summaryrefslogtreecommitdiff
path: root/rand/rand_jitter
diff options
context:
space:
mode:
Diffstat (limited to 'rand/rand_jitter')
-rw-r--r--rand/rand_jitter/CHANGELOG.md32
-rw-r--r--rand/rand_jitter/COPYRIGHT12
-rw-r--r--rand/rand_jitter/Cargo.toml30
-rw-r--r--rand/rand_jitter/LICENSE-APACHE201
-rw-r--r--rand/rand_jitter/LICENSE-MIT26
-rw-r--r--rand/rand_jitter/README.md119
-rw-r--r--rand/rand_jitter/benches/mod.rs17
-rw-r--r--rand/rand_jitter/src/error.rs77
-rw-r--r--rand/rand_jitter/src/lib.rs750
-rw-r--r--rand/rand_jitter/src/platform.rs44
-rw-r--r--rand/rand_jitter/tests/mod.rs28
11 files changed, 1336 insertions, 0 deletions
diff --git a/rand/rand_jitter/CHANGELOG.md b/rand/rand_jitter/CHANGELOG.md
new file mode 100644
index 0000000..9f4bb7e
--- /dev/null
+++ b/rand/rand_jitter/CHANGELOG.md
@@ -0,0 +1,32 @@
+# Changelog
+All notable changes to this project will be documented in this file.
+
+The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/)
+and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
+
+## [0.2.1] - 2019-08-16
+### Changed
+- `TimerError` changed to `repr(u32)` (#864)
+- `TimerError` enum values all increased by `1<<30` to match new `rand_core::Error` range (#864)
+
+## [0.2.0] - 2019-06-06
+- Bump `rand_core` version
+- Support new `Error` type in `rand_core` 0.5
+- Remove CryptoRng trait bound (#699, #814)
+- Enable doc-testing of README
+
+## [0.1.4] - 2019-05-02
+- Change error conversion code to partially fix #738
+
+## [0.1.3] - 2019-02-05
+- Use libc in `no_std` mode to fix #723
+
+## [0.1.2] - 2019-01-31
+- Fix for older rustc compilers on Windows (#722)
+
+## [0.1.1] - 2019-01-29
+- Fix for older rustc compilers on Mac OSX / iOS (#720)
+- Misc. doc fixes
+
+## [0.1.0] - 2019-01-24
+Initial release.
diff --git a/rand/rand_jitter/COPYRIGHT b/rand/rand_jitter/COPYRIGHT
new file mode 100644
index 0000000..468d907
--- /dev/null
+++ b/rand/rand_jitter/COPYRIGHT
@@ -0,0 +1,12 @@
+Copyrights in the Rand project are retained by their contributors. No
+copyright assignment is required to contribute to the Rand project.
+
+For full authorship information, see the version control history.
+
+Except as otherwise noted (below and/or in individual files), Rand is
+licensed under the Apache License, Version 2.0 <LICENSE-APACHE> or
+<http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+<LICENSE-MIT> or <http://opensource.org/licenses/MIT>, at your option.
+
+The Rand project includes code from the Rust project
+published under these same licenses.
diff --git a/rand/rand_jitter/Cargo.toml b/rand/rand_jitter/Cargo.toml
new file mode 100644
index 0000000..5b7e3c3
--- /dev/null
+++ b/rand/rand_jitter/Cargo.toml
@@ -0,0 +1,30 @@
+[package]
+name = "rand_jitter"
+version = "0.2.1"
+authors = ["The Rand Project Developers"]
+license = "MIT OR Apache-2.0"
+readme = "README.md"
+repository = "https://github.com/rust-random/rand"
+documentation = "https://docs.rs/rand_jitter"
+description = "Random number generator based on timing jitter"
+keywords = ["random", "rng", "os"]
+edition = "2018"
+
+[badges]
+travis-ci = { repository = "rust-random/rand" }
+appveyor = { repository = "rust-random/rand" }
+
+[dependencies]
+rand_core = { path = "../rand_core", version = "0.5" }
+log = { version = "0.4", optional = true }
+
+[target.'cfg(any(target_os = "macos", target_os = "ios"))'.dependencies]
+# We don't need the 'use_std' feature and depending on it causes
+# issues due to: https://github.com/rust-lang/cargo/issues/1197
+libc = { version = "0.2", default_features = false }
+
+[target.'cfg(target_os = "windows")'.dependencies]
+winapi = { version = "0.3", features = ["profileapi"] }
+
+[features]
+std = ["rand_core/std"]
diff --git a/rand/rand_jitter/LICENSE-APACHE b/rand/rand_jitter/LICENSE-APACHE
new file mode 100644
index 0000000..17d7468
--- /dev/null
+++ b/rand/rand_jitter/LICENSE-APACHE
@@ -0,0 +1,201 @@
+ Apache License
+ Version 2.0, January 2004
+ https://www.apache.org/licenses/
+
+TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
+
+1. Definitions.
+
+ "License" shall mean the terms and conditions for use, reproduction,
+ and distribution as defined by Sections 1 through 9 of this document.
+
+ "Licensor" shall mean the copyright owner or entity authorized by
+ the copyright owner that is granting the License.
+
+ "Legal Entity" shall mean the union of the acting entity and all
+ other entities that control, are controlled by, or are under common
+ control with that entity. For the purposes of this definition,
+ "control" means (i) the power, direct or indirect, to cause the
+ direction or management of such entity, whether by contract or
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
+ outstanding shares, or (iii) beneficial ownership of such entity.
+
+ "You" (or "Your") shall mean an individual or Legal Entity
+ exercising permissions granted by this License.
+
+ "Source" form shall mean the preferred form for making modifications,
+ including but not limited to software source code, documentation
+ source, and configuration files.
+
+ "Object" form shall mean any form resulting from mechanical
+ transformation or translation of a Source form, including but
+ not limited to compiled object code, generated documentation,
+ and conversions to other media types.
+
+ "Work" shall mean the work of authorship, whether in Source or
+ Object form, made available under the License, as indicated by a
+ copyright notice that is included in or attached to the work
+ (an example is provided in the Appendix below).
+
+ "Derivative Works" shall mean any work, whether in Source or Object
+ form, that is based on (or derived from) the Work and for which the
+ editorial revisions, annotations, elaborations, or other modifications
+ represent, as a whole, an original work of authorship. For the purposes
+ of this License, Derivative Works shall not include works that remain
+ separable from, or merely link (or bind by name) to the interfaces of,
+ the Work and Derivative Works thereof.
+
+ "Contribution" shall mean any work of authorship, including
+ the original version of the Work and any modifications or additions
+ to that Work or Derivative Works thereof, that is intentionally
+ submitted to Licensor for inclusion in the Work by the copyright owner
+ or by an individual or Legal Entity authorized to submit on behalf of
+ the copyright owner. For the purposes of this definition, "submitted"
+ means any form of electronic, verbal, or written communication sent
+ to the Licensor or its representatives, including but not limited to
+ communication on electronic mailing lists, source code control systems,
+ and issue tracking systems that are managed by, or on behalf of, the
+ Licensor for the purpose of discussing and improving the Work, but
+ excluding communication that is conspicuously marked or otherwise
+ designated in writing by the copyright owner as "Not a Contribution."
