diff options
Diffstat (limited to 'rand/src/distributions/mod.rs')
-rw-r--r-- | rand/src/distributions/mod.rs | 381 |
1 files changed, 0 insertions, 381 deletions
diff --git a/rand/src/distributions/mod.rs b/rand/src/distributions/mod.rs deleted file mode 100644 index 02ece6f..0000000 --- a/rand/src/distributions/mod.rs +++ /dev/null @@ -1,381 +0,0 @@ -// Copyright 2018 Developers of the Rand project. -// Copyright 2013-2017 The Rust Project Developers. -// -// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or -// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license -// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your -// option. This file may not be copied, modified, or distributed -// except according to those terms. - -//! Generating random samples from probability distributions -//! -//! This module is the home of the [`Distribution`] trait and several of its -//! implementations. It is the workhorse behind some of the convenient -//! functionality of the [`Rng`] trait, e.g. [`Rng::gen`], [`Rng::gen_range`] and -//! of course [`Rng::sample`]. -//! -//! Abstractly, a [probability distribution] describes the probability of -//! occurance of each value in its sample space. -//! -//! More concretely, an implementation of `Distribution<T>` for type `X` is an -//! algorithm for choosing values from the sample space (a subset of `T`) -//! according to the distribution `X` represents, using an external source of -//! randomness (an RNG supplied to the `sample` function). -//! -//! A type `X` may implement `Distribution<T>` for multiple types `T`. -//! Any type implementing [`Distribution`] is stateless (i.e. immutable), -//! but it may have internal parameters set at construction time (for example, -//! [`Uniform`] allows specification of its sample space as a range within `T`). -//! -//! -//! # The `Standard` distribution -//! -//! The [`Standard`] distribution is important to mention. This is the -//! distribution used by [`Rng::gen()`] and represents the "default" way to -//! produce a random value for many different types, including most primitive -//! types, tuples, arrays, and a few derived types. See the documentation of -//! [`Standard`] for more details. -//! -//! Implementing `Distribution<T>` for [`Standard`] for user types `T` makes it -//! possible to generate type `T` with [`Rng::gen()`], and by extension also -//! with the [`random()`] function. -//! -//! ## Random characters -//! -//! [`Alphanumeric`] is a simple distribution to sample random letters and -//! numbers of the `char` type; in contrast [`Standard`] may sample any valid -//! `char`. -//! -//! -//! # Uniform numeric ranges -//! -//! The [`Uniform`] distribution is more flexible than [`Standard`], but also -//! more specialised: it supports fewer target types, but allows the sample -//! space to be specified as an arbitrary range within its target type `T`. -//! Both [`Standard`] and [`Uniform`] are in some sense uniform distributions. -//! -//! Values may be sampled from this distribution using [`Rng::gen_range`] or -//! by creating a distribution object with [`Uniform::new`], -//! [`Uniform::new_inclusive`] or `From<Range>`. When the range limits are not -//! known at compile time it is typically faster to reuse an existing -//! distribution object than to call [`Rng::gen_range`]. -//! -//! User types `T` may also implement `Distribution<T>` for [`Uniform`], -//! although this is less straightforward than for [`Standard`] (see the -//! documentation in the [`uniform`] module. Doing so enables generation of -//! values of type `T` with [`Rng::gen_range`]. -//! -//! ## Open and half-open ranges -//! -//! There are surprisingly many ways to uniformly generate random