diff options
Diffstat (limited to 'rand/src/distributions/mod.rs')
-rw-r--r-- | rand/src/distributions/mod.rs | 666 |
1 files changed, 439 insertions, 227 deletions
diff --git a/rand/src/distributions/mod.rs b/rand/src/distributions/mod.rs index 5de8efb..160cd31 100644 --- a/rand/src/distributions/mod.rs +++ b/rand/src/distributions/mod.rs @@ -1,94 +1,394 @@ -// Copyright 2013 The Rust Project Developers. See the COPYRIGHT -// file at the top-level directory of this distribution and at -// http://rust-lang.org/COPYRIGHT. +// Copyright 2018 Developers of the Rand project. +// Copyright 2013-2017 The Rust Project Developers. // // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or -// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license -// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your +// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your // option. This file may not be copied, modified, or distributed // except according to those terms. -//! Sampling from random distributions. +//! Generating random samples from probability distributions. //! -//! This is a generalization of `Rand` to allow parameters to control the -//! exact properties of the generated values, e.g. the mean and standard -//! deviation of a normal distribution. The `Sample` trait is the most -//! general, and allows for generating values that change some state -//! internally. The `IndependentSample` trait is for generating values -//! that do not need to record state. - -use core::marker; - -use {Rng, Rand}; - -pub use self::range::Range; -#[cfg(feature="std")] -pub use self::gamma::{Gamma, ChiSquared, FisherF, StudentT}; -#[cfg(feature="std")] -pub use self::normal::{Normal, LogNormal}; -#[cfg(feature="std")] -pub use self::exponential::Exp; - -pub mod range; -#[cfg(feature="std")] -pub mod gamma; -#[cfg(feature="std")] -pub mod normal; -#[cfg(feature="std")] -pub mod exponential; - -#[cfg(feature="std")] -mod ziggurat_tables; - -/// Types that can be used to create a random instance of `Support`. -pub trait Sample<Support> { - /// Generate a random value of `Support`, using `rng` as the - /// source of randomness. - fn sample<R: Rng>(&mut self, rng: &mut R) -> Support; -} - -/// `Sample`s that do not require keeping track of state. +//! This module is the home of the [`Distribution`] trait and several of its +//! implementations. It is the workhorse behind some of the convenient +//! functionality of the [`Rng`] trait, including [`gen`], [`gen_range`] and +//! of course [`sample`]. +//! +//! Abstractly, a [probability distribution] describes the probability of +//! occurance of each value in its sample space. +//! +//! More concretely, an implementation of `Distribution<T>` for type `X` is an +//! algorithm for choosing values from the sample space (a subset of `T`) +//! according to the distribution `X` represents, using an external source of +//! randomness (an RNG supplied to the `sample` function). +//! +//! A type `X` may implement `Distribution<T>` for multiple types `T`. +//! Any type implementing [`Distribution`] is stateless (i.e. immutable), +//! but it may have internal parameters set at construction time (for example, +//! [`Uniform`] allows specification of its sample space as a range within `T`). +//! +//! +//! # The `Standard` distribution +//! +//! The [`Standard`] distribution is important to mention. This is the +//! distribution used by [`Rng::gen()`] and represents the "default" way to +//! produce a random value for many different types, including most primitive +//! types, tuples, arrays, and a few derived types. See the