summaryrefslogtreecommitdiff
path: root/rand/src/distributions/binomial.rs
diff options
context:
space:
mode:
Diffstat (limited to 'rand/src/distributions/binomial.rs')
-rw-r--r--rand/src/distributions/binomial.rs177
1 files changed, 177 insertions, 0 deletions
diff --git a/rand/src/distributions/binomial.rs b/rand/src/distributions/binomial.rs
new file mode 100644
index 0000000..2df393e
--- /dev/null
+++ b/rand/src/distributions/binomial.rs
@@ -0,0 +1,177 @@
+// Copyright 2018 Developers of the Rand project.
+// Copyright 2016-2017 The Rust Project Developers.
+//
+// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
+// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
+// option. This file may not be copied, modified, or distributed
+// except according to those terms.
+
+//! The binomial distribution.
+
+use Rng;
+use distributions::{Distribution, Bernoulli, Cauchy};
+use distributions::utils::log_gamma;
+
+/// The binomial distribution `Binomial(n, p)`.
+///
+/// This distribution has density function:
+/// `f(k) = n!/(k! (n-k)!) p^k (1-p)^(n-k)` for `k >= 0`.
+///
+/// # Example
+///
+/// ```
+/// use rand::distributions::{Binomial, Distribution};
+///
+/// let bin = Binomial::new(20, 0.3);
+/// let v = bin.sample(&mut rand::thread_rng());
+/// println!("{} is from a binomial distribution", v);
+/// ```
+#[derive(Clone, Copy, Debug)]
+pub struct Binomial {
+ /// Number of trials.
+ n: u64,
+ /// Probability of success.
+ p: f64,
+}
+
+impl Binomial {
+ /// Construct a new `Binomial` with the given shape parameters `n` (number
+ /// of trials) and `p` (probability of success).
+ ///
+ /// Panics if `p < 0` or `p > 1`.
+ pub fn new(n: u64, p: f64) -> Binomial {
+ assert!(p >= 0.0, "Binomial::new called with p < 0");
+ assert!(p <= 1.0, "Binomial::new called with p > 1");
+ Binomial { n, p }
+ }
+}
+
+impl Distribution<u64> for Binomial {
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u64 {
+ // Handle these values directly.
+ if self.p == 0.0 {
+ return 0;
+ } else if self.p == 1.0 {
+ return self.n;
+ }
+
+ // For low n, it is faster to sample directly. For both methods,
+ // performance is independent of p. On Intel Haswell CPU this method
+ // appears to be faster for approx n < 300.
+ if self.n < 300 {
+ let mut result = 0;
+ let d = Bernoulli::new(self.p);
+ for _ in 0 .. self.n {
+ result += rng.sample(d) as u32;
+ }
+ return result as u64;
+ }
+
+ // binomial distribution is symmetrical with respect to p -> 1-p, k -> n-k
+ // switch p so that it is less than 0.5 - this allows for lower expected values
+ // we will just invert the result at the end
+ let p = if self.p <= 0.5 {
+ self.p
+ } else {
+ 1.0 - self.p
+ };
+
+ // prepare some cached values
+ let float_n = self.n as f64;
+ let ln_fact_n = log_gamma(float_n + 1.0);
+ let pc = 1.0 - p;
+ let log_p = p.ln();
+ let log_pc = pc.ln();
+ let expected = self.n as f64 * p;
+ let sq = (expected * (2.0 * pc)).sqrt();
+
+ let mut lresult;
+
+ // we use the Cauchy distribution as the comparison distribution
+ // f(x) ~ 1/(1+x^2)
+ let cauchy = Cauchy::new(0.0, 1.0);
+ loop {
+ let mut comp_dev: f64;
+ loop {
+ // draw from the Cauchy distribution
+ comp_dev = rng.sample(cauchy);
+ // shift the peak of the comparison ditribution
+ lresult = expected + sq * comp_dev;
+ // repeat the drawing until we are in the range of possible values
+ if lresult >= 0.0 && lresult < float_n + 1.0 {
+ break;
+ }
+ }
+
+ // the result should be discrete
+ lresult = lresult.floor();
+
+ let log_binomial_dist = ln_fact_n - log_gamma(lresult+1.0) -
+ log_gamma(float_n - lresult + 1.0) + lresult*log_p + (float_n - lresult)*log_pc;
+ // this is the binomial probability divided by the comparison probability
+ // we will generate a uniform random value and if it is larger than this,
+ // we interpret it as a value falling out of the distribution and repeat
+ let comparison_coeff = (log_binomial_dist.exp() * sq) * (1.2 * (1.0 + comp_dev*comp_dev));
+
+ if comparison_coeff >= rng.gen() {
+ break;
+ }
+ }
+
+ // invert the result for p < 0.5
+ if p != self.p {
+ self.n - lresult as u64
+ } else {
+ lresult as u64
+ }
+ }
+}
+
+#[cfg(test)]
+mod test {
+ use Rng;
+ use distributions::Distribution;
+ use super::Binomial;
+
+ fn test_binomial_mean_and_variance<R: Rng>(n: u64, p: f64, rng: &mut R) {
+ let binomial = Binomial::new(n, p);
+
+ let expected_mean = n as f64 * p;
+ let expected_variance = n as f64 * p * (1.0 - p);
+
+ let mut results = [0.0; 1000];
+ for i in results.iter_mut() { *i = binomial.sample(rng) as f64; }
+
+ let mean = results.iter().sum::<f64>() / results.len() as f64;
+ assert!((mean as f64 - expected_mean).abs() < expected_mean / 50.0);
+
+ let variance =
+ results.iter().map(|x| (x - mean) * (x - mean)).sum::<f64>()
+ / results.len() as f64;
+ assert!((variance - expected_variance).abs() < expected_variance / 10.0);
+ }
+
+ #[test]
+ fn test_binomial() {
+ let mut rng = ::test::rng(351);
+ test_binomial_mean_and_variance(150, 0.1, &mut rng);
+ test_binomial_mean_and_variance(70, 0.6, &mut rng);
+ test_binomial_mean_and_variance(40, 0.5, &mut rng);
+ test_binomial_mean_and_variance(20, 0.7, &mut rng);
+ test_binomial_mean_and_variance(20, 0.5, &mut rng);
+ }
+
+ #[test]
+ fn test_binomial_end_points() {
+ let mut rng = ::test::rng(352);
+ assert_eq!(rng.sample(Binomial::new(20, 0.0)), 0);
+ assert_eq!(rng.sample(Binomial::new(20, 1.0)), 20);
+ }
+
+ #[test]
+ #[should_panic]
+ fn test_binomial_invalid_lambda_neg() {
+ Binomial::new(20, -10.0);
+ }
+}