summaryrefslogtreecommitdiff
path: root/rand/src
diff options
context:
space:
mode:
authorDaniel Mueller <deso@posteo.net>2020-01-02 08:32:06 -0800
committerDaniel Mueller <deso@posteo.net>2020-01-02 08:32:06 -0800
commitfd091b04316db9dc5fafadbd6bdbe60b127408a9 (patch)
treef202270f7ae5cedc513be03833a26148d9b5e219 /rand/src
parent8161cdb26f98e65b39c603ddf7a614cc87c77a1c (diff)
downloadnitrocli-fd091b04316db9dc5fafadbd6bdbe60b127408a9.tar.gz
nitrocli-fd091b04316db9dc5fafadbd6bdbe60b127408a9.tar.bz2
Update nitrokey crate to 0.4.0
This change finally updates the version of the nitrokey crate that we consume to 0.4.0. Along with that we update rand_core, one of its dependencies, to 0.5.1. Further more we add cfg-if in version 0.1.10 and getrandom in version 0.1.13, both of which are now new (non-development) dependencies. Import subrepo nitrokey/:nitrokey at e81057037e9b4f370b64c0a030a725bc6bdfb870 Import subrepo cfg-if/:cfg-if at 4484a6faf816ff8058088ad857b0c6bb2f4b02b2 Import subrepo getrandom/:getrandom at d661aa7e1b8cc80b47dabe3d2135b3b47d2858af Import subrepo rand/:rand at d877ed528248b52d947e0484364a4e1ae59ca502
Diffstat (limited to 'rand/src')
-rw-r--r--rand/src/deprecated.rs544
-rw-r--r--rand/src/distributions/bernoulli.rs59
-rw-r--r--rand/src/distributions/binomial.rs276
-rw-r--r--rand/src/distributions/cauchy.rs42
-rw-r--r--rand/src/distributions/dirichlet.rs27
-rw-r--r--rand/src/distributions/exponential.rs34
-rw-r--r--rand/src/distributions/float.rs32
-rw-r--r--rand/src/distributions/gamma.rs90
-rw-r--r--rand/src/distributions/integer.rs45
-rw-r--r--rand/src/distributions/mod.rs520
-rw-r--r--rand/src/distributions/normal.rs49
-rw-r--r--rand/src/distributions/other.rs15
-rw-r--r--rand/src/distributions/pareto.rs19
-rw-r--r--rand/src/distributions/poisson.rs26
-rw-r--r--rand/src/distributions/triangular.rs21
-rw-r--r--rand/src/distributions/uniform.rs220
-rw-r--r--rand/src/distributions/unit_circle.rs40
-rw-r--r--rand/src/distributions/unit_sphere.rs43
-rw-r--r--rand/src/distributions/utils.rs30
-rw-r--r--rand/src/distributions/weibull.rs19
-rw-r--r--rand/src/distributions/weighted/alias_method.rs499
-rw-r--r--rand/src/distributions/weighted/mod.rs (renamed from rand/src/distributions/weighted.rs)189
-rw-r--r--rand/src/lib.rs436
-rw-r--r--rand/src/prelude.rs17
-rw-r--r--rand/src/prng/mod.rs37
-rw-r--r--rand/src/rngs/adapter/mod.rs4
-rw-r--r--rand/src/rngs/adapter/read.rs53
-rw-r--r--rand/src/rngs/adapter/reseeding.rs89
-rw-r--r--rand/src/rngs/entropy.rs201
-rw-r--r--rand/src/rngs/jitter.rs885
-rw-r--r--rand/src/rngs/mock.rs7
-rw-r--r--rand/src/rngs/mod.rs253
-rw-r--r--rand/src/rngs/small.rs60
-rw-r--r--rand/src/rngs/std.rs59
-rw-r--r--rand/src/rngs/thread.rs91
-rw-r--r--rand/src/seq/index.rs145
-rw-r--r--rand/src/seq/mod.rs521
37 files changed, 2118 insertions, 3579 deletions
diff --git a/rand/src/deprecated.rs b/rand/src/deprecated.rs
deleted file mode 100644
index 88eb09f..0000000
--- a/rand/src/deprecated.rs
+++ /dev/null
@@ -1,544 +0,0 @@
-// Copyright 2018 Developers of the Rand project.
-//
-// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
-// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
-// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
-// option. This file may not be copied, modified, or distributed
-// except according to those terms.