documentation of +//! [`Standard`] for more details. +//! +//! Implementing `Distribution<T>` for [`Standard`] for user types `T` makes it +//! possible to generate type `T` with [`Rng::gen()`], and by extension also +//! with the [`random()`] function. +//! +//! +//! # Distribution to sample from a `Uniform` range +//! +//! The [`Uniform`] distribution is more flexible than [`Standard`], but also +//! more specialised: it supports fewer target types, but allows the sample +//! space to be specified as an arbitrary range within its target type `T`. +//! Both [`Standard`] and [`Uniform`] are in some sense uniform distributions. +//! +//! Values may be sampled from this distribution using [`Rng::gen_range`] or +//! by creating a distribution object with [`Uniform::new`], +//! [`Uniform::new_inclusive`] or `From<Range>`. When the range limits are not +//! known at compile time it is typically faster to reuse an existing +//! distribution object than to call [`Rng::gen_range`]. +//! +//! User types `T` may also implement `Distribution<T>` for [`Uniform`], +//! although this is less straightforward than for [`Standard`] (see the +//! documentation in the [`uniform` module]. Doing so enables generation of +//! values of type `T` with [`Rng::gen_range`]. +//! +//! +//! # Other distributions +//! +//! There are surprisingly many ways to uniformly generate random floats. A +//! range between 0 and 1 is standard, but the exact bounds (open vs closed) +//! and accuracy differ. In addition to the [`Standard`] distribution Rand offers +//! [`Open01`] and [`OpenClosed01`]. See [Floating point implementation] for +//! more details. +//! +//! [`Alphanumeric`] is a simple distribution to sample random letters and +//! numbers of the `char` type; in contrast [`Standard`] may sample any valid +//! `char`. +//! +//! [`WeightedIndex`] can be used to do weighted sampling from a set of items, +//! such as from an array. +//! +//! # Non-uniform probability distributions +//! +//! Rand currently provides the following probability distributions: +//! +//! - Related to real-valued quantities that grow linearly +//! (e.g. errors, offsets): +//! - [`Normal`] distribution, and [`StandardNormal`] as a primitive +//! - [`Cauchy`] distribution +//! - Related to Bernoulli trials (yes/no events, with a given probability): +//! - [`Binomial`] distribution +//! - [`Bernoulli`] distribution, similar to [`Rng::gen_bool`]. +//! - Related to positive real-valued quantities that grow exponentially +//! (e.g. prices, incomes, populations): +//! - [`LogNormal`] distribution +//! - Related to the occurrence of independent events at a given rate: +//! - [`Pareto`] distribution +//! - [`Poisson`] distribution +//! - [`Exp`]onential distribution, and [`Exp1`] as a primitive +//! - [`Weibull`] distribution +//! - Gamma and derived distributions: +//! - [`Gamma`] distribution +//! - [`ChiSquared`] distribution +//! - [`StudentT`] distribution +//! - [`FisherF`] distribution +//! - Triangular distribution: +//! - [`Beta`] distribution +//! - [`Triangular`] distribution +//! - Multivariate probability distributions +//! - [`Dirichlet`] distribution +//! - [`UnitSphereSurface`] distribution +//! - [`UnitCircle`] distribution +//! +//! # Examples +//! +//! Sampling from a distribution: +//! +//! ``` +//! use rand::{thread_rng, Rng}; +//! use rand::distributions::Exp; +//! +//! let exp = Exp::new(2.0); +//! let v = thread_rng().sample(exp); +//! println!