diff options
Diffstat (limited to 'rand/rand_hc/src')
-rw-r--r-- | rand/rand_hc/src/hc128.rs | 462 | ||||
-rw-r--r-- | rand/rand_hc/src/lib.rs | 25 |
2 files changed, 487 insertions, 0 deletions
diff --git a/rand/rand_hc/src/hc128.rs b/rand/rand_hc/src/hc128.rs new file mode 100644 index 0000000..d1dadcc --- /dev/null +++ b/rand/rand_hc/src/hc128.rs @@ -0,0 +1,462 @@ +// Copyright 2018 Developers of the Rand project. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! The HC-128 random number generator. + +use core::fmt; +use rand_core::{CryptoRng, RngCore, SeedableRng, Error, le}; +use rand_core::block::{BlockRngCore, BlockRng}; + +const SEED_WORDS: usize = 8; // 128 bit key followed by 128 bit iv + +/// A cryptographically secure random number generator that uses the HC-128 +/// algorithm. +/// +/// HC-128 is a stream cipher designed by Hongjun Wu[^1], that we use as an +/// RNG. It is selected as one of the "stream ciphers suitable for widespread +/// adoption" by eSTREAM[^2]. +/// +/// HC-128 is an array based RNG. In this it is similar to RC-4 and ISAAC before +/// it, but those have never been proven cryptographically secure (or have even +/// been significantly compromised, as in the case of RC-4[^5]). +/// +/// Because HC-128 works with simple indexing into a large array and with a few +/// operations that parallelize well, it has very good performance. The size of +/// the array it needs, 4kb, can however be a disadvantage. +/// +/// This implementation is not based on the version of HC-128 submitted to the +/// eSTREAM contest, but on a later version by the author with a few small +/// improvements from December 15, 2009[^3]. +/// +/// HC-128 has no known weaknesses that are easier to exploit than doing a +/// brute-force search of 2<sup>128</sup>. A very comprehensive analysis of the +/// current state of known attacks / weaknesses of HC-128 is given in *Some +/// Results On Analysis And Implementation Of HC-128 Stream Cipher*[^4]. +/// +/// The average cycle length is expected to be +/// 2<sup>1024*32+10-1</sup> = 2<sup>32777</sup>. +/// We support seeding with a 256-bit array, which matches the 128-bit key +/// concatenated with a 128-bit IV from the stream cipher. +/// +/// This implementation uses an output buffer of sixteen `u32` words, and uses +/// [`BlockRng`] to implement the [`RngCore`] methods. +/// +/// ## References +/// [^1]: Hongjun Wu (2008). ["The Stream Cipher HC-128"]( +/// http://www.ecrypt.eu.org/stream/p3ciphers/hc/hc128_p3.pdf). +/// *The eSTREAM Finalists*, LNCS 4986, pp. 39–47, Springer-Verlag. +/// +/// [^2]: [eSTREAM: the ECRYPT Stream Cipher Project]( +/// http://www.ecrypt.eu.org/stream/) +/// +/// [^3]: Hongjun Wu, [Stream Ciphers HC-128 and HC-256]( +/// https://www.ntu.edu.sg/home/wuhj/research/hc/index.html) +/// +/// [^4]: Shashwat Raizada (January 2015),["Some Results On Analysis And +/// Implementation Of HC-128 Stream Cipher"]( +/// http://library.isical.ac.in:8080/jspui/bitstream/123456789/6636/1/TH431.pdf). +/// +/// [^5]: Internet Engineering Task