-
-//! Deprecated re-exports (we can't add deprecation warnings otherwise)
-
-#![allow(deprecated)]
-
-use rngs;
-use {RngCore, CryptoRng, SeedableRng, Error};
-use rand_core::block::BlockRngCore;
-use rand_isaac;
-use rand_chacha;
-use rand_hc;
-
-#[cfg(feature="std")]
-use std::io::Read;
-
-#[derive(Clone, Debug)]
-#[deprecated(since="0.6.0",
- note="import from rand_isaac crate instead, or use the newer Hc128Rng")]
-pub struct IsaacRng(rand_isaac::IsaacRng);
-
-impl RngCore for IsaacRng {
- #[inline(always)]
- fn next_u32(&mut self) -> u32 {
- self.0.next_u32()
- }
-
- #[inline(always)]
- fn next_u64(&mut self) -> u64 {
- self.0.next_u64()
- }
-
- #[inline(always)]
- fn fill_bytes(&mut self, dest: &mut [u8]) {
- self.0.fill_bytes(dest);
- }
-
- #[inline(always)]
- fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
- self.0.try_fill_bytes(dest)
- }
-}
-
-impl SeedableRng for IsaacRng {
- type Seed = <rand_isaac::IsaacRng as SeedableRng>::Seed;
-
- fn from_seed(seed: Self::Seed) -> Self {
- IsaacRng(rand_isaac::IsaacRng::from_seed(seed))
- }
-
- fn from_rng<R: RngCore>(rng: R) -> Result<Self, Error> {
- rand_isaac::IsaacRng::from_rng(rng).map(IsaacRng)
- }
-}
-
-impl IsaacRng {
- pub fn new_from_u64(seed: u64) -> Self {
- IsaacRng(rand_isaac::IsaacRng::new_from_u64(seed))
- }
-}
-
-
-#[derive(Clone, Debug)]
-#[deprecated(since="0.6.0",
- note="import from rand_isaac crate instead, or use newer Hc128Rng")]
-pub struct Isaac64Rng(rand_isaac::Isaac64Rng);
-
-impl RngCore for Isaac64Rng {
- #[inline(always)]
- fn next_u32(&mut self) -> u32 {
- self.0.next_u32()
- }
-
- #[inline(always)]
- fn next_u64(&mut self) -> u64 {
- self.0.next_u64()
- }
-
- #[inline(always)]
- fn fill_bytes(&mut self, dest: &mut [u8]) {
- self.0.fill_bytes(dest);
- }
-
- #[inline(always)]
- fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
- self.0.try_fill_bytes(dest)
- }
-}
-
-impl SeedableRng for Isaac64Rng {
- type Seed = <rand_isaac::Isaac64Rng as SeedableRng>::Seed;
-
- fn from_seed(seed: Self::Seed) -> Self {
- Isaac64Rng(rand_isaac::Isaac64Rng::from_seed(seed))
- }
-
- fn from_rng<R: RngCore>(rng: R) -> Result<Self, Error> {
- rand_isaac::Isaac64Rng::from_rng(rng).map(Isaac64Rng)
- }
-}
-
-impl Isaac64Rng {
- pub fn new_from_u64(seed: u64) -> Self {
- Isaac64Rng(rand_isaac::Isaac64Rng::new_from_u64(seed))
- }
-}
-
-
-#[derive(Clone, Debug)]
-#[deprecated(since="0.6.0", note="import from rand_chacha crate instead")]
-pub struct ChaChaRng(rand_chacha::ChaChaRng);
-
-impl RngCore for ChaChaRng {
- #[inline(always)]
- fn next_u32(&mut self) -> u32 {
- self.0.next_u32()
- }
-
- #[inline(always)]
- fn next_u64(&mut self) -> u64 {
- self.0.next_u64()
- }
-
- #[inline(always)]
- fn fill_bytes(&mut self, dest: &mut [u8]) {
- self.0.fill_bytes(dest);
- }
-
- #[inline(always)]
- fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
- self.0.try_fill_bytes(dest)
- }
-}
-
-impl SeedableRng for ChaChaRng {
- type Seed = <rand_chacha::ChaChaRng as SeedableRng>::Seed;
-
- fn from_seed(seed: Self::Seed) -> Self {
- ChaChaRng(rand_chacha::ChaChaRng::from_seed(seed))
- }
-
- fn from_rng<R: RngCore>(rng: R) -> Result<Self, Error> {
- rand_chacha::ChaChaRng::from_rng(rng).map(ChaChaRng)
- }
-}
-
-impl ChaChaRng {
- #[cfg(all(rustc_1_26, not(target_os = "emscripten")))]
- pub fn get_word_pos(&self) -> u128 {
- self.0.get_word_pos()
- }
-
- #[cfg(all(rustc_1_26, not(target_os = "emscripten")))]
- pub fn set_word_pos(&mut self, word_offset: u128) {
- self.0.set_word_pos(word_offset)
- }
-
- pub fn set_stream(&mut self, stream: u64) {
- self.0.set_stream(stream)
- }
-}
-
-impl CryptoRng for ChaChaRng {}
-
-
-#[derive(Clone, Debug)]
-#[deprecated(since="0.6.0", note="import from rand_hc crate instead")]
-pub struct Hc128Rng(rand_hc::Hc128Rng);
-
-impl RngCore for Hc128Rng {
- #[inline(always)]
- fn next_u32(&mut self) -> u32 {
- self.0.next_u32()
- }
-
- #[inline(always)]
- fn next_u64(&mut self) -> u64 {
- self.0.next_u64()
- }
-
- #[inline(always)]
- fn fill_bytes(&mut self, dest: &mut [u8]) {
- self.0.fill_bytes(dest);
- }
-
- #[inline(always)]
- fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
- self.0.try_fill_bytes(dest)
- }
-}
-
-impl SeedableRng for Hc128Rng {
- type Seed = <rand_hc::Hc128Rng as SeedableRng>::Seed;
-
- fn from_seed(seed: Self::Seed) -> Self {
- Hc128Rng(rand_hc::Hc128Rng::from_seed(seed))
- }
-