("{} is from an Exp(2) distribution", v); +//! ``` +//! +//! Implementing the [`Standard`] distribution for a user type: +//! +//! ``` +//! # #![allow(dead_code)] +//! use rand::Rng; +//! use rand::distributions::{Distribution, Standard}; +//! +//! struct MyF32 { +//! x: f32, +//! } +//! +//! impl Distribution<MyF32> for Standard { +//! fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> MyF32 { +//! MyF32 { x: rng.gen() } +//! } +//! } +//! ``` +//! +//! +//! [probability distribution]: https://en.wikipedia.org/wiki/Probability_distribution +//! [`Distribution`]: trait.Distribution.html +//! [`gen_range`]: ../trait.Rng.html#method.gen_range +//! [`gen`]: ../trait.Rng.html#method.gen +//! [`sample`]: ../trait.Rng.html#method.sample +//! [`new_inclusive`]: struct.Uniform.html#method.new_inclusive +//! [`random()`]: ../fn.random.html +//! [`Rng::gen_bool`]: ../trait.Rng.html#method.gen_bool +//! [`Rng::gen_range`]: ../trait.Rng.html#method.gen_range +//! [`Rng::gen()`]: ../trait.Rng.html#method.gen +//! [`Rng`]: ../trait.Rng.html +//! [`uniform` module]: uniform/index.html +//! [Floating point implementation]: struct.Standard.html#floating-point-implementation +// distributions +//! [`Alphanumeric`]: struct.Alphanumeric.html +//! [`Bernoulli`]: struct.Bernoulli.html +//! [`Beta`]: struct.Beta.html +//! [`Binomial`]: struct.Binomial.html +//! [`Cauchy`]: struct.Cauchy.html +//! [`ChiSquared`]: struct.ChiSquared.html +//! [`Dirichlet`]: struct.Dirichlet.html +//! [`Exp`]: struct.Exp.html +//! [`Exp1`]: struct.Exp1.html +//! [`FisherF`]: struct.FisherF.html +//! [`Gamma`]: struct.Gamma.html +//! [`LogNormal`]: struct.LogNormal.html +//! [`Normal`]: struct.Normal.html +//! [`Open01`]: struct.Open01.html +//! [`OpenClosed01`]: struct.OpenClosed01.html +//! [`Pareto`]: struct.Pareto.html +//! [`Poisson`]: struct.Poisson.html +//! [`Standard`]: struct.Standard.html +//! [`StandardNormal`]: struct.StandardNormal.html +//! [`StudentT`]: struct.StudentT.html +//! [`Triangular`]: struct.Triangular.html +//! [`Uniform`]: struct.Uniform.html +//! [`Uniform::new`]: struct.Uniform.html#method.new +//! [`Uniform::new_inclusive`]: struct.Uniform.html#method.new_inclusive +//! [`UnitSphereSurface`]: struct.UnitSphereSurface.html +//! [`UnitCircle`]: struct.UnitCircle.html +//! [`Weibull`]: struct.Weibull.html +//! [`WeightedIndex`]: struct.WeightedIndex.html + +#[cfg(any(rust_1_26, features="nightly"))] +use core::iter; +use Rng; + +pub use self::other::Alphanumeric; +#[doc(inline)] pub use self::uniform::Uniform; +pub use self::float::{OpenClosed01, Open01}; +pub use self::bernoulli::Bernoulli; +#[cfg(feature="alloc")] pub use self::weighted::{WeightedIndex, WeightedError}; +#[cfg(feature="std")] pub use self::unit_sphere::UnitSphereSurface; +#[cfg(feature="std")] pub use self::unit_circle::UnitCircle; +#[cfg(feature="std")] pub use self::gamma::{Gamma, ChiSquared, FisherF, + StudentT, Beta}; +#[cfg(feature="std")] pub use self::normal::{Normal, LogNormal, StandardNormal}; +#[cfg(feature="std")] pub use self::exponential::{Exp, Exp1}; +#[cfg(feature="std")] pub use self::pareto::Pareto; +#[cfg(feature="std")] pub use self::poisson::Poisson; +#[cfg(feature="std")] pub use self::binomial::Binomial; +#[cfg(feature="std")] pub use self::cauchy::Cauchy; +#[cfg(feature="std")] pub use self::dirichlet::Dirichlet; +#[cfg(feature="std")] pub use self::triangular::Triangular; +#[cfg(feature="std")] pub use self::weibull::Weibull; + +pub mod uniform; +mod bernoulli; +#[cfg(feature="alloc")] mod weighted; +#[cfg(feature="std")] mod unit_sphere; +#[cfg(feature="std")] mod unit_circle; +#[cfg(feature="std")] mod gamma; +#[cfg(feature="std")] mod normal; +#[cfg(feature="std")] mod exponential; +#[cfg(feature="std")] mod