floats. A -//! range between 0 and 1 is standard, but the exact bounds (open vs closed) -//! and accuracy differ. In addition to the [`Standard`] distribution Rand offers -//! [`Open01`] and [`OpenClosed01`]. See "Floating point implementation" section of -//! [`Standard`] documentation for more details. -//! -//! # Non-uniform sampling -//! -//! Sampling a simple true/false outcome with a given probability has a name: -//! the [`Bernoulli`] distribution (this is used by [`Rng::gen_bool`]). -//! -//! For weighted sampling from a sequence of discrete values, use the -//! [`weighted`] module. -//! -//! This crate no longer includes other non-uniform distributions; instead -//! it is recommended that you use either [`rand_distr`] or [`statrs`]. -//! -//! -//! [probability distribution]: https://en.wikipedia.org/wiki/Probability_distribution -//! [`rand_distr`]: https://crates.io/crates/rand_distr -//! [`statrs`]: https://crates.io/crates/statrs - -//! [`Alphanumeric`]: distributions::Alphanumeric -//! [`Bernoulli`]: distributions::Bernoulli -//! [`Open01`]: distributions::Open01 -//! [`OpenClosed01`]: distributions::OpenClosed01 -//! [`Standard`]: distributions::Standard -//! [`Uniform`]: distributions::Uniform -//! [`Uniform::new`]: distributions::Uniform::new -//! [`Uniform::new_inclusive`]: distributions::Uniform::new_inclusive -//! [`weighted`]: distributions::weighted -//! [`rand_distr`]: https://crates.io/crates/rand_distr -//! [`statrs`]: https://crates.io/crates/statrs - -use core::iter; -use crate::Rng; - -pub use self::other::Alphanumeric; -#[doc(inline)] pub use self::uniform::Uniform; -pub use self::float::{OpenClosed01, Open01}; -pub use self::bernoulli::{Bernoulli, BernoulliError}; -#[cfg(feature="alloc")] pub use self::weighted::{WeightedIndex, WeightedError}; - -// The following are all deprecated after being moved to rand_distr -#[allow(deprecated)] -#[cfg(feature="std")] pub use self::unit_sphere::UnitSphereSurface; -#[allow(deprecated)] -#[cfg(feature="std")] pub use self::unit_circle::UnitCircle; -#[allow(deprecated)] -#[cfg(feature="std")] pub use self::gamma::{Gamma, ChiSquared, FisherF, - StudentT, Beta}; -#[allow(deprecated)] -#[cfg(feature="std")] pub use self::normal::{Normal, LogNormal, StandardNormal}; -#[allow(deprecated)] -#[cfg(feature="std")] pub use self::exponential::{Exp, Exp1}; -#[allow(deprecated)] -#[cfg(feature="std")] pub use self::pareto::Pareto; -#[allow(deprecated)] -#[cfg(feature="std")] pub use self::poisson::Poisson; -#[allow(deprecated)] -#[cfg(feature="std")] pub use self::binomial::Binomial; -#[allow(deprecated)] -#[cfg(feature="std")] pub use self::cauchy::Cauchy; -#[allow(deprecated)] -#[cfg(feature="std")] pub use self::dirichlet::Dirichlet; -#[allow(deprecated)] -#[cfg(feature="std")] pub use self::triangular::Triangular; -#[allow(deprecated)] -#[cfg(feature="std")] pub use self::weibull::Weibull; - -pub mod uniform; -mod bernoulli; -#[cfg(feature="alloc")] pub mod weighted; -#[cfg(feature="std")] mod unit_sphere; -#[cfg(feature="std")] mod unit_circle; -#[cfg(feature="std")] mod gamma; -#[cfg(feature="std")] mod normal; -#[cfg(feature="std")] mod exponential; -#[cfg(feature="std")] mod pareto; -#[cfg(feature="std")] mod poisson; -#[cfg(feature="std")] mod binomial; -#[cfg(feature="std")] mod cauchy; -#[cfg(feature="std")] mod dirichlet; -#[cfg(feature="std")] mod triangular; -#[cfg(feature="std")] mod weibull; - -mod float; -#[doc(hidden)] pub mod hidden_export { - pub use super::float::IntoFloat; // used by rand_distr -} -mod integer; -mod other; -mod utils; -#[cfg(feature="std")] mod ziggurat_tables; - -/// Types (distributions) that can be used to create a random instance of `T`. -/// -/// It is