summaryrefslogtreecommitdiff
path: root/rand/src/distributions/mod.rs
diff options
context:
space:
mode:
Diffstat (limited to 'rand/src/distributions/mod.rs')
-rw-r--r--rand/src/distributions/mod.rs409
1 files changed, 409 insertions, 0 deletions
diff --git a/rand/src/distributions/mod.rs b/rand/src/distributions/mod.rs
new file mode 100644
index 0000000..5de8efb
--- /dev/null
+++ b/rand/src/distributions/mod.rs
@@ -0,0 +1,409 @@
+// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
+// file at the top-level directory of this distribution and at
+// http://rust-lang.org/COPYRIGHT.
+//
+// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
+// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
+// option. This file may not be copied, modified, or distributed
+// except according to those terms.
+
+//! Sampling from random distributions.
+//!
+//! This is a generalization of `Rand` to allow parameters to control the
+//! exact properties of the generated values, e.g. the mean and standard
+//! deviation of a normal distribution. The `Sample` trait is the most
+//! general, and allows for generating values that change some state
+//! internally. The `IndependentSample` trait is for generating values
+//! that do not need to record state.
+
+use core::marker;
+
+use {Rng, Rand};
+
+pub use self::range::Range;
+#[cfg(feature="std")]
+pub use self::gamma::{Gamma, ChiSquared, FisherF, StudentT};
+#[cfg(feature="std")]
+pub use self::normal::{Normal, LogNormal};
+#[cfg(feature="std")]
+pub use self::exponential::Exp;
+
+pub mod range;
+#[cfg(feature="std")]
+pub mod gamma;
+#[cfg(feature="std")]
+pub mod normal;
+#[cfg(feature="std")]
+pub mod exponential;
+
+#[cfg(feature="std")]
+mod ziggurat_tables;
+
+/// Types that can be used to create a random instance of `Support`.
+pub trait Sample<Support> {
+ /// Generate a random value of `Support`, using `rng` as the
+ /// source of randomness.
+ fn sample<R: Rng>(&mut self, rng: &mut R) -> Support;
+}
+
+/// `Sample`s that do not require keeping track of state.
+///
+/// Since no state is recorded, each sample is (statistically)
+/// independent of all others, assuming the `Rng` used has this
+/// property.
+// FIXME maybe having this separate is overkill (the only reason is to
+// take &self rather than &mut self)? or maybe this should be the
+// trait called `Sample` and the other should be `DependentSample`.
+pub trait IndependentSample<Support>: Sample<Support> {
+ /// Generate a random value.
+ fn ind_sample<R: Rng>(&self, &mut R) -> Support;
+}
+
+/// A wrapper for generating types that implement `Rand` via the
+/// `Sample` & `IndependentSample` traits.
+#[derive(Debug)]
+pub struct RandSample<Sup> {
+ _marker: marker::PhantomData<fn() -> Sup>,
+}
+
+impl<Sup> Copy for RandSample<Sup> {}
+impl<Sup> Clone for RandSample<Sup> {
+ fn clone(&self) -> Self { *self }
+}
+
+impl<Sup: Rand> Sample<Sup> for RandSample<Sup> {
+ fn sample<R: Rng>(&mut self, rng: &mut R) -> Sup { self.ind_sample(rng) }
+}
+
+impl<Sup: Rand> IndependentSample<Sup> for RandSample<Sup> {
+ fn ind_sample<R: Rng>(&self, rng: &mut R) -> Sup {
+ rng.gen()
+ }
+}
+
+impl<Sup> RandSample<Sup> {
+ pub fn new() -> RandSample<Sup> {
+ RandSample { _marker: marker::PhantomData }
+ }
+}
+
+/// A value with a particular weight for use with `WeightedChoice`.
+#[derive(Copy, Clone, Debug)]
+pub struct Weighted<T> {
+ /// The numerical weight of this item
+ pub weight: u32,
+ /// The actual item which is being weighted
+ pub item: T,
+}
+
+/// A distribution that selects from a finite collection of weighted items.