pareto; +#[cfg(feature="std")] mod poisson; +#[cfg(feature="std")] mod binomial; +#[cfg(feature="std")] mod cauchy; +#[cfg(feature="std")] mod dirichlet; +#[cfg(feature="std")] mod triangular; +#[cfg(feature="std")] mod weibull; + +mod float; +mod integer; +mod other; +mod utils; +#[cfg(feature="std")] mod ziggurat_tables; + +/// Types (distributions) that can be used to create a random instance of `T`. +/// +/// It is possible to sample from a distribution through both the +/// `Distribution` and [`Rng`] traits, via `distr.sample(&mut rng)` and +/// `rng.sample(distr)`. They also both offer the [`sample_iter`] method, which +/// produces an iterator that samples from the distribution. +/// +/// All implementations are expected to be immutable; this has the significant +/// advantage of not needing to consider thread safety, and for most +/// distributions efficient state-less sampling algorithms are available. /// -/// Since no state is recorded, each sample is (statistically) -/// independent of all others, assuming the `Rng` used has this -/// property. -// FIXME maybe having this separate is overkill (the only reason is to -// take &self rather than &mut self)? or maybe this should be the -// trait called `Sample` and the other should be `DependentSample`. -pub trait IndependentSample<Support>: Sample<Support> { - /// Generate a random value. - fn ind_sample<R: Rng>(&self, &mut R) -> Support; +/// [`Rng`]: ../trait.Rng.html +/// [`sample_iter`]: trait.Distribution.html#method.sample_iter +pub trait Distribution<T> { + /// Generate a random value of `T`, using `rng` as the source of randomness. + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> T; + + /// Create an iterator that generates random values of `T`, using `rng` as + /// the source of randomness. + /// + /// # Example + /// + /// ``` + /// use rand::thread_rng; + /// use rand::distributions::{Distribution, Alphanumeric, Uniform, Standard}; + /// + /// let mut rng = thread_rng(); + /// + /// // Vec of 16 x f32: + /// let v: Vec<f32> = Standard.sample_iter(&mut rng).take(16).collect(); + /// + /// // String: + /// let s: String = Alphanumeric.sample_iter(&mut rng).take(7).collect(); + /// + /// // Dice-rolling: + /// let die_range = Uniform::new_inclusive(1, 6); + /// let mut roll_die = die_range.sample_iter(&mut rng); + /// while roll_die.next().unwrap() != 6 { + /// println!("Not a 6; rolling again!"); + /// } + /// ``` + fn sample_iter<'a, R>(&'a self, rng: &'a mut R) -> DistIter<'a, Self, R, T> + where Self: Sized, R: Rng + { + DistIter { + distr: self, + rng: rng, + phantom: ::core::marker::PhantomData, + } + } } -/// A wrapper for generating types that implement `Rand` via the -/// `Sample` & `IndependentSample` traits. -#[derive(Debug)] -pub struct RandSample<Sup> { - _marker: marker::PhantomData<fn() -> Sup>, +impl<'a, T, D: Distribution<T>> Distribution<T> for &'a D { + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> T { + (*self).sample(rng) + } } -impl<Sup> Copy for RandSample<Sup> {} -impl<Sup> Clone for RandSample<Sup> { - fn clone(&self) -> Self { *self } -} -impl<Sup: Rand> Sample<Sup> for RandSample<Sup> { - fn sample<R: Rng>(&mut self, rng: &mut R) -> Sup { self.ind_sample(rng) } +/// An iterator that generates random values of `T` with distribution `D`, +/// using `R` as the source of randomness. +/// +/// This `struct` is created by the [`sample_iter`] method on [`Distribution`]. +/// See its documentation for more. +/// +/// [`Distribution`]: trait.Distribution.html +/// [`sample_iter`]: trait.Distribution.html#method.sample_iter +#[derive(Debug)] +pub struct