- fn from_rng<R: RngCore>(rng: R) -> Result<Self, Error> {
- rand_hc::Hc128Rng::from_rng(rng).map(Hc128Rng)
- }
-}
-
-impl CryptoRng for Hc128Rng {}
-
-
-#[derive(Clone, Debug)]
-#[deprecated(since="0.6.0", note="import from rand_xorshift crate instead")]
-pub struct XorShiftRng(::rand_xorshift::XorShiftRng);
-
-impl RngCore for XorShiftRng {
- #[inline(always)]
- fn next_u32(&mut self) -> u32 {
- self.0.next_u32()
- }
-
- #[inline(always)]
- fn next_u64(&mut self) -> u64 {
- self.0.next_u64()
- }
-
- #[inline(always)]
- fn fill_bytes(&mut self, dest: &mut [u8]) {
- self.0.fill_bytes(dest);
- }
-
- #[inline(always)]
- fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
- self.0.try_fill_bytes(dest)
- }
-}
-
-impl SeedableRng for XorShiftRng {
- type Seed = <::rand_xorshift::XorShiftRng as SeedableRng>::Seed;
-
- fn from_seed(seed: Self::Seed) -> Self {
- XorShiftRng(::rand_xorshift::XorShiftRng::from_seed(seed))
- }
-
- fn from_rng<R: RngCore>(rng: R) -> Result<Self, Error> {
- ::rand_xorshift::XorShiftRng::from_rng(rng).map(XorShiftRng)
- }
-}
-
-
-#[derive(Clone, Debug)]
-#[deprecated(since="0.6.0",
- note="import with rand::prelude::* or rand::rngs::StdRng instead")]
-pub struct StdRng(rngs::StdRng);
-
-impl RngCore for StdRng {
- #[inline(always)]
- fn next_u32(&mut self) -> u32 {
- self.0.next_u32()
- }
-
- #[inline(always)]
- fn next_u64(&mut self) -> u64 {
- self.0.next_u64()
- }
-
- #[inline(always)]
- fn fill_bytes(&mut self, dest: &mut [u8]) {
- self.0.fill_bytes(dest);
- }
-
- #[inline(always)]
- fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
- self.0.try_fill_bytes(dest)
- }
-}
-
-impl SeedableRng for StdRng {
- type Seed = <rngs::StdRng as SeedableRng>::Seed;
-
- fn from_seed(seed: Self::Seed) -> Self {
- StdRng(rngs::StdRng::from_seed(seed))
- }
-
- fn from_rng<R: RngCore>(rng: R) -> Result<Self, Error> {
- rngs::StdRng::from_rng(rng).map(StdRng)
- }
-}
-
-impl CryptoRng for StdRng {}
-
-
-#[cfg(feature="rand_os")]
-#[derive(Clone, Debug)]
-#[deprecated(since="0.6.0", note="import with rand::rngs::OsRng instead")]
-pub struct OsRng(rngs::OsRng);
-
-#[cfg(feature="rand_os")]
-impl RngCore for OsRng {
- #[inline(always)]
- fn next_u32(&mut self) -> u32 {
- self.0.next_u32()
- }
-
- #[inline(always)]
- fn next_u64(&mut self) -> u64 {
- self.0.next_u64()
- }
-
- #[inline(always)]
- fn fill_bytes(&mut self, dest: &mut [u8]) {
- self.0.fill_bytes(dest);
- }
-
- #[inline(always)]
- fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
- self.0.try_fill_bytes(dest)
- }
-}
-
-#[cfg(feature="rand_os")]
-impl OsRng {
- pub fn new() -> Result<Self, Error> {
- rngs::OsRng::new().map(OsRng)
- }
-}
-
-#[cfg(feature="rand_os")]
-impl CryptoRng for OsRng {}
-
-
-#[cfg(feature="std")]
-#[derive(Debug)]
-#[deprecated(since="0.6.0", note="import with rand::rngs::EntropyRng instead")]
-pub struct EntropyRng(rngs::EntropyRng);
-
-#[cfg(feature="std")]
-impl RngCore for EntropyRng {
- #[inline(always)]
- fn next_u32(&mut self) -> u32 {
- self.0.next_u32()
- }
-
- #[inline(always)]
- fn next_u64(&mut self) -> u64 {
- self.0.next_u64()
- }
-
- #[inline(always)]
- fn fill_bytes(&mut self, dest: &mut [u8]) {
- self.0.fill_bytes(dest);
- }
-
- #[inline(always)]
- fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
- self.0.try_fill_bytes(dest)
- }
-}
-
-#[cfg(feature="std")]
-impl EntropyRng {
- pub fn new() -> Self {
- EntropyRng(rngs::EntropyRng::new())
- }
-}
-
-#[cfg(feature="std")]
-impl Default for EntropyRng {
- fn default() -> Self {
- EntropyRng::new()
- }
-}
-
-#[cfg(feature="std")]
-impl CryptoRng for EntropyRng {}
-
-
-#[derive(Clone, Debug)]
-#[deprecated(since="0.6.0", note="import with rand::rngs::JitterRng instead")]
-pub struct JitterRng(rngs::JitterRng);
-
-impl RngCore for JitterRng {
- #[inline(always)]
- fn next_u32(&mut self) -> u32 {
- self.0.next_u32()
- }
-
- #[inline(always)]
- fn next_u64(&mut self) -> u64 {
- self.0.next_u64()
- }
-
- #[inline(always)]
- fn fill_bytes(&mut self, dest: &mut [u8]) {
- self.0.fill_bytes(dest);
- }
-
- #[inline(always)]
- fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
- self.0.try_fill_bytes(dest)
- }
-}
-
-impl JitterRng {
- #[cfg(all(feature="std", not(target_arch = "wasm32")))]
- pub fn new() -> Result<JitterRng, rngs::TimerError> {
- rngs::JitterRng::new().map(JitterRng)
- }
-
- pub fn new_with_timer(timer: fn() -> u64) -> JitterRng {
