diff options
Diffstat (limited to 'rand/src/distributions/cauchy.rs')
-rw-r--r-- | rand/src/distributions/cauchy.rs | 103 |
1 files changed, 0 insertions, 103 deletions
diff --git a/rand/src/distributions/cauchy.rs b/rand/src/distributions/cauchy.rs deleted file mode 100644 index 0a5d149..0000000 --- a/rand/src/distributions/cauchy.rs +++ /dev/null @@ -1,103 +0,0 @@ -// Copyright 2018 Developers of the Rand project. -// Copyright 2016-2017 The Rust Project Developers. -// -// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or -// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license -// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your -// option. This file may not be copied, modified, or distributed -// except according to those terms. - -//! The Cauchy distribution. -#![allow(deprecated)] -#![allow(clippy::all)] - -use crate::Rng; -use crate::distributions::Distribution; -use std::f64::consts::PI; - -/// The Cauchy distribution `Cauchy(median, scale)`. -/// -/// This distribution has a density function: -/// `f(x) = 1 / (pi * scale * (1 + ((x - median) / scale)^2))` -#[deprecated(since="0.7.0", note="moved to rand_distr crate")] -#[derive(Clone, Copy, Debug)] -pub struct Cauchy { - median: f64, - scale: f64 -} - -impl Cauchy { - /// Construct a new `Cauchy` with the given shape parameters - /// `median` the peak location and `scale` the scale factor. - /// Panics if `scale <= 0`. - pub fn new(median: f64, scale: f64) -> Cauchy { - assert!(scale > 0.0, "Cauchy::new called with scale factor <= 0"); - Cauchy { - median, - scale - } - } -} - -impl Distribution<f64> for Cauchy { - fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 { - // sample from [0, 1) - let x = rng.gen::<f64>(); - // get standard cauchy random number - // note that π/2 is not exactly representable, even if x=0.5 the result is finite - let comp_dev = (PI * x).tan(); - // shift and scale according to parameters - let result = self.median + self.scale * comp_dev; - result - } -} - -#[cfg(test)] -mod test { - use crate::distributions::Distribution; - use super::Cauchy; - - fn median(mut numbers: &mut [f64]) -> f64 { - sort(&mut numbers); - let mid = numbers.len() / 2; - numbers[mid] - } - - fn sort(numbers: &mut [f64]) { - numbers.sort_by(|a, b| a.partial_cmp(b).unwrap()); - } - - #[test] - #[cfg(not(miri))] // Miri doesn't support transcendental functions - fn test_cauchy_averages() { - // NOTE: given that the variance and mean are undefined, - // this test does not have any rigorous statistical meaning. - let cauchy = Cauchy::new(10.0, 5.0); - let mut rng = crate::test::rng(123); - let mut numbers: [f64; 1000] = [0.0; 1000]; - let mut sum = 0.0; - for i in 0..1000 { - numbers[i] = cauchy.sample(&mut rng); - sum += numbers[i]; - } - let median = median(&mut numbers); - println!("Cauchy median: {}", median); - assert!((median - 10.0).abs() < 0.4); // not 100% certain, but probable enough - let mean = sum / 1000.0; - println!("Cauchy mean: {}", mean); - // for a Cauchy distribution the mean should not converge - assert!((mean - 10.0).abs() > 0.4); // not 100% certain, but probable enough - } - - #[test] - #[should_panic] - fn test_cauchy_invalid_scale_zero() { - Cauchy::new(0.0, 0.0); - } - - #[test] - #[should_panic] - fn test_cauchy_invalid_scale_neg() { - Cauchy::new(0.0, -10.0); - } -} |