DistIter<'a, D: 'a, R: 'a, T> { + distr: &'a D, + rng: &'a mut R, + phantom: ::core::marker::PhantomData<T>, } -impl<Sup: Rand> IndependentSample<Sup> for RandSample<Sup> { - fn ind_sample<R: Rng>(&self, rng: &mut R) -> Sup { - rng.gen() +impl<'a, D, R, T> Iterator for DistIter<'a, D, R, T> + where D: Distribution<T>, R: Rng + 'a +{ + type Item = T; + + #[inline(always)] + fn next(&mut self) -> Option<T> { + Some(self.distr.sample(self.rng)) } -} -impl<Sup> RandSample<Sup> { - pub fn new() -> RandSample<Sup> { - RandSample { _marker: marker::PhantomData } + fn size_hint(&self) -> (usize, Option<usize>) { + (usize::max_value(), None) } } +#[cfg(rust_1_26)] +impl<'a, D, R, T> iter::FusedIterator for DistIter<'a, D, R, T> + where D: Distribution<T>, R: Rng + 'a {} + +#[cfg(features = "nightly")] +impl<'a, D, R, T> iter::TrustedLen for DistIter<'a, D, R, T> + where D: Distribution<T>, R: Rng + 'a {} + + +/// A generic random value distribution, implemented for many primitive types. +/// Usually generates values with a numerically uniform distribution, and with a +/// range appropriate to the type. +/// +/// ## Built-in Implementations +/// +/// Assuming the provided `Rng` is well-behaved, these implementations +/// generate values with the following ranges and distributions: +/// +/// * Integers (`i32`, `u32`, `isize`, `usize`, etc.): Uniformly distributed +/// over all values of the type. +/// * `char`: Uniformly distributed over all Unicode scalar values, i.e. all +/// code points in the range `0...0x10_FFFF`, except for the range +/// `0xD800...0xDFFF` (the surrogate code points). This includes +/// unassigned/reserved code points. +/// * `bool`: Generates `false` or `true`, each with probability 0.5. +/// * Floating point types (`f32` and `f64`): Uniformly distributed in the +/// half-open range `[0, 1)`. See notes below. +/// * Wrapping integers (`Wrapping<T>`), besides the type identical to their +/// normal integer variants. +/// +/// The following aggregate types also implement the distribution `Standard` as +/// long as their component types implement it: +/// +/// * Tuples and arrays: Each element of the tuple or array is generated +/// independently, using the `Standard` distribution recursively. +/// * `Option<T>` where `Standard` is implemented for `T`: Returns `None` with +/// probability 0.5; otherwise generates a random `x: T` and returns `Some(x)`. +/// +/// # Example +/// ``` +/// use rand::prelude::*; +/// use rand::distributions::Standard; +/// +/// let val: f32 = SmallRng::from_entropy().sample(Standard); +/// println!("f32 from [0, 1): {}", val); +/// ``` +/// +/// # Floating point implementation +/// The floating point implementations for `Standard` generate a random value in +/// the half-open interval `[0, 1)`, i.e. including 0 but not 1. +/// +/// All values that can be generated are of the form `n * ε/2`. For `f32` +/// the 23 most significant random bits of a `u32` are used and for `f64` the +/// 53 most significant bits of a `u64` are used. The conversion uses the +/// multiplicative method: `(rng.gen::<$uty>() >> N) as $ty * (ε/2)`. +/// +/// See also: [`Open01`] which samples from `(0, 1)`, [`OpenClosed01`] which +/// samples from `(0, 1]` and `Rng::gen_range(0, 1)` which also samples from +/// `[0, 1)`. Note that `Open01` and `gen_range` (which uses [`Uniform`]) use +/// transmute-based methods which yield 1 bit less precision but may perform +/// faster on some architectures (on modern Intel CPUs all methods have +/// approximately equal performance). +/// +/// [`Open01`]: struct.Open01.html +/// [`OpenClosed01`]: struct.OpenClosed01.html +/// [`Uniform`]: uniform/struct.Uniform.html +#[derive(Clone, Copy, Debug)] +pub struct Standard; + + /// A value with a particular weight for use with `WeightedChoice`. +#[deprecated(since="0.6.0", note="use WeightedIndex instead")] +#[allow(deprecated)] #[derive(Copy, Clone, Debug)] pub struct Weighted<T> { /// The numerical weight of this item @@ -99,35 +399,19 @@ pub struct Weighted<T> { /// A distribution that selects from a finite collection of weighted items. /// -/// Each item has an associated weight that influences how likely it -/// is to be chosen: higher weight is more likely. -/// -/// The `Clone` restriction is a limitation of the `Sample` and -/// `IndependentSample` traits. Note that `&T` is (cheaply) `Clone` for -/// all `T`, as is `u32`, so one can store references or indices into -/// another vector. -/// -/// # Example -/// -/// ```rust -/// use rand::distributions::{Weighted, WeightedChoice, IndependentSample}; +/// Deprecated: use [`WeightedIndex`] instead. /// -/// let mut items = vec!(Weighted { weight: 2, item: 'a' }, -/// Weighted { weight: 4, item: 'b' }, -/// Weighted { weight: 1, item: 'c' }); -/// let wc = WeightedChoice::new(&mut items); -/// let mut rng = rand::thread_rng(); -/// for _ in 0..16 { -/// // on average prints 'a' 4 times, 'b' 8 and 'c' twice. -/// println!("{}", wc.ind_sample(&mut rng)); -/// } -/// ``` +/// [`WeightedIndex`]: struct.WeightedIndex.html +#[deprecated(since="0.6.0", note="use WeightedIndex instead")] +#[allow(deprecated)] #[derive(Debug)] pub struct WeightedChoice<'a, T:'a> { items: &'a mut [Weighted<T>], - weight_range: Range<u32> + weight_range: Uniform<u32>, } +#[deprecated(since="0.6.0", note="use WeightedIndex instead")] +#[allow(deprecated)] impl<'a, T: Clone> WeightedChoice<'a, T> { /// Create a new `WeightedChoice`. /// @@ -157,26 +441,24 @@ impl<'a, T: Clone> WeightedChoice<'a, T> { assert!(running_total != 0, "WeightedChoice::new called with a total weight of 0"); WeightedChoice { - items: items, + items, // we're likely to be generating numbers in this range // relatively often, so might as well cache it - weight_range: Range::new(0, running_total) + weight_range: Uniform::new(0, running_total) } } } -impl<'a, T: Clone> Sample<T> for WeightedChoice<'a, T> { - fn sample<R: Rng>(&mut self, rng: &mut R) -> T { self.ind_sample(rng) } -} - -impl<'a, T: Clone> IndependentSample<T> for WeightedChoice<'a, T> { - fn ind_sample<R: Rng>(&self, rng: &mut R) -> T { +#[deprecated(since="0.6.0", note="use WeightedIndex instead")] +#[allow(deprecated)] +impl<'a, T: Clone> Distribution<T> for WeightedChoice<'a, T> { + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> T { // we want to find the first element that has cumulative // weight > sample_weight, which we do by binary since the // cumulative weights of self.items are sorted. // choose a weight in [0, total_weight) - let sample_weight = self.weight_range.ind_sample(rng); + let sample_weight = self.weight_range.sample(rng); // short circuit when it's the first item if sample_weight < self.items[0].weight { @@ -208,163 +490,78 @@ impl<'a, T: Clone> IndependentSample<T> for WeightedChoice<'a, T> { } modifier /= 2; } - return self.items[idx + 1].item.clone(); - } -} - -/// Sample a random number using the Ziggurat method (specifically the -/// ZIGNOR variant from Doornik 2005). Most of the arguments are -/// directly from the paper: -/// -/// * `rng`: source of randomness -/// * `symmetric`: whether this is a symmetric distribution, or one-sided with P(x < 0) = 0. -/// * `X`: the $x_i$ abscissae. -/// * `F`: precomputed values