- JitterRng(rngs::JitterRng::new_with_timer(timer))
- }
-
- pub fn set_rounds(&mut self, rounds: u8) {
- self.0.set_rounds(rounds)
- }
-
- pub fn test_timer(&mut self) -> Result<u8, rngs::TimerError> {
- self.0.test_timer()
- }
-
- #[cfg(feature="std")]
- pub fn timer_stats(&mut self, var_rounds: bool) -> i64 {
- self.0.timer_stats(var_rounds)
- }
-}
-
-impl CryptoRng for JitterRng {}
-
-
-#[cfg(feature="std")]
-#[derive(Clone, Debug)]
-#[deprecated(since="0.6.0",
- note="import with rand::prelude::* or rand::rngs::ThreadRng instead")]
-pub struct ThreadRng(rngs::ThreadRng);
-
-#[cfg(feature="std")]
-impl RngCore for ThreadRng {
- #[inline(always)]
- fn next_u32(&mut self) -> u32 {
- self.0.next_u32()
- }
-
- #[inline(always)]
- fn next_u64(&mut self) -> u64 {
- self.0.next_u64()
- }
-
- #[inline(always)]
- fn fill_bytes(&mut self, dest: &mut [u8]) {
- self.0.fill_bytes(dest);
- }
-
- #[inline(always)]
- fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
- self.0.try_fill_bytes(dest)
- }
-}
-
-#[cfg(feature="std")]
-impl CryptoRng for ThreadRng {}
-
-
-#[cfg(feature="std")]
-#[derive(Debug)]
-#[deprecated(since="0.6.0", note="import with rand::rngs::adapter::ReadRng instead")]
-pub struct ReadRng<R>(rngs::adapter::ReadRng<R>);
-
-#[cfg(feature="std")]
-impl<R: Read> RngCore for ReadRng<R> {
- #[inline(always)]
- fn next_u32(&mut self) -> u32 {
- self.0.next_u32()
- }
-
- #[inline(always)]
- fn next_u64(&mut self) -> u64 {
- self.0.next_u64()
- }
-
- #[inline(always)]
- fn fill_bytes(&mut self, dest: &mut [u8]) {
- self.0.fill_bytes(dest);
- }
-
- #[inline(always)]
- fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
- self.0.try_fill_bytes(dest)
- }
-}
-
-#[cfg(feature="std")]
-impl<R: Read> ReadRng<R> {
- pub fn new(r: R) -> ReadRng<R> {
- ReadRng(rngs::adapter::ReadRng::new(r))
- }
-}
-
-
-#[derive(Clone, Debug)]
-pub struct ReseedingRng<R, Rsdr>(rngs::adapter::ReseedingRng<R, Rsdr>)
-where R: BlockRngCore + SeedableRng,
- Rsdr: RngCore;
-
-impl<R, Rsdr: RngCore> RngCore for ReseedingRng<R, Rsdr>
-where R: BlockRngCore<Item = u32> + SeedableRng,
- <R as BlockRngCore>::Results: AsRef<[u32]> + AsMut<[u32]>
-{
- #[inline(always)]
- fn next_u32(&mut self) -> u32 {
- self.0.next_u32()
- }
-
- #[inline(always)]
- fn next_u64(&mut self) -> u64 {
- self.0.next_u64()
- }
-
- fn fill_bytes(&mut self, dest: &mut [u8]) {
- self.0.fill_bytes(dest)
- }
-
- fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
- self.0.try_fill_bytes(dest)
- }
-}
-
-impl<R, Rsdr> ReseedingRng<R, Rsdr>
-where R: BlockRngCore + SeedableRng,
- Rsdr: RngCore
-{
- pub fn new(rng: R, threshold: u64, reseeder: Rsdr) -> Self {
- ReseedingRng(rngs::adapter::ReseedingRng::new(rng, threshold, reseeder))
- }
-
- pub fn reseed(&mut self) -> Result<(), Error> {
- self.0.reseed()
- }
-}
-
-impl<R, Rsdr> CryptoRng for ReseedingRng<R, Rsdr>
-where R: BlockRngCore + SeedableRng + CryptoRng,
- Rsdr: RngCore + CryptoRng {}
diff --git a/rand/src/distributions/bernoulli.rs b/rand/src/distributions/bernoulli.rs
index f49618c..eadd056 100644
--- a/rand/src/distributions/bernoulli.rs
+++ b/rand/src/distributions/bernoulli.rs
@@ -8,8 +8,8 @@
//! The Bernoulli distribution.
-use Rng;
-use distributions::Distribution;
+use crate::Rng;
+use crate::distributions::Distribution;
/// The Bernoulli distribution.
///
@@ -20,7 +20,7 @@ use distributions::Distribution;
/// ```rust
/// use rand::distributions::{Bernoulli, Distribution};
///
-/// let d = Bernoulli::new(0.3);
+/// let d = Bernoulli::new(0.3).unwrap();
/// let v = d.sample(&mut rand::thread_rng());
/// println!("{} is from a Bernoulli distribution", v);
/// ```
@@ -61,13 +61,16 @@ const ALWAYS_TRUE: u64 = ::core::u64::MAX;
// in `no_std` mode.
const SCALE: f64 = 2.0 * (1u64 << 63) as f64;
+/// Error type returned from `Bernoulli::new`.
+#[derive(Clone, Copy, Debug, PartialEq, Eq)]
+pub enum BernoulliError {
+ /// `p < 0` or `p > 1`.
+ InvalidProbability,
+}
+
impl Bernoulli {
/// Construct a new `Bernoulli` with the given probability of success `p`.
///
- /// # Panics
- ///
- /// If `p < 0` or `p > 1`.
- ///
/// # Precision
///
/// For `p = 1.0`, the resulting distribution will always generate true.
@@ -77,12 +80,12 @@ impl Bernoulli {
/// a multiple of 2<sup>-64</sup>. (Note that not all multiples of
/// 2<sup>-64</sup> in `[0, 1]` can be represented as a `f64`.)