+///
+/// Each item has an associated weight that influences how likely it
+/// is to be chosen: higher weight is more likely.
+///
+/// The `Clone` restriction is a limitation of the `Sample` and
+/// `IndependentSample` traits. Note that `&T` is (cheaply) `Clone` for
+/// all `T`, as is `u32`, so one can store references or indices into
+/// another vector.
+///
+/// # Example
+///
+/// ```rust
+/// use rand::distributions::{Weighted, WeightedChoice, IndependentSample};
+///
+/// let mut items = vec!(Weighted { weight: 2, item: 'a' },
+/// Weighted { weight: 4, item: 'b' },
+/// Weighted { weight: 1, item: 'c' });
+/// let wc = WeightedChoice::new(&mut items);
+/// let mut rng = rand::thread_rng();
+/// for _ in 0..16 {
+/// // on average prints 'a' 4 times, 'b' 8 and 'c' twice.
+/// println!("{}", wc.ind_sample(&mut rng));
+/// }
+/// ```
+#[derive(Debug)]
+pub struct WeightedChoice<'a, T:'a> {
+ items: &'a mut [Weighted<T>],
+ weight_range: Range<u32>
+}
+
+impl<'a, T: Clone> WeightedChoice<'a, T> {
+ /// Create a new `WeightedChoice`.
+ ///
+ /// Panics if:
+ ///
+ /// - `items` is empty
+ /// - the total weight is 0
+ /// - the total weight is larger than a `u32` can contain.
+ pub fn new(items: &'a mut [Weighted<T>]) -> WeightedChoice<'a, T> {
+ // strictly speaking, this is subsumed by the total weight == 0 case
+ assert!(!items.is_empty(), "WeightedChoice::new called with no items");
+
+ let mut running_total: u32 = 0;
+
+ // we convert the list from individual weights to cumulative
+ // weights so we can binary search. This *could* drop elements
+ // with weight == 0 as an optimisation.
+ for item in items.iter_mut() {
+ running_total = match running_total.checked_add(item.weight) {
+ Some(n) => n,
+ None => panic!("WeightedChoice::new called with a total weight \
+ larger than a u32 can contain")
+ };
+
+ item.weight = running_total;
+ }
+ assert!(running_total != 0, "WeightedChoice::new called with a total weight of 0");
+
+ WeightedChoice {
+ items: items,
+ // we're likely to be generating numbers in this range
+ // relatively often, so might as well cache it
+ weight_range: Range::new(0, running_total)
+ }
+ }
+}
+
+impl<'a, T: Clone> Sample<T> for WeightedChoice<'a, T> {
+ fn sample<R: Rng>(&mut self, rng: &mut R) -> T { self.ind_sample(rng) }
+}
+
+impl<'a, T: Clone> IndependentSample<T> for WeightedChoice<'a, T> {
+ fn ind_sample<R: Rng>(&self, rng: &mut R) -> T {
+ // we want to find the first element that has cumulative
+ // weight > sample_weight, which we do by binary since the
+ // cumulative weights of self.items are sorted.
+
+ // choose a weight in [0, total_weight)
+ let sample_weight = self.weight_range.ind_sample(rng);
+
+ // short circuit when it's the first item
+ if sample_weight < self.items[0].weight {
+ return self.items[0].item.clone();
+ }
+
+ let mut idx = 0;
+ let mut modifier = self.items.len();
+
+ // now we know that every possibility has an element to the
+ // left, so we can just search for the last element that has
+ // cumulative weight <= sample_weight, then the next one will
+ // be "it". (Note that this greatest element will never be the
+ // last element of the vector, since sample_weight is chosen
+ // in [0, total_weight) and the cumulative weight of the last
+ // one is exactly the total weight.)
+ while modifier > 1 {
+ let i = idx + modifier / 2;
+ if self.items[i].weight <= sample_weight {
+ // we're small, so look to the right, but allow this
+ // exact element still.
+ idx = i;
+ // we need the `/ 2` to round up otherwise we'll drop
+ // the trailing elements when `modifier` is odd.