Force (February 2015), +/// ["Prohibiting RC4 Cipher Suites"](https://tools.ietf.org/html/rfc7465). +/// +/// [`BlockRng`]: ../rand_core/block/struct.BlockRng.html +/// [`RngCore`]: ../rand_core/trait.RngCore.html +#[derive(Clone, Debug)] +pub struct Hc128Rng(BlockRng<Hc128Core>); + +impl RngCore for Hc128Rng { + #[inline(always)] + fn next_u32(&mut self) -> u32 { + self.0.next_u32() + } + + #[inline(always)] + fn next_u64(&mut self) -> u64 { + self.0.next_u64() + } + + fn fill_bytes(&mut self, dest: &mut [u8]) { + self.0.fill_bytes(dest) + } + + fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { + self.0.try_fill_bytes(dest) + } +} + +impl SeedableRng for Hc128Rng { + type Seed = <Hc128Core as SeedableRng>::Seed; + + fn from_seed(seed: Self::Seed) -> Self { + Hc128Rng(BlockRng::<Hc128Core>::from_seed(seed)) + } + + fn from_rng<R: RngCore>(rng: R) -> Result<Self, Error> { + BlockRng::<Hc128Core>::from_rng(rng).map(Hc128Rng) + } +} + +impl CryptoRng for Hc128Rng {} + +/// The core of `Hc128Rng`, used with `BlockRng`. +#[derive(Clone)] +pub struct Hc128Core { + t: [u32; 1024], + counter1024: usize, +} + +// Custom Debug implementation that does not expose the internal state +impl fmt::Debug for Hc128Core { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + write!(f, "Hc128Core {{}}") + } +} + +impl BlockRngCore for Hc128Core { + type Item = u32; + type Results = [u32; 16]; + + fn generate(&mut self, results: &mut Self::Results) { + assert!(self.counter1024 % 16 == 0); + + let cc = self.counter1024 % 512; + let dd = (cc + 16) % 512; + let ee = cc.wrapping_sub(16) % 512; + + if self.counter1024 & 512 == 0 { + // P block + results[0] = self.step_p(cc+0, cc+1, ee+13, ee+6, ee+4); + results[1] = self.step_p(cc+1, cc+2, ee+14, ee+7, ee+5); + results[2] = self.step_p(cc+2, cc+3, ee+15, ee+8, ee+6); + results[3] = self.step_p(cc+3, cc+4, cc+0, ee+9, ee+7); + results[4] = self.step_p(cc+4, cc+5, cc+1, ee+10, ee+8); + results[5] = self.step_p(cc+5, cc+6, cc+2, ee+11, ee+9); + results[6] = self.step_p(cc+6, cc+7, cc+3, ee+12, ee+10); + results[7] = self.step_p(cc+7, cc+8, cc+4, ee+13, ee+11); + results[8] = self.step_p(cc+8, cc+9, cc+5, ee+14, ee+12); + results[9] = self.step_p(cc+9, cc+10, cc+6, ee+15, ee+13); + results[10] = self.step_p(cc+10, cc+11, cc+7, cc+0, ee+14); + results[11] = self.step_p(cc+11, cc+12, cc+8, cc+1, ee+15); + results[12] = self.step_p(cc+12, cc+13, cc+9, cc+2, cc+0); + results[13] = self.step_p(cc+13, cc+14, cc+10, cc+3, cc+1); + results[14] = self.step_p(cc+14, cc+15, cc+11, cc+4, cc+2); + results[15] = self.step_p(cc+15, dd+0, cc+12, cc+5, cc+3); + } else { + // Q block + results[0] = self.step_q(cc+0, cc+1, ee+13, ee+6, ee+4); + results[1] = self.step_q(cc+1, cc+2, ee+14, ee+7, ee+5); + results[2] = self.step_q(cc+2, cc+3, ee+15, ee+8, ee+6); + results[3] = self.step_q(cc+3, cc+4, cc+0, ee+9, ee+7); + results[4] = self.step_q(cc+4, cc+5, cc+1, ee+10, ee+8); + results[5] = self.step_q(cc+5, cc+6, cc+2, ee+11, ee+9); + results[6] = self.step_q(cc+6, cc+7, cc+3, ee+12, ee+10); + results[7] = self.step_q(cc+7, cc+8, cc+4, ee+13, ee+11); + results[8] = self.step_q(cc+8, cc+9, cc+5, ee+14, ee+12); + results[9] = self.step_q(cc+9, cc+10, cc+6, ee+15, ee+13); + results[10] = self.step_q(cc+10, cc+11, cc+7, cc+0, ee+14); + results[11] = self.step_q(cc+11, cc+12, cc+8, cc+1, ee+15); + results[12] = self.step_q(cc+12, cc+13, cc+9, cc+2, cc+0); + results[13] = self.step_q(cc+13, cc+14, cc+10, cc+3, cc+1); + results[14] = self.step_q(cc+14, cc+15, cc+11, cc+4, cc+2); + results[15] = self.step_q(cc+15, dd+0, cc+12, cc+5, cc+3); + } + self.counter1024 = self.counter1024.wrapping_add(16); + } +} + +impl Hc128Core { + // One step of HC-128, update P and generate 32 bits keystream + #[inline(always)] + fn step_p(&mut self, i: usize, i511: usize, i3: usize, i10: usize, i12: usize) + -> u32 + { + let (p, q) = self.t.split_at_mut(512); + // FIXME: it would be great if we the bounds checks here could be + // optimized out, and we would not need unsafe. + // This improves performance by about 7%. + unsafe { + let temp0 = p.get_unchecked(i511).rotate_right(23); + let temp1 = p.get_unchecked(i3).rotate_right(10); + let temp2 = p.get_unchecked(i10).rotate_right(8); + *p.get_unchecked_mut(i) = p.get_unchecked(i) + .wrapping_add(temp2) + .wrapping_add(temp0 ^ temp1); + let temp3 = { + // The h1 function in HC-128 + let a = *p.get_unchecked(i12) as u8; + let c = (p.get_unchecked(i12) >> 16) as u8; + q[a as usize].wrapping_add(q[256 + c as usize]) + }; + temp3 ^ p.get_unchecked(i) + } + } + + // One step of HC-128, update Q and generate 32 bits keystream + // Similar to `step_p`, but `p` and `q` are swapped, and the rotates are to + // the left instead of to the right. + #[inline(always)] + fn step_q(&mut self, i: usize, i511: usize, i3: usize, i10: usize, i12: usize) + -> u32 + { + let (p, q) = self.t.split_at_mut(512); + unsafe { + let temp0 = q.get_unchecked(i511).rotate_left(23); + let temp1 = q.get_unchecked(i3).rotate_left(10); + let temp2 = q.get_unchecked(i10).rotate_left(8); + *q.get_unchecked_mut(i) = q.get_unchecked(i) + .wrapping_add(temp2) + .wrapping_add(temp0 ^ temp1); + let temp3 = { + // The h2 function in HC-128 + let a = *q.get_unchecked(i12) as u8; + let c = (q.get_unchecked(i12) >> 16) as u8; + p[a as usize].wrapping_add(p[256 + c as usize]) + }; + temp3 ^ q.get_unchecked(i) + } + } + + fn sixteen_steps(&mut self) { + assert!(self.counter1024 % 16 == 0); + + let cc = self.counter1024 % 512; + let dd = (cc + 16) % 512; + let ee = cc.wrapping_sub(16) % 512; + + if self.counter1024 < 512 { + // P block + self.t[cc+0] = self.step_p(cc+0, cc+1, ee+13, ee+6, ee+4); + self.t[cc+1] = self.step_p(cc+1, cc+2, ee+14, ee+7, ee+5); + self.t[cc+2] = self.step_p(cc+2, cc+3, ee+15, ee+8, ee+6); + self.t[cc+3] = self.step_p(cc+3, cc+4, cc+0, ee+9, ee+7); + self.t[cc+4] = self.step_p(cc+4, cc+5, cc+1, ee+10, ee+8); + self.t[cc+5] = self.step_p(cc+5, cc+6, cc+2, ee+11, ee+9); + self.t[cc+6] = self.step_p(cc+6, cc+7, cc+3, ee+12, ee+10); + self.t[cc+7] = self.step_p(cc+7, cc+8, cc+4, ee+13, ee+11