#[inline]
- pub fn new(p: f64) -> Bernoulli {
+ pub fn new(p: f64) -> Result<Bernoulli, BernoulliError> {
if p < 0.0 || p >= 1.0 {
- if p == 1.0 { return Bernoulli { p_int: ALWAYS_TRUE } }
- panic!("Bernoulli::new not called with 0.0 <= p <= 1.0");
+ if p == 1.0 { return Ok(Bernoulli { p_int: ALWAYS_TRUE }) }
+ return Err(BernoulliError::InvalidProbability);
}
- Bernoulli { p_int: (p * SCALE) as u64 }
+ Ok(Bernoulli { p_int: (p * SCALE) as u64 })
}
/// Construct a new `Bernoulli` with the probability of success of
@@ -91,19 +94,16 @@ impl Bernoulli {
///
/// If `numerator == denominator` then the returned `Bernoulli` will always
/// return `true`. If `numerator == 0` it will always return `false`.
- ///
- /// # Panics
- ///
- /// If `denominator == 0` or `numerator > denominator`.
- ///
#[inline]
- pub fn from_ratio(numerator: u32, denominator: u32) -> Bernoulli {
- assert!(numerator <= denominator);
+ pub fn from_ratio(numerator: u32, denominator: u32) -> Result<Bernoulli, BernoulliError> {
+ if numerator > denominator {
+ return Err(BernoulliError::InvalidProbability);
+ }
if numerator == denominator {
- return Bernoulli { p_int: ::core::u64::MAX }
+ return Ok(Bernoulli { p_int: ALWAYS_TRUE })
}
- let p_int = ((numerator as f64 / denominator as f64) * SCALE) as u64;
- Bernoulli { p_int }
+ let p_int = ((f64::from(numerator) / f64::from(denominator)) * SCALE) as u64;
+ Ok(Bernoulli { p_int })
}
}
@@ -119,15 +119,15 @@ impl Distribution<bool> for Bernoulli {
#[cfg(test)]
mod test {
- use Rng;
- use distributions::Distribution;
+ use crate::Rng;
+ use crate::distributions::Distribution;
use super::Bernoulli;
#[test]
fn test_trivial() {
- let mut r = ::test::rng(1);
- let always_false = Bernoulli::new(0.0);
- let always_true = Bernoulli::new(1.0);
+ let mut r = crate::test::rng(1);
+ let always_false = Bernoulli::new(0.0).unwrap();
+ let always_true = Bernoulli::new(1.0).unwrap();
for _ in 0..5 {
assert_eq!(r.sample::<bool, _>(&always_false), false);
assert_eq!(r.sample::<bool, _>(&always_true), true);
@@ -137,17 +137,18 @@ mod test {
}
#[test]
+ #[cfg(not(miri))] // Miri is too slow
fn test_average() {
const P: f64 = 0.3;
const NUM: u32 = 3;
const DENOM: u32 = 10;
- let d1 = Bernoulli::new(P);
- let d2 = Bernoulli::from_ratio(NUM, DENOM);
+ let d1 = Bernoulli::new(P).unwrap();
+ let d2 = Bernoulli::from_ratio(NUM, DENOM).unwrap();
const N: u32 = 100_000;
let mut sum1: u32 = 0;
let mut sum2: u32 = 0;
- let mut rng = ::test::rng(2);
+ let mut rng = crate::test::rng(2);
for _ in 0..N {
if d1.sample(&mut rng) {
sum1 += 1;
diff --git a/rand/src/distributions/binomial.rs b/rand/src/distributions/binomial.rs
index 2df393e..8fc290a 100644
--- a/rand/src/distributions/binomial.rs
+++ b/rand/src/distributions/binomial.rs
@@ -8,25 +8,17 @@
// except according to those terms.
//! The binomial distribution.
+#![allow(deprecated)]
+#![allow(clippy::all)]
-use Rng;
-use distributions::{Distribution, Bernoulli, Cauchy};
-use distributions::utils::log_gamma;
+use crate::Rng;
+use crate::distributions::{Distribution, Uniform};
/// The binomial distribution `Binomial(n, p)`.
///
/// This distribution has density function:
/// `f(k) = n!/(k! (n-k)!) p^k (1-p)^(n-k)` for `k >= 0`.
-///
-/// # Example
-///
-/// ```
-/// use rand::distributions::{Binomial, Distribution};
-///
-/// let bin = Binomial::new(20, 0.3);
-/// let v = bin.sample(&mut rand::thread_rng());
-/// println!("{} is from a binomial distribution", v);
-/// ```
+#[deprecated(since="0.7.0", note="moved to rand_distr crate")]
#[derive(Clone, Copy, Debug)]
pub struct Binomial {
/// Number of trials.
@@ -47,6 +39,13 @@ impl Binomial {
}
}
+/// Convert a `f64` to an `i64`, panicing on overflow.
+// In the future (Rust 1.34), this might be replaced with `TryFrom`.
+fn f64_to_i64(x: f64) -> i64 {
+ assert!(x < (::std::i64::MAX as f64));
+ x as i64
+}
+
impl Distribution<u64> for Binomial {
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u64 {
// Handle these values directly.
@@ -55,83 +54,217 @@ impl Distribution<u64> for Binomial {
} else if self.p == 1.0 {
return self.n;
}
-
- // For low n, it is faster to sample directly. For both methods,
- // performance is independent of p. On Intel Haswell CPU this method
- // appears to be faster for approx n < 300.