+
+ "Contributor" shall mean Licensor and any individual or Legal Entity
+ on behalf of whom a Contribution has been received by Licensor and
+ subsequently incorporated within the Work.
+
+2. Grant of Copyright License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ copyright license to reproduce, prepare Derivative Works of,
+ publicly display, publicly perform, sublicense, and distribute the
+ Work and such Derivative Works in Source or Object form.
+
+3. Grant of Patent License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ (except as stated in this section) patent license to make, have made,
+ use, offer to sell, sell, import, and otherwise transfer the Work,
+ where such license applies only to those patent claims licensable
+ by such Contributor that are necessarily infringed by their
+ Contribution(s) alone or by combination of their Contribution(s)
+ with the Work to which such Contribution(s) was submitted. If You
+ institute patent litigation against any entity (including a
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
+ or a Contribution incorporated within the Work constitutes direct
+ or contributory patent infringement, then any patent licenses
+ granted to You under this License for that Work shall terminate
+ as of the date such litigation is filed.
+
+4. Redistribution. You may reproduce and distribute copies of the
+ Work or Derivative Works thereof in any medium, with or without
+ modifications, and in Source or Object form, provided that You
+ meet the following conditions:
+
+ (a) You must give any other recipients of the Work or
+ Derivative Works a copy of this License; and
+
+ (b) You must cause any modified files to carry prominent notices
+ stating that You changed the files; and
+
+ (c) You must retain, in the Source form of any Derivative Works
+ that You distribute, all copyright, patent, trademark, and
+ attribution notices from the Source form of the Work,
+ excluding those notices that do not pertain to any part of
+ the Derivative Works; and
+
+ (d) If the Work includes a "NOTICE" text file as part of its
+ distribution, then any Derivative Works that You distribute must
+ include a readable copy of the attribution notices contained
+ within such NOTICE file, excluding those notices that do not
+ pertain to any part of the Derivative Works, in at least one
+ of the following places: within a NOTICE text file distributed
+ as part of the Derivative Works; within the Source form or
+ documentation, if provided along with the Derivative Works; or,
+ within a display generated by the Derivative Works, if and
+ wherever such third-party notices normally appear. The contents
+ of the NOTICE file are for informational purposes only and
+ do not modify the License. You may add Your own attribution
+ notices within Derivative Works that You distribute, alongside
+ or as an addendum to the NOTICE text from the Work, provided
+ that such additional attribution notices cannot be construed
+ as modifying the License.
+
+ You may add Your own copyright statement to Your modifications and
+ may provide additional or different license terms and conditions
+ for use, reproduction, or distribution of Your modifications, or
+ for any such Derivative Works as a whole, provided Your use,
+ reproduction, and distribution of the Work otherwise complies with
+ the conditions stated in this License.
+
+5. Submission of Contributions. Unless You explicitly state otherwise,
+ any Contribution intentionally submitted for inclusion in the Work
+ by You to the Licensor shall be under the terms and conditions of
+ this License, without any additional terms or conditions.
+ Notwithstanding the above, nothing herein shall supersede or modify
+ the terms of any separate license agreement you may have executed
+ with Licensor regarding such Contributions.
+
+6. Trademarks. This License does not grant permission to use the trade
+ names, trademarks, service marks, or product names of the Licensor,
+ except as required for reasonable and customary use in describing the
+ origin of the Work and reproducing the content of the NOTICE file.
+
+7. Disclaimer of Warranty. Unless required by applicable law or
+ agreed to in writing, Licensor provides the Work (and each
+ Contributor provides its Contributions) on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
+ implied, including, without limitation, any warranties or conditions
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
+ PARTICULAR PURPOSE. You are solely responsible for determining the
+ appropriateness of using or redistributing the Work and assume any
+ risks associated with Your exercise of permissions under this License.
+
+8. Limitation of Liability. In no event and under no legal theory,
+ whether in tort (including negligence), contract, or otherwise,
+ unless required by applicable law (such as deliberate and grossly
+ negligent acts) or agreed to in writing, shall any Contributor be
+ liable to You for damages, including any direct, indirect, special,
+ incidental, or consequential damages of any character arising as a
+ result of this License or out of the use or inability to use the
+ Work (including but not limited to damages for loss of goodwill,
+ work stoppage, computer failure or malfunction, or any and all
+ other commercial damages or losses), even if such Contributor
+ has been advised of the possibility of such damages.
+
+9. Accepting Warranty or Additional Liability. While redistributing
+ the Work or Derivative Works thereof, You may choose to offer,
+ and charge a fee for, acceptance of support, warranty, indemnity,
+ or other liability obligations and/or rights consistent with this
+ License. However, in accepting such obligations, You may act only
+ on Your own behalf and on Your sole responsibility, not on behalf
+ of any other Contributor, and only if You agree to indemnify,
+ defend, and hold each Contributor harmless for any liability
+ incurred by, or claims asserted against, such Contributor by reason
+ of your accepting any such warranty or additional liability.
+
+END OF TERMS AND CONDITIONS
+
+APPENDIX: How to apply the Apache License to your work.
+
+ To apply the Apache License to your work, attach the following
+ boilerplate notice, with the fields enclosed by brackets "[]"
+ replaced with your own identifying information. (Don't include
+ the brackets!) The text should be enclosed in the appropriate
+ comment syntax for the file format. We also recommend that a
+ file or class name and description of purpose be included on the
+ same "printed page" as the copyright notice for easier
+ identification within third-party archives.
+
+Copyright [yyyy] [name of copyright owner]
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+ https://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
diff --git a/rand/rand_jitter/LICENSE-MIT b/rand/rand_jitter/LICENSE-MIT
new file mode 100644
index 0000000..d93b5ba
--- /dev/null
+++ b/rand/rand_jitter/LICENSE-MIT
@@ -0,0 +1,26 @@
+Copyright 2018 Developers of the Rand project
+Copyright (c) 2014 The Rust Project Developers
+
+Permission is hereby granted, free of charge, to any
+person obtaining a copy of this software and associated
+documentation files (the "Software"), to deal in the
+Software without restriction, including without
+limitation the rights to use, copy, modify, merge,
+publish, distribute, sublicense, and/or sell copies of
+the Software, and to permit persons to whom the Software
+is furnished to do so, subject to the following
+conditions:
+
+The above copyright notice and this permission notice
+shall be included in all copies or substantial portions
+of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
+ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
+TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
+PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
+SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
+CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
+OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
+IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+DEALINGS IN THE SOFTWARE.
diff --git a/rand/rand_jitter/README.md b/rand/rand_jitter/README.md
new file mode 100644
index 0000000..2091d6c
--- /dev/null
+++ b/rand/rand_jitter/README.md
@@ -0,0 +1,119 @@
+# rand_jitter
+[![Build Status](https://travis-ci.org/rust-random/rand.svg?branch=master)](https://travis-ci.org/rust-random/rand)
+[![Build Status](https://ci.appveyor.com/api/projects/status/github/rust-random/rand?svg=true)](https://ci.appveyor.com/project/rust-random/rand)
+[![Latest version](https://img.shields.io/crates/v/rand_jitter.svg)](https://crates.io/crates/rand_jitter)
+[![Book](https://img.shields.io/badge/book-master-yellow.svg)](https://rust-random.github.io/book/)
+[![API](https://img.shields.io/badge/api-master-yellow.svg)](https://rust-random.github.io/rand/rand_jitter)
+[![API](https://docs.rs/rand_jitter/badge.svg)](https://docs.rs/rand_jitter)
+[![Minimum rustc version](https://img.shields.io/badge/rustc-1.32+-lightgray.svg)](https://github.com/rust-random/rand#rust-version-requirements)
+
+Non-physical true random number generator based on timing jitter.