+ modifier += 1;
+ } else {
+ // otherwise we're too big, so go left. (i.e. do
+ // nothing)
+ }
+ modifier /= 2;
+ }
+ return self.items[idx + 1].item.clone();
+ }
+}
+
+/// Sample a random number using the Ziggurat method (specifically the
+/// ZIGNOR variant from Doornik 2005). Most of the arguments are
+/// directly from the paper:
+///
+/// * `rng`: source of randomness
+/// * `symmetric`: whether this is a symmetric distribution, or one-sided with P(x < 0) = 0.
+/// * `X`: the $x_i$ abscissae.
+/// * `F`: precomputed values of the PDF at the $x_i$, (i.e. $f(x_i)$)
+/// * `F_DIFF`: precomputed values of $f(x_i) - f(x_{i+1})$
+/// * `pdf`: the probability density function
+/// * `zero_case`: manual sampling from the tail when we chose the
+/// bottom box (i.e. i == 0)
+
+// the perf improvement (25-50%) is definitely worth the extra code
+// size from force-inlining.
+#[cfg(feature="std")]
+#[inline(always)]
+fn ziggurat<R: Rng, P, Z>(
+ rng: &mut R,
+ symmetric: bool,
+ x_tab: ziggurat_tables::ZigTable,
+ f_tab: ziggurat_tables::ZigTable,
+ mut pdf: P,
+ mut zero_case: Z)
+ -> f64 where P: FnMut(f64) -> f64, Z: FnMut(&mut R, f64) -> f64 {
+ const SCALE: f64 = (1u64 << 53) as f64;
+ loop {
+ // reimplement the f64 generation as an optimisation suggested
+ // by the Doornik paper: we have a lot of precision-space
+ // (i.e. there are 11 bits of the 64 of a u64 to use after
+ // creating a f64), so we might as well reuse some to save
+ // generating a whole extra random number. (Seems to be 15%
+ // faster.)
+ //
+ // This unfortunately misses out on the benefits of direct
+ // floating point generation if an RNG like dSMFT is
+ // used. (That is, such RNGs create floats directly, highly
+ // efficiently and overload next_f32/f64, so by not calling it
+ // this may be slower than it would be otherwise.)
+ // FIXME: investigate/optimise for the above.
+ let bits: u64 = rng.gen();
+ let i = (bits & 0xff) as usize;
+ let f = (bits >> 11) as f64 / SCALE;
+
+ // u is either U(-1, 1) or U(0, 1) depending on if this is a
+ // symmetric distribution or not.
+ let u = if symmetric {2.0 * f - 1.0} else {f};
+ let x = u * x_tab[i];
+
+ let test_x = if symmetric { x.abs() } else {x};
+
+ // algebraically equivalent to |u| < x_tab[i+1]/x_tab[i] (or u < x_tab[i+1]/x_tab[i])
+ if test_x < x_tab[i + 1] {
+ return x;
+ }
+ if i == 0 {
+ return zero_case(rng, u);
+ }
+ // algebraically equivalent to f1 + DRanU()*(f0 - f1) < 1
+ if f_tab[i + 1] + (f_tab[i] - f_tab[i + 1]) * rng.gen::<f64>() < pdf(x) {
+ return x;
+ }
+ }
+}
+
+#[cfg(test)]
+mod tests {
+
+ use {Rng, Rand};
+ use super::{RandSample, WeightedChoice, Weighted, Sample, IndependentSample};
+
+ #[derive(PartialEq, Debug)]
+ struct ConstRand(usize);
+ impl Rand for ConstRand {
+ fn rand<R: Rng>(_: &mut R) -> ConstRand {
+ ConstRand(0)
+ }
+ }
+
+ // 0, 1, 2, 3, ...
