summaryrefslogtreecommitdiff
path: root/rand/src/distributions/gamma.rs
diff options
context:
space:
mode:
Diffstat (limited to 'rand/src/distributions/gamma.rs')
-rw-r--r--rand/src/distributions/gamma.rs386
1 files changed, 386 insertions, 0 deletions
diff --git a/rand/src/distributions/gamma.rs b/rand/src/distributions/gamma.rs
new file mode 100644
index 0000000..2806495
--- /dev/null
+++ b/rand/src/distributions/gamma.rs
@@ -0,0 +1,386 @@
+// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
+// file at the top-level directory of this distribution and at
+// http://rust-lang.org/COPYRIGHT.
+//
+// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
+// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
+// option. This file may not be copied, modified, or distributed
+// except according to those terms.
+//
+// ignore-lexer-test FIXME #15679
+
+//! The Gamma and derived distributions.
+
+use self::GammaRepr::*;
+use self::ChiSquaredRepr::*;
+
+use {Rng, Open01};
+use super::normal::StandardNormal;
+use super::{IndependentSample, Sample, Exp};
+
+/// The Gamma distribution `Gamma(shape, scale)` distribution.
+///
+/// The density function of this distribution is
+///
+/// ```text
+/// f(x) = x^(k - 1) * exp(-x / θ) / (Γ(k) * θ^k)
+/// ```
+///
+/// where `Γ` is the Gamma function, `k` is the shape and `θ` is the
+/// scale and both `k` and `θ` are strictly positive.
+///
+/// The algorithm used is that described by Marsaglia & Tsang 2000[1],
+/// falling back to directly sampling from an Exponential for `shape
+/// == 1`, and using the boosting technique described in [1] for
+/// `shape < 1`.
+///
+/// # Example
+///
+/// ```rust
+/// use rand::distributions::{IndependentSample, Gamma};
+///
+/// let gamma = Gamma::new(2.0, 5.0);
+/// let v = gamma.ind_sample(&mut rand::thread_rng());
+/// println!("{} is from a Gamma(2, 5) distribution", v);
+/// ```
+///
+/// [1]: George Marsaglia and Wai Wan Tsang. 2000. "A Simple Method
+/// for Generating Gamma Variables" *ACM Trans. Math. Softw.* 26, 3
+/// (September 2000),
+/// 363-372. DOI:[10.1145/358407.358414](http://doi.acm.org/10.1145/358407.358414)
+#[derive(Clone, Copy, Debug)]
+pub struct Gamma {
+ repr: GammaRepr,
+}
+
+#[derive(Clone, Copy, Debug)]
+enum GammaRepr {
+ Large(GammaLargeShape),
+ One(Exp),
+ Small(GammaSmallShape)
+}
+
+// These two helpers could be made public, but saving the
+// match-on-Gamma-enum branch from using them directly (e.g. if one
+// knows that the shape is always > 1) doesn't appear to be much
+// faster.
+
+/// Gamma distribution where the shape parameter is less than 1.
+///
+/// Note, samples from this require a compulsory floating-point `pow`
+/// call, which makes it significantly slower than sampling from a
+/// gamma distribution where the shape parameter is greater than or
+/// equal to 1.
+///
+/// See `Gamma` for sampling from a Gamma distribution with general
+/// shape parameters.
+#[derive(Clone, Copy, Debug)]
+struct GammaSmallShape {
+ inv_shape: f64,
+ large_shape: GammaLargeShape
+}
+
+/// Gamma distribution where the shape parameter is larger than 1.
+///
+/// See `Gamma` for sampling from a Gamma distribution with general
+/// shape parameters.
+#[derive(Clone, Copy, Debug)]
+struct GammaLargeShape {
+ scale: f64,
+ c: f64,
+ d: f64
+}
+
+impl Gamma {
+ /// Construct an object representing the `Gamma(shape, scale)`
+ /// distribution.
+ ///
+ /// Panics if `shape <= 0` or `scale <= 0`.