+
+Note that this RNG is not suited for use cases where cryptographic security is
+required (also see [this
+discussion](https://github.com/rust-random/rand/issues/699)).
+
+This crate depends on [rand_core](https://crates.io/crates/rand_core) and is
+part of the [Rand project](https://github.com/rust-random/rand).
+
+This crate aims to support all of Rust's `std` platforms with a system-provided
+entropy source. Unlike other Rand crates, this crate does not support `no_std`
+(handling this gracefully is a current discussion topic).
+
+Links:
+
+- [API documentation (master)](https://rust-random.github.io/rand/rand_jitter)
+- [API documentation (docs.rs)](https://docs.rs/rand_jitter)
+- [Changelog](https://github.com/rust-random/rand/blob/master/rand_jitter/CHANGELOG.md)
+
+## Features
+
+This crate has optional `std` support which is *disabled by default*;
+this feature is required to provide the `JitterRng::new` function;
+without `std` support a timer must be supplied via `JitterRng::new_with_timer`.
+
+## Quality testing
+
+`JitterRng::new()` has build-in, but limited, quality testing, however
+before using `JitterRng` on untested hardware, or after changes that could
+effect how the code is optimized (such as a new LLVM version), it is
+recommend to run the much more stringent
+[NIST SP 800-90B Entropy Estimation Suite](https://github.com/usnistgov/SP800-90B_EntropyAssessment).
+
+Use the following code using `timer_stats` to collect the data:
+
+```rust,no_run
+use rand_jitter::JitterRng;
+
+use std::error::Error;
+use std::fs::File;
+use std::io::Write;
+
+fn get_nstime() -> u64 {
+ use std::time::{SystemTime, UNIX_EPOCH};
+
+ let dur = SystemTime::now().duration_since(UNIX_EPOCH).unwrap();
+ // The correct way to calculate the current time is
+ // `dur.as_secs() * 1_000_000_000 + dur.subsec_nanos() as u64`
+ // But this is faster, and the difference in terms of entropy is
+ // negligible (log2(10^9) == 29.9).
+ dur.as_secs() << 30 | dur.subsec_nanos() as u64
+}
+
+fn main() -> Result<(), Box<dyn Error>> {
+ let mut rng = JitterRng::new_with_timer(get_nstime);
+
+ // 1_000_000 results are required for the
+ // NIST SP 800-90B Entropy Estimation Suite
+ const ROUNDS: usize = 1_000_000;
+ let mut deltas_variable: Vec<u8> = Vec::with_capacity(ROUNDS);
+ let mut deltas_minimal: Vec<u8> = Vec::with_capacity(ROUNDS);
+
+ for _ in 0..ROUNDS {
+ deltas_variable.push(rng.timer_stats(true) as u8);
+ deltas_minimal.push(rng.timer_stats(false) as u8);
+ }
+
+ // Write out after the statistics collection loop, to not disturb the
+ // test results.
+ File::create("jitter_rng_var.bin")?.write(&deltas_variable)?;
+ File::create("jitter_rng_min.bin")?.write(&deltas_minimal)?;
+ Ok(())
+}
+```
+
+This will produce two files: `jitter_rng_var.bin` and `jitter_rng_min.bin`.
+Run the Entropy Estimation Suite in three configurations, as outlined below.
+Every run has two steps. One step to produce an estimation, another to
+validate the estimation.
+
+1. Estimate the expected amount of entropy that is at least available with
+ each round of the entropy collector. This number should be greater than
+ the amount estimated with `64 / test_timer()`.
+ ```sh
+ python noniid_main.py -v jitter_rng_var.bin 8
+ restart.py -v jitter_rng_var.bin 8 <min-entropy>
+ ```
+2. Estimate the expected amount of entropy that is available in the last 4
+ bits of the timer delta after running noice sources. Note that a value of
+ `3.70` is the minimum estimated entropy for true randomness.
+ ```sh
+ python noniid_main.py -v -u 4 jitter_rng_var.bin 4
+ restart.py -v -u 4 jitter_rng_var.bin 4 <min-entropy>
+ ```
+3. Estimate the expected amount of entropy that is available to the entropy
+ collector if both noise sources only run their minimal number of times.
+ This measures the absolute worst-case, and gives a lower bound for the
+ available entropy.
+ ```sh
+ python noniid_main.py -v -u 4 jitter_rng_min.bin 4
+ restart.py -v -u 4 jitter_rng_min.bin 4 <min-entropy>
+ ```
+
+## License
+
+`rand_jitter` is distributed under the terms of both the MIT license and the
+Apache License (Version 2.0).
+
+See [LICENSE-APACHE](LICENSE-APACHE) and [LICENSE-MIT](LICENSE-MIT), and
+[COPYRIGHT](COPYRIGHT) for details.
diff --git a/rand/rand_jitter/benches/mod.rs b/rand/rand_jitter/benches/mod.rs
new file mode 100644
index 0000000..bf7c8a2
--- /dev/null
+++ b/rand/rand_jitter/benches/mod.rs
@@ -0,0 +1,17 @@
+#![feature(test)]
+#![cfg(std)]
+
+use test::Bencher;
+use rand_jitter::rand_core::RngCore;
+
+#[bench]
+fn bench_add_two(b: &mut Bencher) {
+ let mut rng = rand_jitter::JitterRng::new().unwrap();
+ let mut buf = [0u8; 1024];
+ b.iter(|| {
+ rng.fill_bytes(&mut buf[..]);
+ test::black_box(&buf);
+ });
+ b.bytes = buf.len() as u64;
+}
+
diff --git a/rand/rand_jitter/src/error.rs b/rand/rand_jitter/src/error.rs
new file mode 100644
index 0000000..b54fffa
--- /dev/null
+++ b/rand/rand_jitter/src/error.rs
@@ -0,0 +1,77 @@
+// Copyright 2018 Developers of the Rand project.
+// Copyright 2013-2015 The Rust Project Developers.
+//
+// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
+// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
+// option. This file may not be copied, modified, or distributed
+// except according to those terms.
