summaryrefslogtreecommitdiff
path: root/rand/rand_distr/src/utils.rs
diff options
context:
space:
mode:
Diffstat (limited to 'rand/rand_distr/src/utils.rs')
-rw-r--r--rand/rand_distr/src/utils.rs234
1 files changed, 234 insertions, 0 deletions
diff --git a/rand/rand_distr/src/utils.rs b/rand/rand_distr/src/utils.rs
new file mode 100644
index 0000000..75b3500
--- /dev/null
+++ b/rand/rand_distr/src/utils.rs
@@ -0,0 +1,234 @@
+// Copyright 2018 Developers of the Rand project.
+//
+// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
+// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
+// option. This file may not be copied, modified, or distributed
+// except according to those terms.
+
+//! Math helper functions
+
+use rand::Rng;
+use crate::ziggurat_tables;
+use rand::distributions::hidden_export::IntoFloat;
+use core::{cmp, ops};
+
+/// Trait for floating-point scalar types
+///
+/// This allows many distributions to work with `f32` or `f64` parameters and is
+/// potentially extensible. Note however that the `Exp1` and `StandardNormal`
+/// distributions are implemented exclusively for `f32` and `f64`.
+///
+/// The bounds and methods are based purely on internal
+/// requirements, and will change as needed.
+pub trait Float: Copy + Sized + cmp::PartialOrd
+ + ops::Neg<Output = Self>
+ + ops::Add<Output = Self>
+ + ops::Sub<Output = Self>
+ + ops::Mul<Output = Self>
+ + ops::Div<Output = Self>
+ + ops::AddAssign + ops::SubAssign + ops::MulAssign + ops::DivAssign
+{
+ /// The constant π
+ fn pi() -> Self;
+ /// Support approximate representation of a f64 value
+ fn from(x: f64) -> Self;
+ /// Support converting to an unsigned integer.
+ fn to_u64(self) -> Option<u64>;
+
+ /// Take the absolute value of self
+ fn abs(self) -> Self;
+ /// Take the largest integer less than or equal to self
+ fn floor(self) -> Self;
+
+ /// Take the exponential of self
+ fn exp(self) -> Self;
+ /// Take the natural logarithm of self
+ fn ln(self) -> Self;
+ /// Take square root of self
+ fn sqrt(self) -> Self;
+ /// Take self to a floating-point power
+ fn powf(self, power: Self) -> Self;
+
+ /// Take the tangent of self
+ fn tan(self) -> Self;
+ /// Take the logarithm of the gamma function of self
+ fn log_gamma(self) -> Self;
+}
+
+impl Float for f32 {
+ #[inline]
+ fn pi() -> Self { core::f32::consts::PI }
+ #[inline]
+ fn from(x: f64) -> Self { x as f32 }
+ #[inline]
+ fn to_u64(self) -> Option<u64> {
+ if self >= 0. && self <= ::core::u64::MAX as f32 {
+ Some(self as u64)
+ } else {
+ None
+ }
+ }
+
+ #[inline]
+ fn abs(self) -> Self { self.abs() }
+ #[inline]
+ fn floor(self) -> Self { self.floor() }
+
+ #[inline]
+ fn exp(self) -> Self { self.exp() }
+ #[inline]
+ fn ln(self) -> Self { self.ln() }
+ #[inline]
+ fn sqrt(self) -> Self { self.sqrt() }
+ #[inline]
+ fn powf(self, power: Self) -> Self { self.powf(power) }
+
+ #[inline]
+ fn tan(self) -> Self { self.tan() }
+ #[inline]
+ fn log_gamma(self) -> Self {
+ let result = log_gamma(self.into());
+ assert!(result <= ::core::f32::MAX.into());
+ assert!(result >= ::core::f32::MIN.into());
+ result as f32
+ }
+}
+
+impl Float for f64 {
+ #[inline]
+ fn pi() -> Self { core::f64::consts::PI }
+ #[inline]
+ fn from(x: f64) -> Self { x }
+ #[inline]
+ fn to_u64(self) -> Option<u64> {
+ if self >= 0. && self <= ::core::u64::MAX as f64 {
+ Some(self as u64)
+ } else {
+ None
+ }
+ }
+
+ #[inline]
+ fn abs(self) -> Self { self.abs() }
+ #[inline]
+ fn floor(self) -> Self { self.floor() }
+
+ #[inline]
+ fn exp(self) -> Self { self.exp() }
+ #[inline]
+ fn ln(self) -> Self { self.ln() }
+ #[inline]
+ fn sqrt(self) -> Self { self.sqrt() }
+ #[inline]
+ fn powf(self, power: Self) -> Self { self.powf(power) }
+
+ #[inline]
+ fn tan(self) -> Self { self.tan() }
+ #[inline]
+ fn log_gamma(self) -> Self { log_gamma(self) }
+}
+
+/// Calculates ln(gamma(x)) (natural logarithm of the gamma
+/// function) using the Lanczos approximation.
