summaryrefslogtreecommitdiff
path: root/rand/src/distributions/bernoulli.rs
diff options
context:
space:
mode:
Diffstat (limited to 'rand/src/distributions/bernoulli.rs')
-rw-r--r--rand/src/distributions/bernoulli.rs166
1 files changed, 0 insertions, 166 deletions
diff --git a/rand/src/distributions/bernoulli.rs b/rand/src/distributions/bernoulli.rs
deleted file mode 100644
index eadd056..0000000
--- a/rand/src/distributions/bernoulli.rs
+++ /dev/null
@@ -1,166 +0,0 @@
-// Copyright 2018 Developers of the Rand project.
-//
-// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
-// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
-// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
-// option. This file may not be copied, modified, or distributed
-// except according to those terms.
-
-//! The Bernoulli distribution.
-
-use crate::Rng;
-use crate::distributions::Distribution;
-
-/// The Bernoulli distribution.
-///
-/// This is a special case of the Binomial distribution where `n = 1`.
-///
-/// # Example
-///
-/// ```rust
-/// use rand::distributions::{Bernoulli, Distribution};
-///
-/// let d = Bernoulli::new(0.3).unwrap();
-/// let v = d.sample(&mut rand::thread_rng());
-/// println!("{} is from a Bernoulli distribution", v);
-/// ```
-///
-/// # Precision
-///
-/// This `Bernoulli` distribution uses 64 bits from the RNG (a `u64`),
-/// so only probabilities that are multiples of 2<sup>-64</sup> can be
-/// represented.
-#[derive(Clone, Copy, Debug)]
-pub struct Bernoulli {
- /// Probability of success, relative to the maximal integer.
- p_int: u64,
-}
-
-// To sample from the Bernoulli distribution we use a method that compares a
-// random `u64` value `v < (p * 2^64)`.
-//
-// If `p == 1.0`, the integer `v` to compare against can not represented as a
-// `u64`. We manually set it to `u64::MAX` instead (2^64 - 1 instead of 2^64).
-// Note that value of `p < 1.0` can never result in `u64::MAX`, because an
-// `f64` only has 53 bits of precision, and the next largest value of `p` will
-// result in `2^64 - 2048`.
-//
-// Also there is a 100% theoretical concern: if someone consistenly wants to
-// generate `true` using the Bernoulli distribution (i.e. by using a probability
-// of `1.0`), just using `u64::MAX` is not enough. On average it would return
-// false once every 2^64 iterations. Some people apparently care about this
-// case.
-//
-// That is why we special-case `u64::MAX` to always return `true`, without using
-// the RNG, and pay the performance price for all uses that *are* reasonable.
-// Luckily, if `new()` and `sample` are close, the compiler can optimize out the
-// extra check.
-const ALWAYS_TRUE: u64 = ::core::u64::MAX;
-
-// This is just `2.0.powi(64)`, but written this way because it is not available
-// in `no_std` mode.
-const SCALE: f64 = 2.0 * (1u64 << 63) as f64;
-
-/// Error type returned from `Bernoulli::new`.
-#[derive(Clone, Copy, Debug, PartialEq, Eq)]
-pub enum BernoulliError {
- /// `p < 0` or `p > 1`.
- InvalidProbability,
-}
-
-impl Bernoulli {
- /// Construct a new `Bernoulli` with the given probability of success `p`.
- ///
- /// # Precision
- ///
- /// For `p = 1.0`, the resulting distribution will always generate true.
- /// For `p = 0.0`, the resulting distribution will always generate false.
- ///
- /// This method is accurate for any input `p` in the range `[0, 1]` which is
- /// a multiple of 2<sup>-64</sup>. (Note that not all multiples of
- /// 2<sup>-64</sup> in `[0, 1]` can be represented as a `f64`.)
- #[inline]
- pub fn new(p: f64) -> Result<Bernoulli, BernoulliError> {
- if p < 0.0 || p >= 1.0 {
- if p == 1.0 { return Ok(Bernoulli { p_int: ALWAYS_TRUE }) }
- return Err(BernoulliError::InvalidProbability);
- }
- Ok(Bernoulli { p_int: (p * SCALE) as u64 })
- }
-
- /// Construct a new `Bernoulli` with the probability of success of
- /// `numerator`-in-`denominator`. I.e. `new_ratio(2, 3)` will return
- /// a `Bernoulli` with a 2-in-3 chance, or about 67%, of returning `true`.
- ///
- /// If `numerator == denominator` then the returned `Bernoulli` will always
- /// return `true`. If `numerator == 0` it will always return `false`.
- #[inline]
- pub fn from_ratio(numerator: u32, denominator: u32) -> Result<Bernoulli, BernoulliError> {
- if numerator > denominator {
- return Err(BernoulliError::InvalidProbability);
- }
- if numerator == denominator {
- return Ok(Bernoulli { p_int: ALWAYS_TRUE })
- }
- let p_int = ((f64::from(numerator) / f64::from(denominator)) * SCALE) as u64;
- Ok(Bernoulli { p_int })
- }
-}
-
-impl Distribution<bool> for Bernoulli {
- #[inline]
- fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> bool {
- // Make sure to always return true for p = 1.0.
- if self.p_int == ALWAYS_TRUE { return true; }
- let v: u64 = rng.gen();
- v < self.p_int
- }
-}
-
-#[cfg(test)]
-mod test {
- use crate::Rng;
- use crate::distributions::Distribution;
- use super::Bernoulli;
-
- #[test]
- fn test_trivial() {
- let mut r = crate::test::rng(1);
- let always_false = Bernoulli::new(0.0).unwrap();
- let always_true = Bernoulli::new(1.0).unwrap();
- for _ in 0..5 {
- assert_eq!(r.sample::<bool, _>(&always_false), false);
- assert_eq!(r.sample::<bool, _>(&always_true), true);
- assert_eq!(Distribution::<bool>::sample(&always_false, &mut r), false);
- assert_eq!(Distribution::<bool>::sample(&always_true, &mut r), true);
- }
- }
-
- #[test]
- #[cfg(not(miri))] // Miri is too slow
- fn test_average() {
- const P: f64 = 0.3;
- const NUM: u32 = 3;
- const DENOM: u32 = 10;
- let d1 = Bernoulli::new(P).unwrap();
- let d2 = Bernoulli::from_ratio(NUM, DENOM).unwrap();
- const N: u32 = 100_000;
-
- let mut sum1: u32 = 0;
- let mut sum2: u32 = 0;
- let mut rng = crate::test::rng(2);
- for _ in 0..N {
- if d1.sample(&mut rng) {
- sum1 += 1;
- }
- if d2.sample(&mut rng) {
- sum2 += 1;
- }
- }
- let avg1 = (sum1 as f64) / (N as f64);
- assert!((avg1 - P).abs() < 5e-3);
-
- let avg2 = (sum2 as f64) / (N as f64);
- assert!((avg2 - (NUM as f64)/(DENOM as f64)).abs() < 5e-3);
- }
-}