+
+use rand_core::Error;
+use core::fmt;
+
+/// Base code for all `JitterRng` errors
+const ERROR_BASE: u32 = 0xAE53_0400;
+
+/// An error that can occur when [`JitterRng::test_timer`] fails.
+///
+/// All variants have a value of 0xAE530400 = 2924676096 plus a small
+/// increment (1 through 5).
+///
+/// [`JitterRng::test_timer`]: crate::JitterRng::test_timer
+#[derive(Debug, Clone, PartialEq, Eq)]
+#[repr(u32)]
+pub enum TimerError {
+ /// No timer available.
+ NoTimer = ERROR_BASE + 1,
+ /// Timer too coarse to use as an entropy source.
+ CoarseTimer = ERROR_BASE + 2,
+ /// Timer is not monotonically increasing.
+ NotMonotonic = ERROR_BASE + 3,
+ /// Variations of deltas of time too small.
+ TinyVariantions = ERROR_BASE + 4,
+ /// Too many stuck results (indicating no added entropy).
+ TooManyStuck = ERROR_BASE + 5,
+ #[doc(hidden)]
+ __Nonexhaustive,
+}
+
+impl TimerError {
+ fn description(&self) -> &'static str {
+ match *self {
+ TimerError::NoTimer => "no timer available",
+ TimerError::CoarseTimer => "coarse timer",
+ TimerError::NotMonotonic => "timer not monotonic",
+ TimerError::TinyVariantions => "time delta variations too small",
+ TimerError::TooManyStuck => "too many stuck results",
+ TimerError::__Nonexhaustive => unreachable!(),
+ }
+ }
+}
+
+impl fmt::Display for TimerError {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ write!(f, "{}", self.description())
+ }
+}
+
+#[cfg(feature = "std")]
+impl ::std::error::Error for TimerError {
+ fn description(&self) -> &str {
+ self.description()
+ }
+}
+
+impl From<TimerError> for Error {
+ fn from(err: TimerError) -> Error {
+ // Timer check is already quite permissive of failures so we don't
+ // expect false-positive failures, i.e. any error is irrecoverable.
+ #[cfg(feature = "std")] {
+ Error::new(err)
+ }
+ #[cfg(not(feature = "std"))] {
+ Error::from(core::num::NonZeroU32::new(err as u32).unwrap())
+ }
+ }
+}
+
diff --git a/rand/rand_jitter/src/lib.rs b/rand/rand_jitter/src/lib.rs
new file mode 100644
index 0000000..49c53e6
--- /dev/null
+++ b/rand/rand_jitter/src/lib.rs
@@ -0,0 +1,750 @@
+// Copyright 2018 Developers of the Rand project.
+//
+// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
+// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
+// option. This file may not be copied, modified, or distributed
+// except according to those terms.
+//
+// Based on jitterentropy-library, http://www.chronox.de/jent.html.
+// Copyright Stephan Mueller <smueller@chronox.de>, 2014 - 2017.
+//
+// With permission from Stephan Mueller to relicense the Rust translation under
+// the MIT license.
+
+//! Non-physical true random number generator based on timing jitter.
+//!
+//! Note that this RNG is not suited for use cases where cryptographic security is
+//! required (also see this [discussion]).
+//!
+//! This is a true random number generator, as opposed to pseudo-random
+//! generators. Random numbers generated by `JitterRng` can be seen as fresh
+//! entropy. A consequence is that it is orders of magnitude slower than `OsRng`
+//! and PRNGs (about 10<sup>3</sup>..10<sup>6</sup> slower).
+//!
+//! There are very few situations where using this RNG is appropriate. Only very
+//! few applications require true entropy. A normal PRNG can be statistically
+//! indistinguishable, and a cryptographic PRNG should also be as impossible to
+//! predict.
+//!
+//! `JitterRng` can be used without the standard library, but not conveniently,
+//! you must provide a high-precision timer and carefully have to follow the
+//! instructions of [`JitterRng::new_with_timer`].
+//!
+//! This implementation is based on [Jitterentropy] version 2.1.0.
+//!
+//! Note: There is no accurate timer available on WASM platforms, to help
+//! prevent fingerprinting or timing side-channel attacks. Therefore
+//! [`JitterRng::new()`] is not available on WASM. It is also unavailable
+//! with disabled `std` feature.
+//!
+//! [Jitterentropy]: http://www.chronox.de/jent.html
+//! [discussion]: https://github.com/rust-random/rand/issues/699
+
+#![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk.png",
+ html_favicon_url = "https://www.rust-lang.org/favicon.ico",
+ html_root_url = "https://rust-random.github.io/rand/")]
+
+#![deny(missing_docs)]
+#![deny(missing_debug_implementations)]
+#![doc(test(attr(allow(unused_variables), deny(warnings))))]
+
+// Note: the C implementation of `Jitterentropy` relies on being compiled
+// without optimizations. This implementation goes through lengths to make the
+// compiler not optimize out code which does influence timing jitter, but is
+// technically dead code.
+#![no_std]
+#[cfg(feature = "std")]
+extern crate std;
+
+pub use rand_core;
+
+// Coming from https://crates.io/crates/doc-comment
+#[cfg(test)]
+macro_rules! doc_comment {
+ ($x:expr) => {
+ #[doc = $x]
+ extern {}
+ };
+}
+
+#[cfg(test)]
+doc_comment!(include_str!("../README.md"));
+
+#[allow(unused)]
+macro_rules! trace { ($($x:tt)*) => (
+ #[cfg(feature = "log")] {
+ log::trace!($($x)*)
+ }
+) }
+#[allow(unused)]
+macro_rules! debug { ($($x:tt)*) => (
+ #[cfg(feature = "log")] {
+ log::debug!($($x)*)
+ }
+) }
+#[allow(unused)]
+macro_rules! info { ($($x:tt)*) => (
+ #[cfg(feature = "log")] {
+ log::info!($($x)*)
+ }
+) }
+#[allow(unused)]
+macro_rules! warn { ($($x:tt)*) => (
+ #[cfg(feature = "log")] {
+ log::warn!($($x)*)
+ }
+) }
+#[allow(unused)]
+macro_rules! error { ($($x:tt)*) => (
+ #[cfg(feature = "log")] {
+ log::error!($($x)*)
+ }
+) }
+
+#[cfg(feature = "std")]
+mod platform;
+mod error;
+
+use rand_core::{RngCore, Error, impls};
+pub use crate::error::TimerError;
+
+use core::{fmt, mem, ptr};
+#[cfg(feature = "std")]
+use std::sync::atomic::{AtomicUsize, Ordering};
+
+const MEMORY_BLOCKS: usize = 64;
+const MEMORY_BLOCKSIZE: usize = 32;
+const MEMORY_SIZE: usize = MEMORY_BLOCKS * MEMORY_BLOCKSIZE;
+
+/// A true random number generator based on jitter in the CPU execution time,
+/// and jitter in memory access time.
+///
+/// Note that this RNG is not suitable for use cases where cryptographic
+/// security is required.
