summaryrefslogtreecommitdiff
path: root/rand/rand_distr/src/normal.rs
diff options
context:
space:
mode:
Diffstat (limited to 'rand/rand_distr/src/normal.rs')
-rw-r--r--rand/rand_distr/src/normal.rs219
1 files changed, 0 insertions, 219 deletions
diff --git a/rand/rand_distr/src/normal.rs b/rand/rand_distr/src/normal.rs
deleted file mode 100644
index 882754f..0000000
--- a/rand/rand_distr/src/normal.rs
+++ /dev/null
@@ -1,219 +0,0 @@
-// Copyright 2018 Developers of the Rand project.
-// Copyright 2013 The Rust Project Developers.
-//
-// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
-// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
-// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
-// option. This file may not be copied, modified, or distributed
-// except according to those terms.
-
-//! The normal and derived distributions.
-
-use rand::Rng;
-use crate::{ziggurat_tables, Distribution, Open01};
-use crate::utils::{ziggurat, Float};
-
-/// Samples floating-point numbers according to the normal distribution
-/// `N(0, 1)` (a.k.a. a standard normal, or Gaussian). This is equivalent to
-/// `Normal::new(0.0, 1.0)` but faster.
-///
-/// See `Normal` for the general normal distribution.
-///
-/// Implemented via the ZIGNOR variant[^1] of the Ziggurat method.
-///
-/// [^1]: Jurgen A. Doornik (2005). [*An Improved Ziggurat Method to
-/// Generate Normal Random Samples*](
-/// https://www.doornik.com/research/ziggurat.pdf).
-/// Nuffield College, Oxford
-///
-/// # Example
-/// ```
-/// use rand::prelude::*;
-/// use rand_distr::StandardNormal;
-///
-/// let val: f64 = thread_rng().sample(StandardNormal);
-/// println!("{}", val);
-/// ```
-#[derive(Clone, Copy, Debug)]
-pub struct StandardNormal;
-
-impl Distribution<f32> for StandardNormal {
- #[inline]
- fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f32 {
- // TODO: use optimal 32-bit implementation
- let x: f64 = self.sample(rng);
- x as f32
- }
-}
-
-impl Distribution<f64> for StandardNormal {
- fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 {
- #[inline]
- fn pdf(x: f64) -> f64 {
- (-x*x/2.0).exp()
- }
- #[inline]
- fn zero_case<R: Rng + ?Sized>(rng: &mut R, u: f64) -> f64 {
- // compute a random number in the tail by hand
-
- // strange initial conditions, because the loop is not
- // do-while, so the condition should be true on the first
- // run, they get overwritten anyway (0 < 1, so these are
- // good).
- let mut x = 1.0f64;
- let mut y = 0.0f64;
-
- while -2.0 * y < x * x {
- let x_: f64 = rng.sample(Open01);
- let y_: f64 = rng.sample(Open01);
-
- x = x_.ln() / ziggurat_tables::ZIG_NORM_R;
- y = y_.ln();
- }
-
- if u < 0.0 { x - ziggurat_tables::ZIG_NORM_R } else { ziggurat_tables::ZIG_NORM_R - x }
- }
-
- ziggurat(rng, true, // this is symmetric
- &ziggurat_tables::ZIG_NORM_X,
- &ziggurat_tables::ZIG_NORM_F,
- pdf, zero_case)
- }
-}
-
-/// The normal distribution `N(mean, std_dev**2)`.
-///
-/// This uses the ZIGNOR variant of the Ziggurat method, see [`StandardNormal`]
-/// for more details.
-///
-/// Note that [`StandardNormal`] is an optimised implementation for mean 0, and
-/// standard deviation 1.
-///
-/// # Example
-///
-/// ```
-/// use rand_distr::{Normal, Distribution};
-///
-/// // mean 2, standard deviation 3
-/// let normal = Normal::new(2.0, 3.0).unwrap();
-/// let v = normal.sample(&mut rand::thread_rng());
-/// println!("{} is from a N(2, 9) distribution", v)
-/// ```
-///
-/// [`StandardNormal`]: crate::StandardNormal
-#[derive(Clone, Copy, Debug)]
-pub struct Normal<N> {
- mean: N,
- std_dev: N,
-}
-
-/// Error type returned from `Normal::new` and `LogNormal::new`.
-#[derive(Clone, Copy, Debug, PartialEq, Eq)]
-pub enum Error {
- /// `std_dev < 0` or `nan`.
- StdDevTooSmall,
-}
-
-impl<N: Float> Normal<N>
-where StandardNormal: Distribution<N>
-{
- /// Construct a new `Normal` distribution with the given mean and
- /// standard deviation.
- #[inline]
- pub fn new(mean: N, std_dev: N) -> Result<Normal<N>, Error> {
- if !(std_dev >= N::from(0.0)) {
- return Err(Error::StdDevTooSmall);
- }
- Ok(Normal {
- mean,
- std_dev
- })
- }
-}
-
-impl<N: Float> Distribution<N> for Normal<N>
-where StandardNormal: Distribution<N>
-{
- fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> N {
- let n: N = rng.sample(StandardNormal);
- self.mean + self.std_dev * n
- }
-}
-
-
-/// The log-normal distribution `ln N(mean, std_dev**2)`.
-///
-/// If `X` is log-normal distributed, then `ln(X)` is `N(mean, std_dev**2)`
-/// distributed.
-///
-/// # Example
-///
-/// ```
-/// use rand_distr::{LogNormal, Distribution};
-///
-/// // mean 2, standard deviation 3
-/// let log_normal = LogNormal::new(2.0, 3.0).unwrap();
-/// let v = log_normal.sample(&mut rand::thread_rng());
-/// println!("{} is from an ln N(2, 9) distribution", v)
-/// ```
-#[derive(Clone, Copy, Debug)]
-pub struct LogNormal<N> {
- norm: Normal<N>
-}
-
-impl<N: Float> LogNormal<N>
-where StandardNormal: Distribution<N>
-{
- /// Construct a new `LogNormal` distribution with the given mean
- /// and standard deviation of the logarithm of the distribution.
- #[inline]
- pub fn new(mean: N, std_dev: N) -> Result<LogNormal<N>, Error> {
- if !(std_dev >= N::from(0.0)) {
- return Err(Error::StdDevTooSmall);
- }
- Ok(LogNormal { norm: Normal::new(mean, std_dev).unwrap() })
- }
-}
-
-impl<N: Float> Distribution<N> for LogNormal<N>
-where StandardNormal: Distribution<N>
-{
- fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> N {
- self.norm.sample(rng).exp()
- }
-}
-
-#[cfg(test)]
-mod tests {
- use crate::Distribution;
- use super::{Normal, LogNormal};
-
- #[test]
- fn test_normal() {
- let norm = Normal::new(10.0, 10.0).unwrap();
- let mut rng = crate::test::rng(210);
- for _ in 0..1000 {
- norm.sample(&mut rng);
- }
- }
- #[test]
- #[should_panic]
- fn test_normal_invalid_sd() {
- Normal::new(10.0, -1.0).unwrap();
- }
-
-
- #[test]
- fn test_log_normal() {
- let lnorm = LogNormal::new(10.0, 10.0).unwrap();
- let mut rng = crate::test::rng(211);
- for _ in 0..1000 {
- lnorm.sample(&mut rng);
- }
- }
- #[test]
- #[should_panic]
- fn test_log_normal_invalid_sd() {
- LogNormal::new(10.0, -1.0).unwrap();
- }
-}