summaryrefslogtreecommitdiff
path: root/rand/rand_distr/src/triangular.rs
diff options
context:
space:
mode:
Diffstat (limited to 'rand/rand_distr/src/triangular.rs')
-rw-r--r--rand/rand_distr/src/triangular.rs125
1 files changed, 125 insertions, 0 deletions
diff --git a/rand/rand_distr/src/triangular.rs b/rand/rand_distr/src/triangular.rs
new file mode 100644
index 0000000..dd0bbfb
--- /dev/null
+++ b/rand/rand_distr/src/triangular.rs
@@ -0,0 +1,125 @@
+// Copyright 2018 Developers of the Rand project.
+//
+// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
+// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
+// option. This file may not be copied, modified, or distributed
+// except according to those terms.
+//! The triangular distribution.
+
+use rand::Rng;
+use crate::{Distribution, Standard};
+use crate::utils::Float;
+
+/// The triangular distribution.
+///
+/// A continuous probability distribution parameterised by a range, and a mode
+/// (most likely value) within that range.
+///
+/// The probability density function is triangular. For a similar distribution
+/// with a smooth PDF, see the [`Pert`] distribution.
+///
+/// # Example
+///
+/// ```rust
+/// use rand_distr::{Triangular, Distribution};
+///
+/// let d = Triangular::new(0., 5., 2.5).unwrap();
+/// let v = d.sample(&mut rand::thread_rng());
+/// println!("{} is from a triangular distribution", v);
+/// ```
+///
+/// [`Pert`]: crate::Pert
+#[derive(Clone, Copy, Debug)]
+pub struct Triangular<N> {
+ min: N,
+ max: N,
+ mode: N,
+}
+
+/// Error type returned from [`Triangular::new`].
+#[derive(Clone, Copy, Debug, PartialEq, Eq)]
+pub enum TriangularError {
+ /// `max < min` or `min` or `max` is NaN.
+ RangeTooSmall,
+ /// `mode < min` or `mode > max` or `mode` is NaN.
+ ModeRange,
+}
+
+impl<N: Float> Triangular<N>
+where Standard: Distribution<N>
+{
+ /// Set up the Triangular distribution with defined `min`, `max` and `mode`.
+ #[inline]
+ pub fn new(min: N, max: N, mode: N) -> Result<Triangular<N>, TriangularError> {
+ if !(max >= min) {
+ return Err(TriangularError::RangeTooSmall);
+ }
+ if !(mode >= min && max >= mode) {
+ return Err(TriangularError::ModeRange);
+ }
+ Ok(Triangular { min, max, mode })
+ }
+}
+
+impl<N: Float> Distribution<N> for Triangular<N>
+where Standard: Distribution<N>
+{
+ #[inline]
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> N {
+ let f: N = rng.sample(Standard);
+ let diff_mode_min = self.mode - self.min;
+ let range = self.max - self.min;
+ let f_range = f * range;
+ if f_range < diff_mode_min {
+ self.min + (f_range * diff_mode_min).sqrt()
+ } else {
+ self.max - ((range - f_range) * (self.max - self.mode)).sqrt()
+ }
+ }
+}
+
+#[cfg(test)]
+mod test {
+ use std::f64;
+ use rand::{Rng, rngs::mock};
+ use super::*;
+
+ #[test]
+ fn test_triangular() {
+ let mut half_rng = mock::StepRng::new(0x8000_0000_0000_0000, 0);
+ assert_eq!(half_rng.gen::<f64>(), 0.5);
+ for &(min, max, mode, median) in &[
+ (-1., 1., 0., 0.),
+ (1., 2., 1., 2. - 0.5f64.sqrt()),
+ (5., 25., 25., 5. + 200f64.sqrt()),
+ (1e-5, 1e5, 1e-3, 1e5 - 4999999949.5f64.sqrt()),
+ (0., 1., 0.9, 0.45f64.sqrt()),
+ (-4., -0.5, -2., -4.0 + 3.5f64.sqrt()),
+ ] {
+ println!("{} {} {} {}", min, max, mode, median);
+ let distr = Triangular::new(min, max, mode).unwrap();
+ // Test correct value at median:
+ assert_eq!(distr.sample(&mut half_rng), median);
+ }
+
+ for &(min, max, mode) in &[
+ (-1., 1., 2.),
+ (-1., 1., -2.),
+ (2., 1., 1.),
+ ] {
+ assert!(Triangular::new(min, max, mode).is_err());
+ }
+ }
+
+ #[test]
+ fn value_stability() {
+ let rng = crate::test::rng(860);
+ let distr = Triangular::new(2., 10., 3.).unwrap();
+ let seq = distr.sample_iter(rng).take(5).collect::<Vec<f64>>();
+ println!("seq: {:?}", seq);
+ let expected = vec![5.74373257511361, 7.890059162791258,
+ 4.7256280652553455, 2.9474808121184077, 3.058301946314053];
+ assert!(seq == expected);
+ }
+}