); + self.t[cc+8] = self.step_p(cc+8, cc+9, cc+5, ee+14, ee+12); + self.t[cc+9] = self.step_p(cc+9, cc+10, cc+6, ee+15, ee+13); + self.t[cc+10] = self.step_p(cc+10, cc+11, cc+7, cc+0, ee+14); + self.t[cc+11] = self.step_p(cc+11, cc+12, cc+8, cc+1, ee+15); + self.t[cc+12] = self.step_p(cc+12, cc+13, cc+9, cc+2, cc+0); + self.t[cc+13] = self.step_p(cc+13, cc+14, cc+10, cc+3, cc+1); + self.t[cc+14] = self.step_p(cc+14, cc+15, cc+11, cc+4, cc+2); + self.t[cc+15] = self.step_p(cc+15, dd+0, cc+12, cc+5, cc+3); + } else { + // Q block + self.t[cc+512+0] = self.step_q(cc+0, cc+1, ee+13, ee+6, ee+4); + self.t[cc+512+1] = self.step_q(cc+1, cc+2, ee+14, ee+7, ee+5); + self.t[cc+512+2] = self.step_q(cc+2, cc+3, ee+15, ee+8, ee+6); + self.t[cc+512+3] = self.step_q(cc+3, cc+4, cc+0, ee+9, ee+7); + self.t[cc+512+4] = self.step_q(cc+4, cc+5, cc+1, ee+10, ee+8); + self.t[cc+512+5] = self.step_q(cc+5, cc+6, cc+2, ee+11, ee+9); + self.t[cc+512+6] = self.step_q(cc+6, cc+7, cc+3, ee+12, ee+10); + self.t[cc+512+7] = self.step_q(cc+7, cc+8, cc+4, ee+13, ee+11); + self.t[cc+512+8] = self.step_q(cc+8, cc+9, cc+5, ee+14, ee+12); + self.t[cc+512+9] = self.step_q(cc+9, cc+10, cc+6, ee+15, ee+13); + self.t[cc+512+10] = self.step_q(cc+10, cc+11, cc+7, cc+0, ee+14); + self.t[cc+512+11] = self.step_q(cc+11, cc+12, cc+8, cc+1, ee+15); + self.t[cc+512+12] = self.step_q(cc+12, cc+13, cc+9, cc+2, cc+0); + self.t[cc+512+13] = self.step_q(cc+13, cc+14, cc+10, cc+3, cc+1); + self.t[cc+512+14] = self.step_q(cc+14, cc+15, cc+11, cc+4, cc+2); + self.t[cc+512+15] = self.step_q(cc+15, dd+0, cc+12, cc+5, cc+3); + } + self.counter1024 += 16; + } + + // Initialize an HC-128 random number generator. The seed has to be + // 256 bits in length (`[u32; 8]`), matching the 128 bit `key` followed by + // 128 bit `iv` when HC-128 where to be used as a stream cipher. + fn init(seed: [u32; SEED_WORDS]) -> Self { + #[inline] + fn f1(x: u32) -> u32 { + x.rotate_right(7) ^ x.rotate_right(18) ^ (x >> 3) + } + + #[inline] + fn f2(x: u32) -> u32 { + x.rotate_right(17) ^ x.rotate_right(19) ^ (x >> 10) + } + + let mut t = [0u32; 1024]; + + // Expand the key and iv into P and Q + let (key, iv) = seed.split_at(4); + t[..4].copy_from_slice(key); + t[4..8].copy_from_slice(key); + t[8..12].copy_from_slice(iv); + t[12..16].copy_from_slice(iv); + + // Generate the 256 intermediate values W[16] ... W[256+16-1], and + // copy the last 16 generated values to the start op P. + for i in 16..256+16 { + t[i] = f2(t[i-2]).wrapping_add(t[i-7]).wrapping_add(f1(t[i-15])) + .wrapping_add(t[i-16]).wrapping_add(i as u32); + } + { + let (p1, p2) = t.split_at_mut(256); + p1[0..16].copy_from_slice(&p2[0..16]); + } + + // Generate both the P and Q tables + for i in 16..1024 { + t[i] = f2(t[i-2]).wrapping_add(t[i-7]).wrapping_add(f1(t[i-15])) + .wrapping_add(t[i-16]).wrapping_add(256 + i as u32); + } + + let mut core = Self { t, counter1024: 0 }; + + // run the cipher 1024 steps + for _ in 0..64 { core.sixteen_steps() }; + core.counter1024 = 0; + core + } +} + +impl SeedableRng for