-rw-r--r-- | rand/src/distributions/normal.rs | 120 |
1 files changed, 58 insertions, 62 deletions
diff --git a/rand/src/distributions/normal.rs b/rand/src/distributions/normal.rs index 280613d..b8d632e 100644 --- a/rand/src/distributions/normal.rs +++ b/rand/src/distributions/normal.rs @@ -1,49 +1,50 @@ -// Copyright 2013 The Rust Project Developers. See the COPYRIGHT -// file at the top-level directory of this distribution and at -// http://rust-lang.org/COPYRIGHT. +// Copyright 2018 Developers of the Rand project. +// Copyright 2013 The Rust Project Developers. // // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or -// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license -// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your +// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! The normal and derived distributions. -use {Rng, Rand, Open01}; -use distributions::{ziggurat, ziggurat_tables, Sample, IndependentSample}; +use Rng; +use distributions::{ziggurat_tables, Distribution, Open01}; +use distributions::utils::ziggurat; -/// A wrapper around an `f64` to generate N(0, 1) random numbers -/// (a.k.a. a standard normal, or Gaussian). +/// Samples floating-point numbers according to the normal distribution +/// `N(0, 1)` (a.k.a. a standard normal, or Gaussian). This is equivalent to +/// `Normal::new(0.0, 1.0)` but faster. /// /// See `Normal` for the general normal distribution. /// -/// Implemented via the ZIGNOR variant[1] of the Ziggurat method. +/// Implemented via the ZIGNOR variant[^1] of the Ziggurat method. /// -/// [1]: Jurgen A. Doornik (2005). [*An Improved Ziggurat Method to -/// Generate Normal Random -/// Samples*](http://www.doornik.com/research/ziggurat.pdf). Nuffield -/// College, Oxford +/// [^1]: Jurgen A. Doornik (2005). [*An Improved Ziggurat Method to +/// Generate Normal Random Samples*]( +/// https://www.doornik.com/research/ziggurat.pdf). +/// Nuffield College, Oxford /// /// # Example +/// ``` +/// use rand::prelude::*; +/// use rand::distributions::StandardNormal; /// -/// ```rust -/// use rand::distributions::normal::StandardNormal; -/// -/// let StandardNormal(x) = rand::random(); -/// println!("{}", x); +/// let val: f64 = SmallRng::from_entropy().sample(StandardNormal); +/// println!("{}", val); /// ``` #[derive(Clone, Copy, Debug)] -pub struct StandardNormal(pub f64); +pub struct StandardNormal; -impl Rand for StandardNormal { - fn rand<R:Rng>(rng: &mut R) -> StandardNormal { +impl Distribution<f64> for StandardNormal { + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 { #[inline] fn pdf(x: f64) -> f64 { (-x*x/2.0).exp() } #[inline] - fn zero_case<R:Rng>(rng: &mut R, u: f64) -> f64 { + fn zero_case<R: Rng + ?Sized>(rng: &mut R, u: f64) -> f64 { // compute a random number in the tail by hand // strange initial conditions, because the loop is not @@ -54,8 +55,8 @@ impl Rand for StandardNormal { let mut y = 0.0f64; while -2.0 * y < x * x { - let Open01(x_) = rng.gen::<Open01<f64>>(); - let Open01(y_) = rng.gen::<Open01<f64>>(); + let x_: f64 = rng.sample(Open01); + let y_: f64 = rng.sample(Open01); x = x_.ln() / ziggurat_tables::ZIG_NORM_R; y = y_.ln(); @@ -64,30 +65,33 @@ impl Rand for StandardNormal { if u < 0.0 { x - ziggurat_tables::ZIG_NORM_R } else { ziggurat_tables::ZIG_NORM_R - x } } - StandardNormal(ziggurat( - rng, - true, // this is symmetric - &ziggurat_tables::ZIG_NORM_X, - &ziggurat_tables::ZIG_NORM_F, - pdf, zero_case)) + ziggurat(rng, true, // this is symmetric + &ziggurat_tables::ZIG_NORM_X, + &ziggurat_tables::ZIG_NORM_F, + pdf, zero_case) } } /// The normal distribution `N(mean, std_dev**2)`. /// -/// This uses the ZIGNOR variant of the Ziggurat method, see -/// `StandardNormal` for more details. +/// This uses the ZIGNOR variant of the Ziggurat method, see [`StandardNormal`] +/// for more details. +/// +/// Note that [`StandardNormal`] is an optimised implementation for mean 0, and +/// standard deviation 1. /// /// # Example /// -/// ```rust -/// use rand::distributions::{Normal, IndependentSample}; +/// ``` +/// use rand::distributions::{Normal, Distribution}; /// /// // mean 2, standard deviation 3 /// let normal = Normal::new(2.0, 3.0); -/// let v = normal.ind_sample(&mut rand::thread_rng()); +/// let v = normal.sample(&mut rand::thread_rng()); /// println!("{} is from a N(2, 9) distribution", v) /// ``` +/// +/// [`StandardNormal`]: struct.StandardNormal.html #[derive(Clone, Copy, Debug)] pub struct Normal { mean: f64, @@ -105,17 +109,14 @@ impl Normal { pub fn new(mean: f64, std_dev: f64) -> Normal { assert!(std_dev >= 0.0, "Normal::new called with `std_dev` < 0"); Normal { - mean: mean, - std_dev: std_dev + mean, + std_dev } } } -impl Sample<f64> for Normal { - fn sample<R: Rng>(&mut self, rng: &mut R) -> f64 { self.ind_sample(rng) } -} -impl IndependentSample<f64> for Normal { - fn ind_sample<R: Rng>(&self, rng: &mut R) -> f64 { - let StandardNormal(n) = rng.gen::<StandardNormal>(); +impl Distribution<f64> for Normal { + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 { + let n = rng.sample(StandardNormal); self.mean + self.std_dev * n } } @@ -123,17 +124,17 @@ impl IndependentSample<f64> for Normal { /// The log-normal distribution `ln N(mean, std_dev**2)`. /// -/// If `X` is log-normal distributed, then `ln(X)` is `N(mean, -/// std_dev**2)` distributed. +/// If `X` is log-normal distributed, then `ln(X)` is `N(mean, std_dev**2)` +/// distributed. /// /// # Example /// -/// ```rust -/// use rand::distributions::{LogNormal, IndependentSample}; +/// ``` +/// use rand::distributions::{LogNormal, Distribution}; /// /// // mean 2, standard deviation 3 /// let log_normal = LogNormal::new(2.0, 3.0); -/// let v = log_normal.ind_sample(&mut rand::thread_rng()); +/// let v = log_normal.sample(&mut rand::thread_rng()); /// println!("{} is from an ln N(2, 9) distribution", v) /// ``` #[derive(Clone, Copy, Debug)] @@ -154,27 +155,23 @@ impl LogNormal { LogNormal { norm: Normal::new(mean, std_dev) } } } -impl Sample<f64> for LogNormal { - fn sample<R: Rng>(&mut self, rng: &mut R) -> f64 { self.ind_sample(rng) } -} -impl IndependentSample<f64> for LogNormal { - fn ind_sample<R: Rng>(&self, rng: &mut R) -> f64 { - self.norm.ind_sample(rng).exp() +impl Distribution<f64> for LogNormal { + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 { + self.norm.sample(rng).exp() } } #[cfg(test)] mod tests { - use distributions::{Sample, IndependentSample}; + use distributions::Distribution; use super::{Normal, LogNormal}; #[test] fn test_normal() { - let mut norm = Normal::new(10.0, 10.0); - let mut rng = ::test::rng(); + let norm = Normal::new(10.0, 10.0); + let mut rng = ::test::rng(210); for _ in 0..1000 { norm.sample(&mut rng); - norm.ind_sample(&mut rng); } } #[test] @@ -186,11 +183,10 @@ mod tests { #[test] fn test_log_normal() { - let mut lnorm = LogNormal::new(10.0, 10.0); - let mut rng = ::test::rng(); + let lnorm = LogNormal::new(10.0, 10.0); + let mut rng = ::test::rng(211); for _ in 0..1000 { lnorm.sample(&mut rng); - lnorm.ind_sample(&mut rng); } } #[test] |