+ #[inline]
+ pub fn new(shape: f64, scale: f64) -> Gamma {
+ assert!(shape > 0.0, "Gamma::new called with shape <= 0");
+ assert!(scale > 0.0, "Gamma::new called with scale <= 0");
+
+ let repr = if shape == 1.0 {
+ One(Exp::new(1.0 / scale))
+ } else if shape < 1.0 {
+ Small(GammaSmallShape::new_raw(shape, scale))
+ } else {
+ Large(GammaLargeShape::new_raw(shape, scale))
+ };
+ Gamma { repr: repr }
+ }
+}
+
+impl GammaSmallShape {
+ fn new_raw(shape: f64, scale: f64) -> GammaSmallShape {
+ GammaSmallShape {
+ inv_shape: 1. / shape,
+ large_shape: GammaLargeShape::new_raw(shape + 1.0, scale)
+ }
+ }
+}
+
+impl GammaLargeShape {
+ fn new_raw(shape: f64, scale: f64) -> GammaLargeShape {
+ let d = shape - 1. / 3.;
+ GammaLargeShape {
+ scale: scale,
+ c: 1. / (9. * d).sqrt(),
+ d: d
+ }
+ }
+}
+
+impl Sample<f64> for Gamma {
+ fn sample<R: Rng>(&mut self, rng: &mut R) -> f64 { self.ind_sample(rng) }
+}
+impl Sample<f64> for GammaSmallShape {
+ fn sample<R: Rng>(&mut self, rng: &mut R) -> f64 { self.ind_sample(rng) }
+}
+impl Sample<f64> for GammaLargeShape {
+ fn sample<R: Rng>(&mut self, rng: &mut R) -> f64 { self.ind_sample(rng) }
+}
+
+impl IndependentSample<f64> for Gamma {
+ fn ind_sample<R: Rng>(&self, rng: &mut R) -> f64 {
+ match self.repr {
+ Small(ref g) => g.ind_sample(rng),
+ One(ref g) => g.ind_sample(rng),
+ Large(ref g) => g.ind_sample(rng),
+ }
+ }
+}
+impl IndependentSample<f64> for GammaSmallShape {
+ fn ind_sample<R: Rng>(&self, rng: &mut R) -> f64 {
+ let Open01(u) = rng.gen::<Open01<f64>>();
+
+ self.large_shape.ind_sample(rng) * u.powf(self.inv_shape)
+ }
+}
+impl IndependentSample<f64> for GammaLargeShape {
+ fn ind_sample<R: Rng>(&self, rng: &mut R) -> f64 {
+ loop {
+ let StandardNormal(x) = rng.gen::<StandardNormal>();
+ let v_cbrt = 1.0 + self.c * x;
+ if v_cbrt <= 0.0 { // a^3 <= 0 iff a <= 0
+ continue
+ }
+
+ let v = v_cbrt * v_cbrt * v_cbrt;
+ let Open01(u) = rng.gen::<Open01<f64>>();
+
+ let x_sqr = x * x;
+ if u < 1.0 - 0.0331 * x_sqr * x_sqr ||
+ u.ln() < 0.5 * x_sqr + self.d * (1.0 - v + v.ln()) {
+ return self.d * v * self.scale
+ }
+ }
+ }
+}
+
+/// The chi-squared distribution `χ²(k)`, where `k` is the degrees of
+/// freedom.
+///
+/// For `k > 0` integral, this distribution is the sum of the squares
+/// of `k` independent standard normal random variables. For other
+/// `k`, this uses the equivalent characterisation
+/// `χ²(k) = Gamma(k/2, 2)`.
+///
+/// # Example
+///
+/// ```rust
+/// use rand::distributions::{ChiSquared, IndependentSample};
+///
+/// let chi = ChiSquared::new(11.0);
+/// let v = chi.ind_sample(&mut rand::thread_rng());
+/// println!("{} is from a χ²(11) distribution", v)
+/// ```
+#[derive(Clone, Copy, Debug)]
+pub struct ChiSquared {
+ repr: ChiSquaredRepr,
+}
+
+#[derive(Clone, Copy, Debug)]
+enum ChiSquaredRepr {
+ // k == 1, Gamma(alpha, ..) is particularly slow for alpha < 1,
+ // e.g. when alpha = 1/2 as it would be for this case, so special-
+ // casing and using the definition of N(0,1)^2 is faster.
+ DoFExactlyOne,
+ DoFAnythingElse(Gamma),
+}
+
+impl ChiSquared {
+ /// Create a new chi-squared distribution with degrees-of-freedom
+ /// `k`. Panics if `k < 0`.
+ pub fn new(k: f64) -> ChiSquared {
+ let repr = if k == 1.0 {
+ DoFExactlyOne
+ } else {
+ assert!(k > 0.0, "ChiSquared::new called with `k` < 0");
+ DoFAnythingElse(Gamma::new(0.5 * k, 2.0))
+ };
+ ChiSquared { repr: repr }
+ }
+}
+impl Sample<f64> for ChiSquared {
+ fn sample<R: Rng>(&mut self, rng: &mut R) -> f64 { self.ind_sample(rng) }
+}
+impl IndependentSample<f64> for ChiSquared {
+ fn ind_sample<R: Rng>(&self, rng: &mut R) -> f64 {
+ match self.repr {
+ DoFExactlyOne => {
+ // k == 1 => N(0,1)^2
+ let StandardNormal(norm) = rng.gen::<StandardNormal>();
+ norm * norm
+ }
+ DoFAnythingElse(ref g) => g.ind_sample(rng)
+ }
+ }
+}
+
+/// The Fisher F distribution `F(m, n)`.