+pub struct JitterRng {
+ data: u64, // Actual random number
+ // Number of rounds to run the entropy collector per 64 bits
+ rounds: u8,
+ // Timer used by `measure_jitter`
+ timer: fn() -> u64,
+ // Memory for the Memory Access noise source
+ mem_prev_index: u16,
+ // Make `next_u32` not waste 32 bits
+ data_half_used: bool,
+}
+
+// Note: `JitterRng` maintains a small 64-bit entropy pool. With every
+// `generate` 64 new bits should be integrated in the pool. If a round of
+// `generate` were to collect less than the expected 64 bit, then the returned
+// value, and the new state of the entropy pool, would be in some way related to
+// the initial state. It is therefore better if the initial state of the entropy
+// pool is different on each call to `generate`. This has a few implications:
+// - `generate` should be called once before using `JitterRng` to produce the
+// first usable value (this is done by default in `new`);
+// - We do not zero the entropy pool after generating a result. The reference
+// implementation also does not support zeroing, but recommends generating a
+// new value without using it if you want to protect a previously generated
+// 'secret' value from someone inspecting the memory;
+// - Implementing `Clone` seems acceptable, as it would not cause the systematic
+// bias a constant might cause. Only instead of one value that could be
+// potentially related to the same initial state, there are now two.
+
+// Entropy collector state.
+// These values are not necessary to preserve across runs.
+struct EcState {
+ // Previous time stamp to determine the timer delta
+ prev_time: u64,
+ // Deltas used for the stuck test
+ last_delta: i32,
+ last_delta2: i32,
+ // Memory for the Memory Access noise source
+ mem: [u8; MEMORY_SIZE],
+}
+
+impl EcState {
+ // Stuck test by checking the:
+ // - 1st derivation of the jitter measurement (time delta)
+ // - 2nd derivation of the jitter measurement (delta of time deltas)
+ // - 3rd derivation of the jitter measurement (delta of delta of time
+ // deltas)
+ //
+ // All values must always be non-zero.
+ // This test is a heuristic to see whether the last measurement holds
+ // entropy.
+ fn stuck(&mut self, current_delta: i32) -> bool {
+ let delta2 = self.last_delta - current_delta;
+ let delta3 = delta2 - self.last_delta2;
+
+ self.last_delta = current_delta;
+ self.last_delta2 = delta2;
+
+ current_delta == 0 || delta2 == 0 || delta3 == 0
+ }
+}
+
+// Custom Debug implementation that does not expose the internal state
+impl fmt::Debug for JitterRng {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ write!(f, "JitterRng {{}}")
+ }
+}
+
+impl Clone for JitterRng {
+ fn clone(&self) -> JitterRng {
+ JitterRng {
+ data: self.data,
+ rounds: self.rounds,
+ timer: self.timer,
+ mem_prev_index: self.mem_prev_index,
+ // The 32 bits that may still be unused from the previous round are
+ // for the original to use, not for the clone.
+ data_half_used: false,
+ }
+ }
+}
+
+// Initialise to zero; must be positive
+#[cfg(all(feature = "std", not(target_arch = "wasm32")))]
+static JITTER_ROUNDS: AtomicUsize = AtomicUsize::new(0);
+
+impl JitterRng {
+ /// Create a new `JitterRng`. Makes use of `std::time` for a timer, or a
+ /// platform-specific function with higher accuracy if necessary and
+ /// available.
+ ///
+ /// During initialization CPU execution timing jitter is measured a few
+ /// hundred times. If this does not pass basic quality tests, an error is
+ /// returned. The test result is cached to make subsequent calls faster.
+ #[cfg(all(feature = "std", not(target_arch = "wasm32")))]
+ pub fn new() -> Result<JitterRng, TimerError> {
+ if cfg!(target_arch = "wasm32") {
+ return Err(TimerError::NoTimer);
+ }
+ let mut state = JitterRng::new_with_timer(platform::get_nstime);
+ let mut rounds = JITTER_ROUNDS.load(Ordering::Relaxed) as u8;
+ if rounds == 0 {
+ // No result yet: run test.
+ // This allows the timer test to run multiple times; we don't care.
+ rounds = state.test_timer()?;
+ JITTER_ROUNDS.store(rounds as usize, Ordering::Relaxed);
+ info!("JitterRng: using {} rounds per u64 output", rounds);
+ }
+ state.set_rounds(rounds);
+
+ // Fill `data` with a non-zero value.
+ state.gen_entropy();
+ Ok(state)
+ }
+
+ /// Create a new `JitterRng`.
+ /// A custom timer can be supplied, making it possible to use `JitterRng` in
+ /// `no_std` environments.
+ ///
+ /// The timer must have nanosecond precision.
+ ///
+ /// This method is more low-level than `new()`. It is the responsibility of
+ /// the caller to run [`test_timer`] before using any numbers generated with
+ /// `JitterRng`, and optionally call [`set_rounds`]. Also it is important to
+ /// consume at least one `u64` before using the first result to initialize
+ /// the entropy collection pool.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// # use rand_jitter::rand_core::{RngCore, Error};
+ /// use rand_jitter::JitterRng;
+ ///
+ /// # fn try_inner() -> Result<(), Error> {
+ /// fn get_nstime() -> u64 {
+ /// use std::time::{SystemTime, UNIX_EPOCH};
+ ///
+ /// let dur = SystemTime::now().duration_since(UNIX_EPOCH).unwrap();
+ /// // The correct way to calculate the current time is
+ /// // `dur.as_secs() * 1_000_000_000 + dur.subsec_nanos() as u64`
+ /// // But this is faster, and the difference in terms of entropy is
+ /// // negligible (log2(10^9) == 29.9).
+ /// dur.as_secs() << 30 | dur.subsec_nanos() as u64
+ /// }
+ ///
+ /// let mut rng = JitterRng::new_with_timer(get_nstime);
+ /// let rounds = rng.test_timer()?;
+ /// rng.set_rounds(rounds); // optional
+ /// let _ = rng.next_u64();
+ ///
+ /// // Ready for use
+ /// let v: u64 = rng.next_u64();
+ /// # Ok(())
+ /// # }
+ ///
+ /// # let _ = try_inner();
+ /// ```
+ ///
+ /// [`test_timer`]: JitterRng::test_timer
+ /// [`set_rounds`]: JitterRng::set_rounds
+ pub fn new_with_timer(timer: fn() -> u64) -> JitterRng {
+ JitterRng {
+ data: 0,
+ rounds: 64,
+ timer,
+ mem_prev_index: 0,
+ data_half_used: false,
+ }
+ }
+
+ /// Configures how many rounds are used to generate each 64-bit value.
+ /// This must be greater than zero, and has a big impact on performance
+ /// and output quality.
+ ///
+ /// [`new_with_timer`] conservatively uses 64 rounds, but often less rounds
+ /// can be used. The `test_timer()` function returns the minimum number of
+ /// rounds required for full strength (platform dependent), so one may use
+ /// `rng.set_rounds(rng.test_timer()?);` or cache the value.