of the PDF at the $x_i$, (i.e. $f(x_i)$) -/// * `F_DIFF`: precomputed values of $f(x_i) - f(x_{i+1})$ -/// * `pdf`: the probability density function -/// * `zero_case`: manual sampling from the tail when we chose the -/// bottom box (i.e. i == 0) - -// the perf improvement (25-50%) is definitely worth the extra code -// size from force-inlining. -#[cfg(feature="std")] -#[inline(always)] -fn ziggurat<R: Rng, P, Z>( - rng: &mut R, - symmetric: bool, - x_tab: ziggurat_tables::ZigTable, - f_tab: ziggurat_tables::ZigTable, - mut pdf: P, - mut zero_case: Z) - -> f64 where P: FnMut(f64) -> f64, Z: FnMut(&mut R, f64) -> f64 { - const SCALE: f64 = (1u64 << 53) as f64; - loop { - // reimplement the f64 generation as an optimisation suggested - // by the Doornik paper: we have a lot of precision-space - // (i.e. there are 11 bits of the 64 of a u64 to use after - // creating a f64), so we might as well reuse some to save - // generating a whole extra random number. (Seems to be 15% - // faster.) - // - // This unfortunately misses out on the benefits of direct - // floating point generation if an RNG like dSMFT is - // used. (That is, such RNGs create floats directly, highly - // efficiently and overload next_f32/f64, so by not calling it - // this may be slower than it would be otherwise.) - // FIXME: investigate/optimise for the above. - let bits: u64 = rng.gen(); - let i = (bits & 0xff) as usize; - let f = (bits >> 11) as f64 / SCALE; - - // u is either U(-1, 1) or U(0, 1) depending on if this is a - // symmetric distribution or not. - let u = if symmetric {2.0 * f - 1.0} else {f}; - let x = u * x_tab[i]; - - let test_x = if symmetric { x.abs() } else {x}; - - // algebraically equivalent to |u| < x_tab[i+1]/x_tab[i] (or u < x_tab[i+1]/x_tab[i]) - if test_x < x_tab[i + 1] { - return x; - } - if i == 0 { - return zero_case(rng, u); - } - // algebraically equivalent to f1 + DRanU()*(f0 - f1) < 1 - if f_tab[i + 1] + (f_tab[i] - f_tab[i + 1]) * rng.gen::<f64>() < pdf(x) { - return x; - } + self.items[idx + 1].item.clone() } } #[cfg(test)] mod tests { + use rngs::mock::StepRng; + #[allow(deprecated)] + use super::{WeightedChoice, Weighted, Distribution}; - use {Rng, Rand}; - use super::{RandSample, WeightedChoice, Weighted, Sample, IndependentSample}; - - #[derive(PartialEq, Debug)] - struct ConstRand(usize); - impl Rand for ConstRand { - fn rand<R: Rng>(_: &mut R) -> ConstRand { - ConstRand(0) - } - } - - // 0, 1, 2, 3, ... - struct CountingRng { i: u32 } - impl Rng for CountingRng { - fn next_u32(&mut self) -> u32 { - self.i += 1; - self.i - 1 - } - fn next_u64(&mut self) -> u64 { - self.next_u32() as u64 - } - } - - #[test] - fn test_rand_sample() { - let mut rand_sample = RandSample::<ConstRand>::new(); - - assert_eq!(rand_sample.sample(&mut ::test::rng()), ConstRand(0)); - assert_eq!(rand_sample.ind_sample(&mut ::test::rng()), ConstRand(0)); - } #[test] + #[allow(deprecated)] fn test_weighted_choice() { // this makes assumptions about the internal implementation of - // WeightedChoice, specifically: it doesn't reorder the items, - // it doesn't do weird things to the RNG (so 0 maps to 0, 1 to - // 1, internally; modulo a modulo operation). + // WeightedChoice. It may fail when the implementation in + // `distributions::uniform::UniformInt` changes. macro_rules! t { ($items:expr, $expected:expr) => {{ let mut items = $items; + let mut total_weight = 0; + for item in &items { total_weight += item.weight; } + let wc = WeightedChoice::new(&mut items); let expected = $expected; - let mut rng = CountingRng { i: 0 }; + // Use extremely large steps between the random numbers, because + // we test with small ranges and `UniformInt` is designed to prefer + // the most significant bits. + let mut rng = StepRng::new(0, !0 / (total_weight as u64)); for &val in expected.iter() { - assert_eq!