Hc128Core { + type Seed = [u8; SEED_WORDS*4]; + + /// Create an HC-128 random number generator with a seed. The seed has to be + /// 256 bits in length, matching the 128 bit `key` followed by 128 bit `iv` + /// when HC-128 where to be used as a stream cipher. + fn from_seed(seed: Self::Seed) -> Self { + let mut seed_u32 = [0u32; SEED_WORDS]; + le::read_u32_into(&seed, &mut seed_u32); + Self::init(seed_u32) + } +} + +impl CryptoRng for Hc128Core {} + +#[cfg(test)] +mod test { + use ::rand_core::{RngCore, SeedableRng}; + use super::Hc128Rng; + + #[test] + // Test vector 1 from the paper "The Stream Cipher HC-128" + fn test_hc128_true_values_a() { + let seed = [0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, // key + 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0]; // iv + let mut rng = Hc128Rng::from_seed(seed); + + let mut results = [0u32; 16]; + for i in results.iter_mut() { *i = rng.next_u32(); } + let expected = [0x73150082, 0x3bfd03a0, 0xfb2fd77f, 0xaa63af0e, + 0xde122fc6, 0xa7dc29b6, 0x62a68527, 0x8b75ec68, + 0x9036db1e, 0x81896005, 0x00ade078, 0x491fbf9a, + 0x1cdc3013, 0x6c3d6e24, 0x90f664b2, 0x9cd57102]; + assert_eq!(results, expected); + } + + #[test] + // Test vector 2 from the paper "The Stream Cipher HC-128" + fn test_hc128_true_values_b() { + let seed = [0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, // key + 1,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0]; // iv + let mut rng = Hc128Rng::from_seed(seed); + + let mut results = [0u32; 16]; + for i in results.iter_mut() { *i = rng.next_u32(); } + let expected = [0xc01893d5, 0xb7dbe958, 0x8f65ec98, 0x64176604, + 0x36fc6724, 0xc82c6eec, 0x1b1c38a7, 0xc9b42a95, + 0x323ef123, 0x0a6a908b, 0xce757b68, 0x9f14f7bb, + 0xe4cde011, 0xaeb5173f, 0x89608c94, 0xb5cf46ca]; + assert_eq!(results, expected); + } + + #[test] + // Test vector 3 from the paper "The Stream Cipher HC-128" + fn test_hc128_true_values_c() { + let seed = [0x55,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, // key + 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0]; // iv + let mut rng = Hc128Rng::from_seed(seed); + + let mut results = [0u32; 16]; + for i in results.iter_mut() { *i = rng.next_u32(); } + let expected = [0x518251a4, 0x04b4930a, 0xb02af931, 0x0639f032, + 0xbcb4a47a, 0x5722480b, 0x2bf99f72, 0xcdc0e566, + 0x310f0c56, 0xd3cc83e8, 0x663db8ef, 0x62dfe07f, + 0x593e1790, 0xc5ceaa9c, 0xab03806f, 0xc9a6e5a0]; + assert_eq!(results, expected); + } + + #[test] + fn test_hc128_true_values_u64() { + let seed = [0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, // key + 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0]; // iv + let mut rng = Hc128Rng::from_seed(seed); + + let mut results = [0u64; 8]; + for i in results.iter_mut() { *i = rng.next_u64(); } + let expected = [0x3bfd03a073150082, 0xaa63af0efb2fd77f, + 0xa7dc29b6de122fc6, 0x8b75ec6862a68527, + 0x818960059036db1e, 0x491fbf9a00ade078, + 0x6c3d6e241cdc3013, 0x9cd5710290f664b2]; + assert_eq!