+ ///
+ /// [`new_with_timer`]: JitterRng::new_with_timer
+ pub fn set_rounds(&mut self, rounds: u8) {
+ assert!(rounds > 0);
+ self.rounds = rounds;
+ }
+
+ // Calculate a random loop count used for the next round of an entropy
+ // collection, based on bits from a fresh value from the timer.
+ //
+ // The timer is folded to produce a number that contains at most `n_bits`
+ // bits.
+ //
+ // Note: A constant should be added to the resulting random loop count to
+ // prevent loops that run 0 times.
+ #[inline(never)]
+ fn random_loop_cnt(&mut self, n_bits: u32) -> u32 {
+ let mut rounds = 0;
+
+ let mut time = (self.timer)();
+ // Mix with the current state of the random number balance the random
+ // loop counter a bit more.
+ time ^= self.data;
+
+ // We fold the time value as much as possible to ensure that as many
+ // bits of the time stamp are included as possible.
+ let folds = (64 + n_bits - 1) / n_bits;
+ let mask = (1 << n_bits) - 1;
+ for _ in 0..folds {
+ rounds ^= time & mask;
+ time >>= n_bits;
+ }
+
+ rounds as u32
+ }
+
+ // CPU jitter noise source
+ // Noise source based on the CPU execution time jitter
+ //
+ // This function injects the individual bits of the time value into the
+ // entropy pool using an LFSR.
+ //
+ // The code is deliberately inefficient with respect to the bit shifting.
+ // This function not only acts as folding operation, but this function's
+ // execution is used to measure the CPU execution time jitter. Any change to
+ // the loop in this function implies that careful retesting must be done.
+ #[inline(never)]
+ fn lfsr_time(&mut self, time: u64, var_rounds: bool) {
+ fn lfsr(mut data: u64, time: u64) -> u64{
+ for i in 1..65 {
+ let mut tmp = time << (64 - i);
+ tmp >>= 64 - 1;
+
+ // Fibonacci LSFR with polynomial of
+ // x^64 + x^61 + x^56 + x^31 + x^28 + x^23 + 1 which is
+ // primitive according to
+ // http://poincare.matf.bg.ac.rs/~ezivkovm/publications/primpol1.pdf
+ // (the shift values are the polynomial values minus one
+ // due to counting bits from 0 to 63). As the current
+ // position is always the LSB, the polynomial only needs
+ // to shift data in from the left without wrap.
+ data ^= tmp;
+ data ^= (data >> 63) & 1;
+ data ^= (data >> 60) & 1;
+ data ^= (data >> 55) & 1;
+ data ^= (data >> 30) & 1;
+ data ^= (data >> 27) & 1;
+ data ^= (data >> 22) & 1;
+ data = data.rotate_left(1);
+ }
+ data
+ }
+
+ // Note: in the reference implementation only the last round effects
+ // `self.data`, all the other results are ignored. To make sure the
+ // other rounds are not optimised out, we first run all but the last
+ // round on a throw-away value instead of the real `self.data`.
+ let mut lfsr_loop_cnt = 0;
+ if var_rounds { lfsr_loop_cnt = self.random_loop_cnt(4) };
+
+ let mut throw_away: u64 = 0;
+ for _ in 0..lfsr_loop_cnt {
+ throw_away = lfsr(throw_away, time);
+ }
+ black_box(throw_away);
+
+ self.data = lfsr(self.data, time);
+ }
+
+ // Memory Access noise source
+ // This is a noise source based on variations in memory access times
+ //
+ // This function performs memory accesses which will add to the timing
+ // variations due to an unknown amount of CPU wait states that need to be
+ // added when accessing memory. The memory size should be larger than the L1
+ // caches as outlined in the documentation and the associated testing.
+ //
+ // The L1 cache has a very high bandwidth, albeit its access rate is usually
+ // slower than accessing CPU registers. Therefore, L1 accesses only add
+ // minimal variations as the CPU has hardly to wait. Starting with L2,
+ // significant variations are added because L2 typically does not belong to
+ // the CPU any more and therefore a wider range of CPU wait states is
+ // necessary for accesses. L3 and real memory accesses have even a wider
+ // range of wait states. However, to reliably access either L3 or memory,
+ // the `self.mem` memory must be quite large which is usually not desirable.
+ #[inline(never)]
+ fn memaccess(&mut self, mem: &mut [u8; MEMORY_SIZE], var_rounds: bool) {
+ let mut acc_loop_cnt = 128;
+ if var_rounds { acc_loop_cnt += self.random_loop_cnt(4) };
+
+ let mut index = self.mem_prev_index as usize;
+ for _ in 0..acc_loop_cnt {
+ // Addition of memblocksize - 1 to index with wrap around logic to
+ // ensure that every memory location is hit evenly.
+ // The modulus also allows the compiler to remove the indexing
+ // bounds check.
+ index = (index + MEMORY_BLOCKSIZE - 1) % MEMORY_SIZE;
+
+ // memory access: just add 1 to one byte
+ // memory access implies read from and write to memory location
+ mem[index] = mem[index].wrapping_add(1);
+ }
+ self.mem_prev_index = index as u16;
+ }
+
+ // This is the heart of the entropy generation: calculate time deltas and
+ // use the CPU jitter in the time deltas. The jitter is injected into the
+ // entropy pool.
+ //
+ // Ensure that `ec.prev_time` is primed before using the output of this
+ // function. This can be done by calling this function and not using its
+ // result.
+ fn measure_jitter(&mut self, ec: &mut EcState) -> Option<()> {
+ // Invoke one noise source before time measurement to add variations
+ self.memaccess(&mut ec.mem, true);
+
+ // Get time stamp and calculate time delta to previous
+ // invocation to measure the timing variations
+ let time = (self.timer)();
+ // Note: wrapping_sub combined with a cast to `i64` generates a correct
+ // delta, even in the unlikely case this is a timer that is not strictly
+ // monotonic.
+ let current_delta = time.wrapping_sub(ec.prev_time) as i64 as i32;
+ ec.prev_time = time;
+
+ // Call the next noise source which also injects the data
+ self.lfsr_time(current_delta as u64, true);
+
+ // Check whether we have a stuck measurement (i.e. does the last
+ // measurement holds entropy?).
+ if ec.stuck(current_delta) { return None };
+
+ // Rotate the data buffer by a prime number (any odd number would
+ // do) to ensure that every bit position of the input time stamp
+ // has an even chance of being merged with a bit position in the
+ // entropy pool. We do not use one here as the adjacent bits in
+ // successive time deltas may have some form of dependency. The
+ // chosen value of 7 implies that the low 7 bits of the next
+ // time delta value is concatenated with the current time delta.
+ self.data = self.data.rotate_left(7);
+
+ Some(())
+ }
+
+ // Shuffle the pool a bit by mixing some value with a bijective function
+ // (XOR) into the pool.