- if self.n < 300 {
- let mut result = 0;
- let d = Bernoulli::new(self.p);
- for _ in 0 .. self.n {
- result += rng.sample(d) as u32;
- }
- return result as u64;
- }
-
- // binomial distribution is symmetrical with respect to p -> 1-p, k -> n-k
- // switch p so that it is less than 0.5 - this allows for lower expected values
- // we will just invert the result at the end
+
+ // The binomial distribution is symmetrical with respect to p -> 1-p,
+ // k -> n-k switch p so that it is less than 0.5 - this allows for lower
+ // expected values we will just invert the result at the end
let p = if self.p <= 0.5 {
self.p
} else {
1.0 - self.p
};
- // prepare some cached values
- let float_n = self.n as f64;
- let ln_fact_n = log_gamma(float_n + 1.0);
- let pc = 1.0 - p;
- let log_p = p.ln();
- let log_pc = pc.ln();
- let expected = self.n as f64 * p;
- let sq = (expected * (2.0 * pc)).sqrt();
-
- let mut lresult;
-
- // we use the Cauchy distribution as the comparison distribution
- // f(x) ~ 1/(1+x^2)
- let cauchy = Cauchy::new(0.0, 1.0);
- loop {
- let mut comp_dev: f64;
+ let result;
+ let q = 1. - p;
+
+ // For small n * min(p, 1 - p), the BINV algorithm based on the inverse
+ // transformation of the binomial distribution is efficient. Otherwise,
+ // the BTPE algorithm is used.
+ //
+ // Voratas Kachitvichyanukul and Bruce W. Schmeiser. 1988. Binomial
+ // random variate generation. Commun. ACM 31, 2 (February 1988),
+ // 216-222. http://dx.doi.org/10.1145/42372.42381
+
+ // Threshold for prefering the BINV algorithm. The paper suggests 10,
+ // Ranlib uses 30, and GSL uses 14.
+ const BINV_THRESHOLD: f64 = 10.;
+
+ if (self.n as f64) * p < BINV_THRESHOLD &&
+ self.n <= (::std::i32::MAX as u64) {
+ // Use the BINV algorithm.
+ let s = p / q;
+ let a = ((self.n + 1) as f64) * s;
+ let mut r = q.powi(self.n as i32);
+ let mut u: f64 = rng.gen();
+ let mut x = 0;
+ while u > r as f64 {
+ u -= r;
+ x += 1;
+ r *= a / (x as f64) - s;
+ }
+ result = x;
+ } else {
+ // Use the BTPE algorithm.
+
+ // Threshold for using the squeeze algorithm. This can be freely
+ // chosen based on performance. Ranlib and GSL use 20.
+ const SQUEEZE_THRESHOLD: i64 = 20;
+
+ // Step 0: Calculate constants as functions of `n` and `p`.
+ let n = self.n as f64;
+ let np = n * p;
+ let npq = np * q;
+ let f_m = np + p;
+ let m = f64_to_i64(f_m);
+ // radius of triangle region, since height=1 also area of region
+ let p1 = (2.195 * npq.sqrt() - 4.6 * q).floor() + 0.5;
+ // tip of triangle
+ let x_m = (m as f64) + 0.5;
+ // left edge of triangle
+ let x_l = x_m - p1;
+ // right edge of triangle
+ let x_r = x_m + p1;
+ let c = 0.134 + 20.5 / (15.3 + (m as f64));
+ // p1 + area of parallelogram region
+ let p2 = p1 * (1. + 2. * c);
+
+ fn lambda(a: f64) -> f64 {
+ a * (1. + 0.5 * a)
+ }
+
+ let lambda_l = lambda((f_m - x_l) / (f_m - x_l * p));
+ let lambda_r = lambda((x_r - f_m) / (x_r * q));
+ // p1 + area of left tail
+ let p3 = p2 + c / lambda_l;
+ // p1 + area of right tail
+ let p4 = p3 + c / lambda_r;
+
+ // return value
+ let mut y: i64;
+
+ let gen_u = Uniform::new(0., p4);
+ let gen_v = Uniform::new(0., 1.);
+
loop {
- // draw from the Cauchy distribution
- comp_dev = rng.sample(cauchy);
- // shift the peak of the comparison ditribution
- lresult = expected + sq * comp_dev;
- // repeat the drawing until we are in the range of possible values
- if lresult >= 0.0 && lresult < float_n + 1.0 {
+ // Step 1: Generate `u` for selecting the region. If region 1 is
+ // selected, generate a triangularly distributed variate.
+ let u = gen_u.sample(rng);
+ let mut v = gen_v.sample(rng);
+ if !(u > p1) {
+ y = f64_to_i64(x_m - p1 * v + u);
break;
}
- }
- // the result should be discrete
- lresult = lresult.floor();
+ if !(u > p2) {
+ // Step 2: Region 2, parallelograms. Check if region 2 is
+ // used. If so, generate `y`.
+ let x = x_l + (u - p1) / c;
+ v = v * c + 1.0 - (x - x_m).abs() / p1;
+ if v > 1. {
+ continue;
+ } else {
+ y = f64_to_i64(x);
+ }
+ } else if !(u > p3) {
+ // Step 3: Region 3, left exponential tail.
+ y = f64_to_i64(x_l + v.ln() / lambda_l);
+ if y < 0 {
+ continue;
+ } else {
+ v *= (u - p2) * lambda_l;
+ }
+ } else {
+ // Step 4: Region 4, right exponential tail.
+ y = f64_to_i64(x_r - v.ln() / lambda_r);
+ if y > 0 && (y as u64) > self.n {
+ continue;
+ } else {
+ v *= (u - p3) * lambda_r;
+ }
+ }
+
+ // Step 5: Acceptance/rejection comparison.
+
+ // Step 5.0: Test for appropriate method of evaluating f(y).
+ let k = (y - m).abs();
+ if !(k > SQUEEZE_THRESHOLD && (k as f64) < 0.5 * npq - 1.) {
+ // Step 5.1: Evaluate f(y) via the recursive relationship. Start the
+ // search from the mode.