+ struct CountingRng { i: u32 }
+ impl Rng for CountingRng {
+ fn next_u32(&mut self) -> u32 {
+ self.i += 1;
+ self.i - 1
+ }
+ fn next_u64(&mut self) -> u64 {
+ self.next_u32() as u64
+ }
+ }
+
+ #[test]
+ fn test_rand_sample() {
+ let mut rand_sample = RandSample::<ConstRand>::new();
+
+ assert_eq!(rand_sample.sample(&mut ::test::rng()), ConstRand(0));
+ assert_eq!(rand_sample.ind_sample(&mut ::test::rng()), ConstRand(0));
+ }
+ #[test]
+ fn test_weighted_choice() {
+ // this makes assumptions about the internal implementation of
+ // WeightedChoice, specifically: it doesn't reorder the items,
+ // it doesn't do weird things to the RNG (so 0 maps to 0, 1 to
+ // 1, internally; modulo a modulo operation).
+
+ macro_rules! t {
+ ($items:expr, $expected:expr) => {{
+ let mut items = $items;
+ let wc = WeightedChoice::new(&mut items);
+ let expected = $expected;
+
+ let mut rng = CountingRng { i: 0 };
+
+ for &val in expected.iter() {
+ assert_eq!(wc.ind_sample(&mut rng), val)
+ }
+ }}
+ }
+
+ t!(vec!(Weighted { weight: 1, item: 10}), [10]);
+
+ // skip some
+ t!(vec!(Weighted { weight: 0, item: 20},
+ Weighted { weight: 2, item: 21},
+ Weighted { weight: 0, item: 22},
+ Weighted { weight: 1, item: 23}),
+ [21,21, 23]);
+
+ // different weights
+ t!(vec!(Weighted { weight: 4, item: 30},
+ Weighted { weight: 3, item: 31}),
+ [30,30,30,30, 31,31,31]);
+
+ // check that we're binary searching
+ // correctly with some vectors of odd
+ // length.
+ t!(vec!(Weighted { weight: 1, item: 40},
+ Weighted { weight: 1, item: 41},
+ Weighted { weight: 1, item: 42},
+ Weighted { weight: 1, item: 43},
+ Weighted { weight: 1, item: 44}),
+ [40, 41, 42, 43, 44]);
+ t!(vec!(Weighted { weight: 1, item: 50},
+ Weighted { weight: 1, item: 51},
+ Weighted { weight: 1, item: 52},
+ Weighted { weight: 1, item: 53},
+ Weighted { weight: 1, item: 54},
+ Weighted { weight: 1, item: 55},
+ Weighted { weight: 1, item: 56}),
+ [50, 51, 52, 53, 54, 55, 56]);
+ }
+
+ #[test]
+ fn test_weighted_clone_initialization() {
+ let initial : Weighted<u32> = Weighted {weight: 1, item: 1};
+ let clone = initial.clone();
+ assert_eq!(initial.weight, clone.weight);
+ assert_eq!(initial.item, clone.item);
+ }
+
+ #[test] #[should_panic]
+ fn test_weighted_clone_change_weight() {
+ let initial : Weighted<u32> = Weighted {weight: 1, item: 1};
+ let mut clone = initial.clone();
+ clone.weight = 5;
+ assert_eq!(initial.weight, clone.weight);
+ }
+
+ #[test] #[should_panic]
+ fn test_weighted_clone_change_item() {
+ let initial : Weighted<u32> = Weighted {weight: 1, item: 1};
+ let mut clone = initial.clone();
+ clone.item = 5;
+ assert_eq!(initial.item, clone.item);
+
+ }
+
+ #[test] #[should_panic]
+ fn test_weighted_choice_no_items() {
+ WeightedChoice::<isize>::new(&mut []);
+ }
+ #[test] #[should_panic]
+ fn test_weighted_choice_zero_weight() {
+ WeightedChoice::new(&mut [Weighted { weight: 0, item: 0},
+ Weighted { weight: 0, item: 1}]);
+ }
+ #[test] #[should_panic]
+ fn test_weighted_choice_weight_overflows() {
+ let x = ::std::u32::MAX / 2; // x + x + 2 is the overflow
+ WeightedChoice::new(&mut [Weighted { weight: x, item: 0 },
+ Weighted { weight: 1, item: 1 },
+ Weighted { weight: x, item: 2 },
+ Weighted { weight: 1, item: 3 }]);
+ }
+}