+ //
+ // The function generates a mixer value that depends on the bits set and
+ // the location of the set bits in the random number generated by the
+ // entropy source. Therefore, based on the generated random number, this
+ // mixer value can have 2^64 different values. That mixer value is
+ // initialized with the first two SHA-1 constants. After obtaining the
+ // mixer value, it is XORed into the random number.
+ //
+ // The mixer value is not assumed to contain any entropy. But due to the
+ // XOR operation, it can also not destroy any entropy present in the
+ // entropy pool.
+ #[inline(never)]
+ fn stir_pool(&mut self) {
+ // This constant is derived from the first two 32 bit initialization
+ // vectors of SHA-1 as defined in FIPS 180-4 section 5.3.1
+ // The order does not really matter as we do not rely on the specific
+ // numbers. We just pick the SHA-1 constants as they have a good mix of
+ // bit set and unset.
+ const CONSTANT: u64 = 0x67452301efcdab89;
+
+ // The start value of the mixer variable is derived from the third
+ // and fourth 32 bit initialization vector of SHA-1 as defined in
+ // FIPS 180-4 section 5.3.1
+ let mut mixer = 0x98badcfe10325476;
+
+ // This is a constant time function to prevent leaking timing
+ // information about the random number.
+ // The normal code is:
+ // ```
+ // for i in 0..64 {
+ // if ((self.data >> i) & 1) == 1 { mixer ^= CONSTANT; }
+ // }
+ // ```
+ // This is a bit fragile, as LLVM really wants to use branches here, and
+ // we rely on it to not recognise the opportunity.
+ for i in 0..64 {
+ let apply = (self.data >> i) & 1;
+ let mask = !apply.wrapping_sub(1);
+ mixer ^= CONSTANT & mask;
+ mixer = mixer.rotate_left(1);
+ }
+
+ self.data ^= mixer;
+ }
+
+ fn gen_entropy(&mut self) -> u64 {
+ trace!("JitterRng: collecting entropy");
+
+ // Prime `ec.prev_time`, and run the noice sources to make sure the
+ // first loop round collects the expected entropy.
+ let mut ec = EcState {
+ prev_time: (self.timer)(),
+ last_delta: 0,
+ last_delta2: 0,
+ mem: [0; MEMORY_SIZE],
+ };
+ let _ = self.measure_jitter(&mut ec);
+
+ for _ in 0..self.rounds {
+ // If a stuck measurement is received, repeat measurement
+ // Note: we do not guard against an infinite loop, that would mean
+ // the timer suddenly became broken.
+ while self.measure_jitter(&mut ec).is_none() {}
+ }
+
+ // Do a single read from `self.mem` to make sure the Memory Access noise
+ // source is not optimised out.
+ black_box(ec.mem[0]);
+
+ self.stir_pool();
+ self.data
+ }
+
+ /// Basic quality tests on the timer, by measuring CPU timing jitter a few
+ /// hundred times.
+ ///
+ /// If successful, this will return the estimated number of rounds necessary
+ /// to collect 64 bits of entropy. Otherwise a [`TimerError`] with the cause
+ /// of the failure will be returned.
+ pub fn test_timer(&mut self) -> Result<u8, TimerError> {
+ debug!("JitterRng: testing timer ...");
+ // We could add a check for system capabilities such as `clock_getres`
+ // or check for `CONFIG_X86_TSC`, but it does not make much sense as the
+ // following sanity checks verify that we have a high-resolution timer.
+
+ let mut delta_sum = 0;
+ let mut old_delta = 0;
+
+ let mut time_backwards = 0;
+ let mut count_mod = 0;
+ let mut count_stuck = 0;
+
+ let mut ec = EcState {
+ prev_time: (self.timer)(),
+ last_delta: 0,
+ last_delta2: 0,
+ mem: [0; MEMORY_SIZE],
+ };
+
+ // TESTLOOPCOUNT needs some loops to identify edge systems.
+ // 100 is definitely too little.
+ const TESTLOOPCOUNT: u64 = 300;
+ const CLEARCACHE: u64 = 100;
+
+ for i in 0..(CLEARCACHE + TESTLOOPCOUNT) {
+ // Measure time delta of core entropy collection logic
+ let time = (self.timer)();
+ self.memaccess(&mut ec.mem, true);
+ self.lfsr_time(time, true);
+ let time2 = (self.timer)();
+
+ // Test whether timer works
+ if time == 0 || time2 == 0 {
+ return Err(TimerError::NoTimer);
+ }
+ let delta = time2.wrapping_sub(time) as i64 as i32;
+
+ // Test whether timer is fine grained enough to provide delta even
+ // when called shortly after each other -- this implies that we also
+ // have a high resolution timer
+ if delta == 0 {
+ return Err(TimerError::CoarseTimer);
+ }
+
+ // Up to here we did not modify any variable that will be
+ // evaluated later, but we already performed some work. Thus we
+ // already have had an impact on the caches, branch prediction,
+ // etc. with the goal to clear it to get the worst case
+ // measurements.
+ if i < CLEARCACHE { continue; }
+
+ if ec.stuck(delta) { count_stuck += 1; }
+
+ // Test whether we have an increasing timer.
+ if !(time2 > time) { time_backwards += 1; }
+
+ // Count the number of times the counter increases in steps of 100ns
+ // or greater.
+ if (delta % 100) == 0 { count_mod += 1; }
+
+ // Ensure that we have a varying delta timer which is necessary for
+ // the calculation of entropy -- perform this check only after the
+ // first loop is executed as we need to prime the old_delta value
+ delta_sum += (delta - old_delta).abs() as u64;
+ old_delta = delta;
+ }
+
+ // Do a single read from `self.mem` to make sure the Memory Access noise
+ // source is not optimised out.
+ black_box(ec.mem[0]);
+
+ // We allow the time to run backwards for up to three times.
+ // This can happen if the clock is being adjusted by NTP operations.
+ // If such an operation just happens to interfere with our test, it
+ // should not fail. The value of 3 should cover the NTP case being
+ // performed during our test run.
+ if time_backwards > 3 {
+ return Err(TimerError::NotMonotonic);
+ }
+
+ // Test that the available amount of entropy per round does not get to
+ // low. We expect 1 bit of entropy per round as a reasonable minimum
+ // (although less is possible, it means the collector loop has to run
+ // much more often).
+ // `assert!(delta_average >= log2(1))`
+ // `assert!(delta_sum / TESTLOOPCOUNT >= 1)`
+ // `assert!(delta_sum >= TESTLOOPCOUNT)`
+ if delta_sum < TESTLOOPCOUNT {
+ return Err(TimerError::TinyVariantions);
+ }
+
+ // Ensure that we have variations in the time stamp below 100 for at
+ // least 10% of all checks -- on some platforms, the counter increments
+ // in multiples of 100, but not always
+ if count_mod > (TESTLOOPCOUNT * 9 / 10) {
+ return Err(TimerError::CoarseTimer);
+ }
+
+ // If we have more than 90% stuck results, then this Jitter RNG is
+ // likely to not work well.