+ let s = p / q;
+ let a = s * (n + 1.);
+ let mut f = 1.0;
+ if m < y {
+ let mut i = m;
+ loop {
+ i += 1;
+ f *= a / (i as f64) - s;
+ if i == y {
+ break;
+ }
+ }
+ } else if m > y {
+ let mut i = y;
+ loop {
+ i += 1;
+ f /= a / (i as f64) - s;
+ if i == m {
+ break;
+ }
+ }
+ }
+ if v > f {
+ continue;
+ } else {
+ break;
+ }
+ }
- let log_binomial_dist = ln_fact_n - log_gamma(lresult+1.0) -
- log_gamma(float_n - lresult + 1.0) + lresult*log_p + (float_n - lresult)*log_pc;
- // this is the binomial probability divided by the comparison probability
- // we will generate a uniform random value and if it is larger than this,
- // we interpret it as a value falling out of the distribution and repeat
- let comparison_coeff = (log_binomial_dist.exp() * sq) * (1.2 * (1.0 + comp_dev*comp_dev));
+ // Step 5.2: Squeezing. Check the value of ln(v) againts upper and
+ // lower bound of ln(f(y)).
+ let k = k as f64;
+ let rho = (k / npq) * ((k * (k / 3. + 0.625) + 1./6.) / npq + 0.5);
+ let t = -0.5 * k*k / npq;
+ let alpha = v.ln();
+ if alpha < t - rho {
+ break;
+ }
+ if alpha > t + rho {
+ continue;
+ }
+
+ // Step 5.3: Final acceptance/rejection test.
+ let x1 = (y + 1) as f64;
+ let f1 = (m + 1) as f64;
+ let z = (f64_to_i64(n) + 1 - m) as f64;
+ let w = (f64_to_i64(n) - y + 1) as f64;
+
+ fn stirling(a: f64) -> f64 {
+ let a2 = a * a;
+ (13860. - (462. - (132. - (99. - 140. / a2) / a2) / a2) / a2) / a / 166320.
+ }
+
+ if alpha > x_m * (f1 / x1).ln()
+ + (n - (m as f64) + 0.5) * (z / w).ln()
+ + ((y - m) as f64) * (w * p / (x1 * q)).ln()
+ // We use the signs from the GSL implementation, which are
+ // different than the ones in the reference. According to
+ // the GSL authors, the new signs were verified to be
+ // correct by one of the original designers of the
+ // algorithm.
+ + stirling(f1) + stirling(z) - stirling(x1) - stirling(w)
+ {
+ continue;
+ }
- if comparison_coeff >= rng.gen() {
break;
}
+ assert!(y >= 0);
+ result = y as u64;
}
- // invert the result for p < 0.5
+ // Invert the result for p < 0.5.
if p != self.p {
- self.n - lresult as u64
+ self.n - result
} else {
- lresult as u64
+ result
}
}
}
#[cfg(test)]
mod test {
- use Rng;
- use distributions::Distribution;
+ use crate::Rng;
+ use crate::distributions::Distribution;
use super::Binomial;
fn test_binomial_mean_and_variance<R: Rng>(n: u64, p: f64, rng: &mut R) {
@@ -144,17 +277,20 @@ mod test {
for i in results.iter_mut() { *i = binomial.sample(rng) as f64; }
let mean = results.iter().sum::<f64>() / results.len() as f64;
- assert!((mean as f64 - expected_mean).abs() < expected_mean / 50.0);
+ assert!((mean as f64 - expected_mean).abs() < expected_mean / 50.0,
+ "mean: {}, expected_mean: {}", mean, expected_mean);
let variance =
results.iter().map(|x| (x - mean) * (x - mean)).sum::<f64>()
/ results.len() as f64;
- assert!((variance - expected_variance).abs() < expected_variance / 10.0);
+ assert!((variance - expected_variance).abs() < expected_variance / 10.0,
+ "variance: {}, expected_variance: {}", variance, expected_variance);
}
#[test]
+ #[cfg(not(miri))] // Miri is too slow
fn test_binomial() {
- let mut rng = ::test::rng(351);
+ let mut rng = crate::test::rng(351);
test_binomial_mean_and_variance(150, 0.1, &mut rng);
test_binomial_mean_and_variance(70, 0.6, &mut rng);
test_binomial_mean_and_variance(40, 0.5, &mut rng);
@@ -164,7 +300,7 @@ mod test {
#[test]
fn test_binomial_end_points() {
- let mut rng = ::test::rng(352);
+ let mut rng = crate::test::rng(352);
assert_eq!(rng.sample(Binomial::new(20, 0.0)), 0);
assert_eq!(rng.sample(Binomial::new(20, 1.0)), 20);
}
diff --git a/rand/src/distributions/cauchy.rs b/rand/src/distributions/cauchy.rs
index feef015..0a5d149 100644
--- a/rand/src/distributions/cauchy.rs
+++ b/rand/src/distributions/cauchy.rs
@@ -8,25 +8,18 @@
// except according to those terms.
//! The Cauchy distribution.
+#![allow(deprecated)]
+#![allow(clippy::all)]
-use Rng;
-use distributions::Distribution;
+use crate::Rng;
+use crate::distributions::Distribution;
use std::f64::consts::PI;
/// The Cauchy distribution `Cauchy(median, scale)`.