(results, expected); + + // The RNG operates in a P block of 512 results and next a Q block. + // After skipping 2*800 u32 results we end up somewhere in the Q block + // of the second round + for _ in 0..800 { rng.next_u64(); } + + for i in results.iter_mut() { *i = rng.next_u64(); } + let expected = [0xd8c4d6ca84d0fc10, 0xf16a5d91dc66e8e7, + 0xd800de5bc37a8653, 0x7bae1f88c0dfbb4c, + 0x3bfe1f374e6d4d14, 0x424b55676be3fa06, + 0xe3a1e8758cbff579, 0x417f7198c5652bcd]; + assert_eq!(results, expected); + } + + #[test] + fn test_hc128_true_values_bytes() { + let seed = [0x55,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, // key + 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0]; // iv + let mut rng = Hc128Rng::from_seed(seed); + let expected = [0x31, 0xf9, 0x2a, 0xb0, 0x32, 0xf0, 0x39, 0x06, + 0x7a, 0xa4, 0xb4, 0xbc, 0x0b, 0x48, 0x22, 0x57, + 0x72, 0x9f, 0xf9, 0x2b, 0x66, 0xe5, 0xc0, 0xcd, + 0x56, 0x0c, 0x0f, 0x31, 0xe8, 0x83, 0xcc, 0xd3, + 0xef, 0xb8, 0x3d, 0x66, 0x7f, 0xe0, 0xdf, 0x62, + 0x90, 0x17, 0x3e, 0x59, 0x9c, 0xaa, 0xce, 0xc5, + 0x6f, 0x80, 0x03, 0xab, 0xa0, 0xe5, 0xa6, 0xc9, + 0x60, 0x95, 0x84, 0x7a, 0xa5, 0x68, 0x5a, 0x84, + 0xea, 0xd5, 0xf3, 0xea, 0x73, 0xa9, 0xad, 0x01, + 0x79, 0x7d, 0xbe, 0x9f, 0xea, 0xe3, 0xf9, 0x74, + 0x0e, 0xda, 0x2f, 0xa0, 0xe4, 0x7b, 0x4b, 0x1b, + 0xdd, 0x17, 0x69, 0x4a, 0xfe, 0x9f, 0x56, 0x95, + 0xad, 0x83, 0x6b, 0x9d, 0x60, 0xa1, 0x99, 0x96, + 0x90, 0x00, 0x66, 0x7f, 0xfa, 0x7e, 0x65, 0xe9, + 0xac, 0x8b, 0x92, 0x34, 0x77, 0xb4, 0x23, 0xd0, + 0xb9, 0xab, 0xb1, 0x47, 0x7d, 0x4a, 0x13, 0x0a]; + + // Pick a somewhat large buffer so we can test filling with the + // remainder from `state.results`, directly filling the buffer, and + // filling the remainder of the buffer. + let mut buffer = [0u8; 16*4*2]; + // Consume a value so that we have a remainder. + assert!(rng.next_u64() == 0x04b4930a518251a4); + rng.fill_bytes(&mut buffer); + + // [u8; 128] doesn't implement PartialEq + assert_eq!(buffer.len(), expected.len()); + for (b, e) in buffer.iter().zip(expected.iter()) { + assert_eq!(b, e); + } + } + + #[test] + fn test_hc128_clone() { + let seed = [0x55,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, // key + 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0]; // iv + let mut rng1 = Hc128Rng::from_seed(seed); + let mut rng2 = rng1.clone(); + for _ in 0..16 { + assert_eq!(rng1.next_u32(), rng2.next_u32()); + } + } +} diff --git a/rand/rand_hc/src/lib.rs b/rand/rand_hc/src/lib.rs new file mode 100644 index 0000000..f1d772d --- /dev/null +++ b/rand/rand_hc/src/lib.rs @@ -0,0 +1,25 @@ +// Copyright 2018 Developers of the Rand project. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! The HC128 random number generator. + +#![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk.png", + html_favicon_url = "https://www.rust-lang.org/favicon.ico", + html_root_url = "https://rust-random.github.io/rand/")] + +#![deny(missing_docs)] +#![deny(missing_debug_implementations)] +#![doc(test(attr(allow(unused_variables), deny(warnings))))] + +#![no_std] + +extern crate rand_core; + +mod hc128; + +pub use hc128::{Hc128Rng, Hc128Core}; |