+///
+/// The approximation expresses the gamma function as:
+/// `gamma(z+1) = sqrt(2*pi)*(z+g+0.5)^(z+0.5)*exp(-z-g-0.5)*Ag(z)`
+/// `g` is an arbitrary constant; we use the approximation with `g=5`.
+///
+/// Noting that `gamma(z+1) = z*gamma(z)` and applying `ln` to both sides:
+/// `ln(gamma(z)) = (z+0.5)*ln(z+g+0.5)-(z+g+0.5) + ln(sqrt(2*pi)*Ag(z)/z)`
+///
+/// `Ag(z)` is an infinite series with coefficients that can be calculated
+/// ahead of time - we use just the first 6 terms, which is good enough
+/// for most purposes.
+pub(crate) fn log_gamma(x: f64) -> f64 {
+ // precalculated 6 coefficients for the first 6 terms of the series
+ let coefficients: [f64; 6] = [
+ 76.18009172947146,
+ -86.50532032941677,
+ 24.01409824083091,
+ -1.231739572450155,
+ 0.1208650973866179e-2,
+ -0.5395239384953e-5,
+ ];
+
+ // (x+0.5)*ln(x+g+0.5)-(x+g+0.5)
+ let tmp = x + 5.5;
+ let log = (x + 0.5) * tmp.ln() - tmp;
+
+ // the first few terms of the series for Ag(x)
+ let mut a = 1.000000000190015;
+ let mut denom = x;
+ for &coeff in &coefficients {
+ denom += 1.0;
+ a += coeff / denom;
+ }
+
+ // get everything together
+ // a is Ag(x)
+ // 2.5066... is sqrt(2pi)
+ log + (2.5066282746310005 * a / x).ln()
+}
+
+/// Sample a random number using the Ziggurat method (specifically the
+/// ZIGNOR variant from Doornik 2005). Most of the arguments are
+/// directly from the paper:
+///
+/// * `rng`: source of randomness
+/// * `symmetric`: whether this is a symmetric distribution, or one-sided with P(x < 0) = 0.
+/// * `X`: the $x_i$ abscissae.
+/// * `F`: precomputed values of the PDF at the $x_i$, (i.e. $f(x_i)$)
+/// * `F_DIFF`: precomputed values of $f(x_i) - f(x_{i+1})$
+/// * `pdf`: the probability density function
+/// * `zero_case`: manual sampling from the tail when we chose the
+/// bottom box (i.e. i == 0)
+
+// the perf improvement (25-50%) is definitely worth the extra code
+// size from force-inlining.
+#[inline(always)]
+pub(crate) fn ziggurat<R: Rng + ?Sized, P, Z>(
+ rng: &mut R,
+ symmetric: bool,
+ x_tab: ziggurat_tables::ZigTable,
+ f_tab: ziggurat_tables::ZigTable,
+ mut pdf: P,
+ mut zero_case: Z)
+ -> f64 where P: FnMut(f64) -> f64, Z: FnMut(&mut R, f64) -> f64 {
+ loop {
+ // As an optimisation we re-implement the conversion to a f64.
+ // From the remaining 12 most significant bits we use 8 to construct `i`.
+ // This saves us generating a whole extra random number, while the added
+ // precision of using 64 bits for f64 does not buy us much.
+ let bits = rng.next_u64();
+ let i = bits as usize & 0xff;
+
+ let u = if symmetric {
+ // Convert to a value in the range [2,4) and substract to get [-1,1)
+ // We can't convert to an open range directly, that would require
+ // substracting `3.0 - EPSILON`, which is not representable.
+ // It is possible with an extra step, but an open range does not
+ // seem neccesary for the ziggurat algorithm anyway.
+ (bits >> 12).into_float_with_exponent(1) - 3.0
+ } else {
+ // Convert to a value in the range [1,2) and substract to get (0,1)
+ (bits >> 12).into_float_with_exponent(0)
+ - (1.0 - std::f64::EPSILON / 2.0)
+ };
+ let x = u * x_tab[i];
+
+ let test_x = if symmetric { x.abs() } else {x};
+
+ // algebraically equivalent to |u| < x_tab[i+1]/x_tab[i] (or u < x_tab[i+1]/x_tab[i])
+ if test_x < x_tab[i + 1] {
+ return x;
+ }
+ if i == 0 {
+ return zero_case(rng, u);
+ }
+ // algebraically equivalent to f1 + DRanU()*(f0 - f1) < 1
+ if f_tab[i + 1] + (f_tab[i] - f_tab[i + 1]) * rng.gen::<f64>() < pdf(x) {
+ return x;
+ }
+ }
+}