+ if count_stuck > (TESTLOOPCOUNT * 9 / 10) {
+ return Err(TimerError::TooManyStuck);
+ }
+
+ // Estimate the number of `measure_jitter` rounds necessary for 64 bits
+ // of entropy.
+ //
+ // We don't try very hard to come up with a good estimate of the
+ // available bits of entropy per round here for two reasons:
+ // 1. Simple estimates of the available bits (like Shannon entropy) are
+ // too optimistic.
+ // 2. Unless we want to waste a lot of time during intialization, there
+ // only a small number of samples are available.
+ //
+ // Therefore we use a very simple and conservative estimate:
+ // `let bits_of_entropy = log2(delta_average) / 2`.
+ //
+ // The number of rounds `measure_jitter` should run to collect 64 bits
+ // of entropy is `64 / bits_of_entropy`.
+ let delta_average = delta_sum / TESTLOOPCOUNT;
+
+ if delta_average >= 16 {
+ let log2 = 64 - delta_average.leading_zeros();
+ // Do something similar to roundup(64/(log2/2)):
+ Ok( ((64u32 * 2 + log2 - 1) / log2) as u8)
+ } else {
+ // For values < 16 the rounding error becomes too large, use a
+ // lookup table.
+ // Values 0 and 1 are invalid, and filtered out by the
+ // `delta_sum < TESTLOOPCOUNT` test above.
+ let log2_lookup = [0, 0, 128, 81, 64, 56, 50, 46,
+ 43, 41, 39, 38, 36, 35, 34, 33];
+ Ok(log2_lookup[delta_average as usize])
+ }
+ }
+
+ /// Statistical test: return the timer delta of one normal run of the
+ /// `JitterRng` entropy collector.
+ ///
+ /// Setting `var_rounds` to `true` will execute the memory access and the
+ /// CPU jitter noice sources a variable amount of times (just like a real
+ /// `JitterRng` round).
+ ///
+ /// Setting `var_rounds` to `false` will execute the noice sources the
+ /// minimal number of times. This can be used to measure the minimum amount
+ /// of entropy one round of the entropy collector can collect in the worst
+ /// case.
+ ///
+ /// See this crate's README on how to use `timer_stats` to test the quality
+ /// of `JitterRng`.
+ pub fn timer_stats(&mut self, var_rounds: bool) -> i64 {
+ let mut mem = [0; MEMORY_SIZE];
+
+ let time = (self.timer)();
+ self.memaccess(&mut mem, var_rounds);
+ self.lfsr_time(time, var_rounds);
+ let time2 = (self.timer)();
+ time2.wrapping_sub(time) as i64
+ }
+}
+
+// A function that is opaque to the optimizer to assist in avoiding dead-code
+// elimination. Taken from `bencher`.
+fn black_box<T>(dummy: T) -> T {
+ unsafe {
+ let ret = ptr::read_volatile(&dummy);
+ mem::forget(dummy);
+ ret
+ }
+}
+
+impl RngCore for JitterRng {
+ fn next_u32(&mut self) -> u32 {
+ // We want to use both parts of the generated entropy
+ if self.data_half_used {
+ self.data_half_used = false;
+ (self.data >> 32) as u32
+ } else {
+ self.data = self.next_u64();
+ self.data_half_used = true;
+ self.data as u32
+ }
+ }
+
+ fn next_u64(&mut self) -> u64 {
+ self.data_half_used = false;
+ self.gen_entropy()
+ }
+
+ fn fill_bytes(&mut self, dest: &mut [u8]) {
+ // Fill using `next_u32`. This is faster for filling small slices (four
+ // bytes or less), while the overhead is negligible.
+ //
+ // This is done especially for wrappers that implement `next_u32`
+ // themselves via `fill_bytes`.
+ impls::fill_bytes_via_next(self, dest)
+ }
+
+ fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
+ Ok(self.fill_bytes(dest))
+ }
+}
diff --git a/rand/rand_jitter/src/platform.rs b/rand/rand_jitter/src/platform.rs
new file mode 100644
index 0000000..8e3d0fb
--- /dev/null
+++ b/rand/rand_jitter/src/platform.rs
@@ -0,0 +1,44 @@
+// Copyright 2018 Developers of the Rand project.
+// Copyright 2013-2015 The Rust Project Developers.
+//
+// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
+// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
+// option. This file may not be copied, modified, or distributed
+// except according to those terms.
+
+#[cfg(not(any(target_os = "macos", target_os = "ios", target_os = "windows")))]
+pub fn get_nstime() -> u64 {
+ use std::time::{SystemTime, UNIX_EPOCH};
+
+ let dur = SystemTime::now().duration_since(UNIX_EPOCH).unwrap();
+ // The correct way to calculate the current time is
+ // `dur.as_secs() * 1_000_000_000 + dur.subsec_nanos() as u64`
+ // But this is faster, and the difference in terms of entropy is
+ // negligible (log2(10^9) == 29.9).
+ dur.as_secs() << 30 | dur.subsec_nanos() as u64
+}
+
+#[cfg(any(target_os = "macos", target_os = "ios"))]
+pub fn get_nstime() -> u64 {
+ use libc;
+
+ // On Mac OS and iOS std::time::SystemTime only has 1000ns resolution.
+ // We use `mach_absolute_time` instead. This provides a CPU dependent
+ // unit, to get real nanoseconds the result should by multiplied by
+ // numer/denom from `mach_timebase_info`.
+ // But we are not interested in the exact nanoseconds, just entropy. So
+ // we use the raw result.
+ unsafe { libc::mach_absolute_time() }
+}
+
+#[cfg(target_os = "windows")]
+pub fn get_nstime() -> u64 {
+ use winapi;
+
+ unsafe {
+ let mut t = super::mem::zeroed();
+ winapi::um::profileapi::QueryPerformanceCounter(&mut t);
+ *t.QuadPart() as u64
+ }
+}
diff --git a/rand/rand_jitter/tests/mod.rs b/rand/rand_jitter/tests/mod.rs
new file mode 100644
index 0000000..961dc27
--- /dev/null
+++ b/rand/rand_jitter/tests/mod.rs
@@ -0,0 +1,28 @@
+use rand_jitter::JitterRng;
+#[cfg(feature = "std")]
+use rand_core::RngCore;
+
+#[cfg(feature = "std")]
+#[test]
+fn test_jitter_init() {
+ // Because this is a debug build, measurements here are not representive
+ // of the final release build.
+ // Don't fail this test if initializing `JitterRng` fails because of a
+ // bad timer (the timer from the standard library may not have enough
+ // accuracy on all platforms).
+ match JitterRng::new() {
+ Ok(ref mut rng) => {
+ // false positives are possible, but extremely unlikely
+ assert!(rng.next_u32() | rng.next_u32() != 0);
+ },
+ Err(_) => {},
+ }
+}
+
+#[test]
+fn test_jitter_bad_timer() {
+ fn bad_timer() -> u64 { 0 }
+ let mut rng = JitterRng::new_with_timer(bad_timer);
+ assert!(rng.test_timer().is_err());
+}
+