summaryrefslogtreecommitdiff
path: root/rand/src/distributions/bernoulli.rs
diff options
context:
space:
mode:
Diffstat (limited to 'rand/src/distributions/bernoulli.rs')
-rw-r--r--rand/src/distributions/bernoulli.rs165
1 files changed, 165 insertions, 0 deletions
diff --git a/rand/src/distributions/bernoulli.rs b/rand/src/distributions/bernoulli.rs
new file mode 100644
index 0000000..f49618c
--- /dev/null
+++ b/rand/src/distributions/bernoulli.rs
@@ -0,0 +1,165 @@
+// Copyright 2018 Developers of the Rand project.
+//
+// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
+// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
+// option. This file may not be copied, modified, or distributed
+// except according to those terms.
+
+//! The Bernoulli distribution.
+
+use Rng;
+use distributions::Distribution;
+
+/// The Bernoulli distribution.
+///
+/// This is a special case of the Binomial distribution where `n = 1`.
+///
+/// # Example
+///
+/// ```rust
+/// use rand::distributions::{Bernoulli, Distribution};
+///
+/// let d = Bernoulli::new(0.3);
+/// let v = d.sample(&mut rand::thread_rng());
+/// println!("{} is from a Bernoulli distribution", v);
+/// ```
+///
+/// # Precision
+///
+/// This `Bernoulli` distribution uses 64 bits from the RNG (a `u64`),
+/// so only probabilities that are multiples of 2<sup>-64</sup> can be
+/// represented.
+#[derive(Clone, Copy, Debug)]
+pub struct Bernoulli {
+ /// Probability of success, relative to the maximal integer.
+ p_int: u64,
+}
+
+// To sample from the Bernoulli distribution we use a method that compares a
+// random `u64` value `v < (p * 2^64)`.
+//
+// If `p == 1.0`, the integer `v` to compare against can not represented as a
+// `u64`. We manually set it to `u64::MAX` instead (2^64 - 1 instead of 2^64).
+// Note that value of `p < 1.0` can never result in `u64::MAX`, because an
+// `f64` only has 53 bits of precision, and the next largest value of `p` will
+// result in `2^64 - 2048`.
+//
+// Also there is a 100% theoretical concern: if someone consistenly wants to
+// generate `true` using the Bernoulli distribution (i.e. by using a probability
+// of `1.0`), just using `u64::MAX` is not enough. On average it would return
+// false once every 2^64 iterations. Some people apparently care about this
+// case.
+//
+// That is why we special-case `u64::MAX` to always return `true`, without using
+// the RNG, and pay the performance price for all uses that *are* reasonable.
+// Luckily, if `new()` and `sample` are close, the compiler can optimize out the
+// extra check.
+const ALWAYS_TRUE: u64 = ::core::u64::MAX;
+
+// This is just `2.0.powi(64)`, but written this way because it is not available
+// in `no_std` mode.
+const SCALE: f64 = 2.0 * (1u64 << 63) as f64;
+
+impl Bernoulli {
+ /// Construct a new `Bernoulli` with the given probability of success `p`.
+ ///
+ /// # Panics
+ ///
+ /// If `p < 0` or `p > 1`.
+ ///
+ /// # Precision
+ ///
+ /// For `p = 1.0`, the resulting distribution will always generate true.
+ /// For `p = 0.0`, the resulting distribution will always generate false.
+ ///
+ /// This method is accurate for any input `p` in the range `[0, 1]` which is
+ /// a multiple of 2<sup>-64</sup>. (Note that not all multiples of
+ /// 2<sup>-64</sup> in `[0, 1]` can be represented as a `f64`.)
+ #[inline]
+ pub fn new(p: f64) -> Bernoulli {
+ if p < 0.0 || p >= 1.0 {
+ if p == 1.0 { return Bernoulli { p_int: ALWAYS_TRUE } }
+ panic!("Bernoulli::new not called with 0.0 <= p <= 1.0");
+ }
+ Bernoulli { p_int: (p * SCALE) as u64 }
+ }
+
+ /// Construct a new `Bernoulli` with the probability of success of
+ /// `numerator`-in-`denominator`. I.e. `new_ratio(2, 3)` will return
+ /// a `Bernoulli` with a 2-in-3 chance, or about 67%, of returning `true`.
+ ///
+ /// If `numerator == denominator` then the returned `Bernoulli` will always
+ /// return `true`. If `numerator == 0` it will always return `false`.
+ ///
+ /// # Panics
+ ///
+ /// If `denominator == 0` or `numerator > denominator`.
+ ///
+ #[inline]
+ pub fn from_ratio(numerator: u32, denominator: u32) -> Bernoulli {
+ assert!(numerator <= denominator);
+ if numerator == denominator {
+ return Bernoulli { p_int: ::core::u64::MAX }
+ }
+ let p_int = ((numerator as f64 / denominator as f64) * SCALE) as u64;
+ Bernoulli { p_int }
+ }
+}
+
+impl Distribution<bool> for Bernoulli {
+ #[inline]
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> bool {
+ // Make sure to always return true for p = 1.0.
+ if self.p_int == ALWAYS_TRUE { return true; }
+ let v: u64 = rng.gen();
+ v < self.p_int
+ }
+}
+
+#[cfg(test)]
+mod test {
+ use Rng;
+ use distributions::Distribution;
+ use super::Bernoulli;
+
+ #[test]
+ fn test_trivial() {
+ let mut r = ::test::rng(1);
+ let always_false = Bernoulli::new(0.0);
+ let always_true = Bernoulli::new(1.0);
+ for _ in 0..5 {
+ assert_eq!(r.sample::<bool, _>(&always_false), false);
+ assert_eq!(r.sample::<bool, _>(&always_true), true);
+ assert_eq!(Distribution::<bool>::sample(&always_false, &mut r), false);
+ assert_eq!(Distribution::<bool>::sample(&always_true, &mut r), true);
+ }
+ }
+
+ #[test]
+ fn test_average() {
+ const P: f64 = 0.3;
+ const NUM: u32 = 3;
+ const DENOM: u32 = 10;
+ let d1 = Bernoulli::new(P);
+ let d2 = Bernoulli::from_ratio(NUM, DENOM);
+ const N: u32 = 100_000;
+
+ let mut sum1: u32 = 0;
+ let mut sum2: u32 = 0;
+ let mut rng = ::test::rng(2);
+ for _ in 0..N {
+ if d1.sample(&mut rng) {
+ sum1 += 1;
+ }
+ if d2.sample(&mut rng) {
+ sum2 += 1;
+ }
+ }
+ let avg1 = (sum1 as f64) / (N as f64);
+ assert!((avg1 - P).abs() < 5e-3);
+
+ let avg2 = (sum2 as f64) / (N as f64);
+ assert!((avg2 - (NUM as f64)/(DENOM as f64)).abs() < 5e-3);
+ }
+}