possible to sample from a distribution through both the -/// `Distribution` and [`Rng`] traits, via `distr.sample(&mut rng)` and -/// `rng.sample(distr)`. They also both offer the [`sample_iter`] method, which -/// produces an iterator that samples from the distribution. -/// -/// All implementations are expected to be immutable; this has the significant -/// advantage of not needing to consider thread safety, and for most -/// distributions efficient state-less sampling algorithms are available. -/// -/// [`sample_iter`]: Distribution::method.sample_iter -pub trait Distribution<T> { - /// Generate a random value of `T`, using `rng` as the source of randomness. - fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> T; - - /// Create an iterator that generates random values of `T`, using `rng` as - /// the source of randomness. - /// - /// Note that this function takes `self` by value. This works since - /// `Distribution<T>` is impl'd for `&D` where `D: Distribution<T>`, - /// however borrowing is not automatic hence `distr.sample_iter(...)` may - /// need to be replaced with `(&distr).sample_iter(...)` to borrow or - /// `(&*distr).sample_iter(...)` to reborrow an existing reference. - /// - /// # Example - /// - /// ``` - /// use rand::thread_rng; - /// use rand::distributions::{Distribution, Alphanumeric, Uniform, Standard}; - /// - /// let rng = thread_rng(); - /// - /// // Vec of 16 x f32: - /// let v: Vec<f32> = Standard.sample_iter(rng).take(16).collect(); - /// - /// // String: - /// let s: String = Alphanumeric.sample_iter(rng).take(7).collect(); - /// - /// // Dice-rolling: - /// let die_range = Uniform::new_inclusive(1, 6); - /// let mut roll_die = die_range.sample_iter(rng); - /// while roll_die.next().unwrap() != 6 { - /// println!("Not a 6; rolling again!"); - /// } - /// ``` - fn sample_iter<R>(self, rng: R) -> DistIter<Self, R, T> - where R: Rng, Self: Sized - { - DistIter { - distr: self, - rng, - phantom: ::core::marker::PhantomData, - } - } -} - -impl<'a, T, D: Distribution<T>> Distribution<T> for &'a D { - fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> T { - (*self).sample(rng) - } -} - - -/// An iterator that generates random values of `T` with distribution `D`, -/// using `R` as the source of randomness. -/// -/// This `struct` is created by the [`sample_iter`] method on [`Distribution`]. -/// See its documentation for more. -/// -/// [`sample_iter`]: Distribution::sample_iter -#[derive(Debug)] -pub struct DistIter<D, R, T> { - distr: D, - rng: R, - phantom: ::core::marker::PhantomData<T>, -} - -impl<D, R, T> Iterator for DistIter<D, R, T> - where D: Distribution<T>, R: Rng -{ - type Item = T; - - #[inline(always)] - fn next(&mut self) -> Option<T> { - // Here, self.rng may be a reference, but we must take &mut anyway. - // Even if sample could take an R: Rng by value, we would need to do this - // since Rng is not copyable and we cannot enforce that this is "reborrowable". - Some(self.distr.sample(&mut self.rng)) - } - - fn size_hint(&self) -> (usize, Option<usize>) { - (usize::max_value(), None) - } -} - -impl<D, R, T> iter::FusedIterator for DistIter<D, R, T> - where D: Distribution<T>, R: Rng {} - -#[cfg(features = "nightly")] -impl<D, R, T> iter::TrustedLen for DistIter<D, R, T> - where D: Distribution<T>, R: Rng {} - - -/// A generic random value distribution, implemented for many primitive types. -/// Usually generates values with a numerically uniform distribution, and with a -/// range appropriate to the type. -/// -/// ## Provided implementations -/// -/// Assuming the provided `Rng` is well-behaved, these implementations -/// generate values with the following ranges and distributions: -/// -/// * Integers (`i32`, `u32`, `isize`, `usize`, etc.): Uniformly distributed -/// over all values of the type. -/// * `char`: Uniformly distributed over all Unicode scalar values, i.e. all -/// code points in the range `0...0x10_FFFF`, except for the range -/// `0xD800...0xDFFF` (the surrogate code points). This includes -/// unassigned/reserved code points. -/// * `bool`: Generates `false` or `true`, each with probability 0.5. -/// * Floating point types (`f32` and `f64`): Uniformly distributed in the -/// half-open range `[0, 1)`. See notes below. -/// * Wrapping integers (`Wrapping<T>`), besides the type identical to their -/// normal integer variants. -/// -/// The `Standard` distribution also supports generation of the following -/// compound types where all component types are supported: -/// -/// * Tuples (up to 12 elements): each element is generated sequentially. -/// * Arrays (up to 32 elements): each element is generated sequentially; -/// see also [`Rng::fill`] which supports arbitrary array length for integer -/// types and tends to be faster for `u32` and smaller types. -/// * `Option<T>` first generates a `bool`, and if true generates and returns -/// `Some(value)` where `value: T`, otherwise returning `None`. -/// -/// ## Custom implementations -/// -/// The [`Standard`] distribution may be implemented for user types as follows: -/// -/// ``` -/// # #![allow(dead_code)] -/// use rand::Rng; -/// use rand::distributions::{Distribution, Standard}; -/// -/// struct MyF32 { -/// x: f32, -/// } -/// -/// impl Distribution<MyF32> for Standard { -/// fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> MyF32 { -/// MyF32 { x: rng.gen() } -/// } -/// } -/// ``` -/// -/// ## Example usage -/// ``` -/// use rand::prelude::*; -/// use rand::distributions::Standard; -/// -/// let val: f32 = StdRng::from_entropy().sample(Standard); -/// println!("f32 from [0, 1): {}", val); -/// ``` -/// -/// # Floating point implementation -/// The floating point implementations for `Standard` generate a random value in -/// the half-open interval `[0, 1)`, i.e. including 0 but not 1. -/// -/// All values that can be generated are of the form `n * ε/2`. For `f32` -/// the 23 most significant random bits of a `u32` are used and for `f64` the -/// 53 most significant bits of a `u64` are used. The conversion uses the -/// multiplicative method: `(rng.gen::<$uty>() >> N) as $ty * (ε/2)`. -/// -/// See also: [`Open01`] which samples from `(0, 1)`, [`OpenClosed01`] which -/// samples from `(0, 1]` and `Rng::gen_range(0, 1)` which also samples from -/// `[0, 1)`. Note that `Open01` and `gen_range` (which uses [`Uniform`]) use -/// transmute-based methods which yield 1 bit less precision but may perform -/// faster on some architectures (on modern Intel CPUs all methods have -/// approximately equal performance). -/// -/// [`Uniform`]: uniform::Uniform -#[derive(Clone, Copy, Debug)] -pub struct Standard; - - -#[cfg(all(test, feature = "std"))] -mod tests { - use crate::Rng; - use super::{Distribution, Uniform}; - - #[test] - fn test_distributions_iter() { - use crate::distributions::Open01; - let mut rng = crate::test::rng(210); - let distr = Open01; - let results: Vec<f32> = distr.sample_iter(&mut rng).take(100).collect(); - println!("{:?}", results); - } - - #[test] - fn test_make_an_iter() { - fn ten_dice_rolls_other_than_five<'a, R: Rng>(rng: &'a mut R) -> impl Iterator<Item = i32> + 'a { - Uniform::new_inclusive(1, 6) - .sample_iter(rng) - .filter(|x| *x != 5) - .take(10) - } - - let mut rng = crate::test::rng(211); - let mut count = 0; - for val in ten_dice_rolls_other_than_five(&mut rng) { - assert!(val >= 1 && val <= 6 && val != 5); - count += 1; - } - assert_eq!(count, 10); - } -} |