+///
+/// This distribution is equivalent to the ratio of two normalised
+/// chi-squared distributions, that is, `F(m,n) = (χ²(m)/m) /
+/// (χ²(n)/n)`.
+///
+/// # Example
+///
+/// ```rust
+/// use rand::distributions::{FisherF, IndependentSample};
+///
+/// let f = FisherF::new(2.0, 32.0);
+/// let v = f.ind_sample(&mut rand::thread_rng());
+/// println!("{} is from an F(2, 32) distribution", v)
+/// ```
+#[derive(Clone, Copy, Debug)]
+pub struct FisherF {
+ numer: ChiSquared,
+ denom: ChiSquared,
+ // denom_dof / numer_dof so that this can just be a straight
+ // multiplication, rather than a division.
+ dof_ratio: f64,
+}
+
+impl FisherF {
+ /// Create a new `FisherF` distribution, with the given
+ /// parameter. Panics if either `m` or `n` are not positive.
+ pub fn new(m: f64, n: f64) -> FisherF {
+ assert!(m > 0.0, "FisherF::new called with `m < 0`");
+ assert!(n > 0.0, "FisherF::new called with `n < 0`");
+
+ FisherF {
+ numer: ChiSquared::new(m),
+ denom: ChiSquared::new(n),
+ dof_ratio: n / m
+ }
+ }
+}
+impl Sample<f64> for FisherF {
+ fn sample<R: Rng>(&mut self, rng: &mut R) -> f64 { self.ind_sample(rng) }
+}
+impl IndependentSample<f64> for FisherF {
+ fn ind_sample<R: Rng>(&self, rng: &mut R) -> f64 {
+ self.numer.ind_sample(rng) / self.denom.ind_sample(rng) * self.dof_ratio
+ }
+}
+
+/// The Student t distribution, `t(nu)`, where `nu` is the degrees of
+/// freedom.
+///
+/// # Example
+///
+/// ```rust
+/// use rand::distributions::{StudentT, IndependentSample};
+///
+/// let t = StudentT::new(11.0);
+/// let v = t.ind_sample(&mut rand::thread_rng());
+/// println!("{} is from a t(11) distribution", v)
+/// ```
+#[derive(Clone, Copy, Debug)]
+pub struct StudentT {
+ chi: ChiSquared,
+ dof: f64
+}
+
+impl StudentT {
+ /// Create a new Student t distribution with `n` degrees of
+ /// freedom. Panics if `n <= 0`.
+ pub fn new(n: f64) -> StudentT {
+ assert!(n > 0.0, "StudentT::new called with `n <= 0`");
+ StudentT {
+ chi: ChiSquared::new(n),
+ dof: n
+ }
+ }
+}
+impl Sample<f64> for StudentT {
+ fn sample<R: Rng>(&mut self, rng: &mut R) -> f64 { self.ind_sample(rng) }
+}
+impl IndependentSample<f64> for StudentT {
+ fn ind_sample<R: Rng>(&self, rng: &mut R) -> f64 {
+ let StandardNormal(norm) = rng.gen::<StandardNormal>();
+ norm * (self.dof / self.chi.ind_sample(rng)).sqrt()
+ }
+}
+
+#[cfg(test)]
+mod test {
+ use distributions::{Sample, IndependentSample};
+ use super::{ChiSquared, StudentT, FisherF};
+
+ #[test]
+ fn test_chi_squared_one() {
+ let mut chi = ChiSquared::new(1.0);
+ let mut rng = ::test::rng();
+ for _ in 0..1000 {
+ chi.sample(&mut rng);
+ chi.ind_sample(&mut rng);
+ }
+ }
+ #[test]
+ fn test_chi_squared_small() {
+ let mut chi = ChiSquared::new(0.5);
+ let mut rng = ::test::rng();
+ for _ in 0..1000 {
+ chi.sample(&mut rng);
+ chi.ind_sample(&mut rng);
+ }
+ }
+ #[test]
+ fn test_chi_squared_large() {
+ let mut chi = ChiSquared::new(30.0);
+ let mut rng = ::test::rng();
+ for _ in 0..1000 {
+ chi.sample(&mut rng);
+ chi.ind_sample(&mut rng);
+ }
+ }
+ #[test]
+ #[should_panic]
+ fn test_chi_squared_invalid_dof() {
+ ChiSquared::new(-1.0);
+ }
+
+ #[test]
+ fn test_f() {
+ let mut f = FisherF::new(2.0, 32.0);
+ let mut rng = ::test::rng();
+ for _ in 0..1000 {
+ f.sample(&mut rng);
+ f.ind_sample(&mut rng);
+ }
+ }
+
+ #[test]
+ fn test_t() {
+ let mut t = StudentT::new(11.0);
+ let mut rng = ::test::rng();
+ for _ in 0..1000 {
+ t.sample(&mut rng);
+ t.ind_sample(&mut rng);
+ }
+ }
+}