(wc.ind_sample(&mut rng), val) + assert_eq!(wc.sample(&mut rng), val) } }} } - t!(vec!(Weighted { weight: 1, item: 10}), [10]); + t!([Weighted { weight: 1, item: 10}], [10]); // skip some - t!(vec!(Weighted { weight: 0, item: 20}, - Weighted { weight: 2, item: 21}, - Weighted { weight: 0, item: 22}, - Weighted { weight: 1, item: 23}), - [21,21, 23]); + t!([Weighted { weight: 0, item: 20}, + Weighted { weight: 2, item: 21}, + Weighted { weight: 0, item: 22}, + Weighted { weight: 1, item: 23}], + [21, 21, 23]); // different weights - t!(vec!(Weighted { weight: 4, item: 30}, - Weighted { weight: 3, item: 31}), - [30,30,30,30, 31,31,31]); + t!([Weighted { weight: 4, item: 30}, + Weighted { weight: 3, item: 31}], + [30, 31, 30, 31, 30, 31, 30]); // check that we're binary searching // correctly with some vectors of odd // length. - t!(vec!(Weighted { weight: 1, item: 40}, - Weighted { weight: 1, item: 41}, - Weighted { weight: 1, item: 42}, - Weighted { weight: 1, item: 43}, - Weighted { weight: 1, item: 44}), + t!([Weighted { weight: 1, item: 40}, + Weighted { weight: 1, item: 41}, + Weighted { weight: 1, item: 42}, + Weighted { weight: 1, item: 43}, + Weighted { weight: 1, item: 44}], [40, 41, 42, 43, 44]); - t!(vec!(Weighted { weight: 1, item: 50}, - Weighted { weight: 1, item: 51}, - Weighted { weight: 1, item: 52}, - Weighted { weight: 1, item: 53}, - Weighted { weight: 1, item: 54}, - Weighted { weight: 1, item: 55}, - Weighted { weight: 1, item: 56}), - [50, 51, 52, 53, 54, 55, 56]); + t!([Weighted { weight: 1, item: 50}, + Weighted { weight: 1, item: 51}, + Weighted { weight: 1, item: 52}, + Weighted { weight: 1, item: 53}, + Weighted { weight: 1, item: 54}, + Weighted { weight: 1, item: 55}, + Weighted { weight: 1, item: 56}], + [50, 54, 51, 55, 52, 56, 53]); } #[test] + #[allow(deprecated)] fn test_weighted_clone_initialization() { let initial : Weighted<u32> = Weighted {weight: 1, item: 1}; let clone = initial.clone(); @@ -373,6 +570,7 @@ mod tests { } #[test] #[should_panic] + #[allow(deprecated)] fn test_weighted_clone_change_weight() { let initial : Weighted<u32> = Weighted {weight: 1, item: 1}; let mut clone = initial.clone(); @@ -381,6 +579,7 @@ mod tests { } #[test] #[should_panic] + #[allow(deprecated)] fn test_weighted_clone_change_item() { let initial : Weighted<u32> = Weighted {weight: 1, item: 1}; let mut clone = initial.clone(); @@ -390,20 +589,33 @@ mod tests { } #[test] #[should_panic] + #[allow(deprecated)] fn test_weighted_choice_no_items() { WeightedChoice::<isize>::new(&mut []); } #[test] #[should_panic] + #[allow(deprecated)] fn test_weighted_choice_zero_weight() { WeightedChoice::new(&mut [Weighted { weight: 0, item: 0}, Weighted { weight: 0, item: 1}]); } #[test] #[should_panic] + #[allow(deprecated)] fn test_weighted_choice_weight_overflows() { - let x = ::std::u32::MAX / 2; // x + x + 2 is the overflow + let x = ::core::u32::MAX / 2; // x + x + 2 is the overflow WeightedChoice::new(&mut [Weighted { weight: x, item: 0 }, Weighted { weight: 1, item: 1 }, Weighted { weight: x, item: 2 }, Weighted { weight: 1, item: 3 }]); } + + #[cfg(feature="std")] + #[test] + fn test_distributions_iter() { + use distributions::Normal; + let mut rng = ::test::rng(210); + let distr = Normal::new(10.0, 10.0); + let results: Vec<_> = distr.sample_iter(&mut rng).take(100).collect(); + println!("{:?}", results); + } } |