///
/// This distribution has a density function:
/// `f(x) = 1 / (pi * scale * (1 + ((x - median) / scale)^2))`
-///
-/// # Example
-///
-/// ```
-/// use rand::distributions::{Cauchy, Distribution};
-///
-/// let cau = Cauchy::new(2.0, 5.0);
-/// let v = cau.sample(&mut rand::thread_rng());
-/// println!("{} is from a Cauchy(2, 5) distribution", v);
-/// ```
+#[deprecated(since="0.7.0", note="moved to rand_distr crate")]
#[derive(Clone, Copy, Debug)]
pub struct Cauchy {
median: f64,
@@ -61,7 +54,7 @@ impl Distribution<f64> for Cauchy {
#[cfg(test)]
mod test {
- use distributions::Distribution;
+ use crate::distributions::Distribution;
use super::Cauchy;
fn median(mut numbers: &mut [f64]) -> f64 {
@@ -75,30 +68,25 @@ mod test {
}
#[test]
- fn test_cauchy_median() {
+ #[cfg(not(miri))] // Miri doesn't support transcendental functions
+ fn test_cauchy_averages() {
+ // NOTE: given that the variance and mean are undefined,
+ // this test does not have any rigorous statistical meaning.
let cauchy = Cauchy::new(10.0, 5.0);
- let mut rng = ::test::rng(123);
+ let mut rng = crate::test::rng(123);
let mut numbers: [f64; 1000] = [0.0; 1000];
+ let mut sum = 0.0;
for i in 0..1000 {
numbers[i] = cauchy.sample(&mut rng);
+ sum += numbers[i];
}
let median = median(&mut numbers);
println!("Cauchy median: {}", median);
- assert!((median - 10.0).abs() < 0.5); // not 100% certain, but probable enough
- }
-
- #[test]
- fn test_cauchy_mean() {
- let cauchy = Cauchy::new(10.0, 5.0);
- let mut rng = ::test::rng(123);
- let mut sum = 0.0;
- for _ in 0..1000 {
- sum += cauchy.sample(&mut rng);
- }
+ assert!((median - 10.0).abs() < 0.4); // not 100% certain, but probable enough
let mean = sum / 1000.0;
println!("Cauchy mean: {}", mean);
// for a Cauchy distribution the mean should not converge
- assert!((mean - 10.0).abs() > 0.5); // not 100% certain, but probable enough
+ assert!((mean - 10.0).abs() > 0.4); // not 100% certain, but probable enough
}
#[test]
diff --git a/rand/src/distributions/dirichlet.rs b/rand/src/distributions/dirichlet.rs
index 19384b8..1ce01fd 100644
--- a/rand/src/distributions/dirichlet.rs
+++ b/rand/src/distributions/dirichlet.rs
@@ -8,28 +8,19 @@
// except according to those terms.
//! The dirichlet distribution.
+#![allow(deprecated)]
+#![allow(clippy::all)]
-use Rng;
-use distributions::Distribution;
-use distributions::gamma::Gamma;
+use crate::Rng;
+use crate::distributions::Distribution;
+use crate::distributions::gamma::Gamma;
/// The dirichelet distribution `Dirichlet(alpha)`.
///
/// The Dirichlet distribution is a family of continuous multivariate
/// probability distributions parameterized by a vector alpha of positive reals.
/// It is a multivariate generalization of the beta distribution.
-///
-/// # Example
-///
-/// ```
-/// use rand::prelude::*;
-/// use rand::distributions::Dirichlet;
-///
-/// let dirichlet = Dirichlet::new(vec![1.0, 2.0, 3.0]);
-/// let samples = dirichlet.sample(&mut rand::thread_rng());
-/// println!("{:?} is from a Dirichlet([1.0, 2.0, 3.0]) distribution", samples);
-/// ```
-
+#[deprecated(since="0.7.0", note="moved to rand_distr crate")]
#[derive(Clone, Debug)]
pub struct Dirichlet {
/// Concentration parameters (alpha)
@@ -91,12 +82,12 @@ impl Distribution<Vec<f64>> for Dirichlet {
#[cfg(test)]
mod test {
use super::Dirichlet;
- use distributions::Distribution;
+ use crate::distributions::Distribution;
#[test]
fn test_dirichlet() {
let d = Dirichlet::new(vec![1.0, 2.0, 3.0]);
- let mut rng = ::test::rng(221);
+ let mut rng = crate::test::rng(221);
let samples = d.sample(&mut rng);
let _: Vec<f64> = samples
.into_iter()
@@ -112,7 +103,7 @@ mod test {
let alpha = 0.5f64;
let size = 2;
let d = Dirichlet::new_with_param(alpha, size);
- let mut rng = ::test::rng(221);
+ let mut rng = crate::test::rng(221);
let samples = d.sample(&mut rng);
let _: Vec<f64> = samples
.into_iter()
diff --git a/rand/src/distributions/exponential.rs b/rand/src/distributions/exponential.rs
index a7d0500..0278248 100644
--- a/rand/src/distributions/exponential.rs
+++ b/rand/src/distributions/exponential.rs
@@ -8,10 +8,11 @@
// except according to those terms.
//! The exponential distribution.
+#![allow(deprecated)]
-use {Rng};
-use distributions::{ziggurat_tables, Distribution};
-use distributions::utils::ziggurat;
+use crate::{Rng};
+use crate::distributions::{ziggurat_tables, Distribution};
+use crate::distributions::utils::ziggurat;
/// Samples floating-point numbers according to the exponential distribution,
/// with rate parameter `Ξ» = 1`. This is equivalent to `Exp::new(1.0)` or
@@ -27,15 +28,7 @@ use distributions::utils::ziggurat;
/// Generate Normal Random Samples*](
/// https://www.doornik.com/research/ziggurat.pdf).
/// Nuffield College, Oxford
-///
-/// # Example
-/// ```
-/// use rand::prelude::*;
-/// use rand::distributions::Exp1;
-///
-/// let val: f64 = SmallRng::from_entropy().sample(Exp1);
-/// println!("{}", val);
-/// ```
+#[deprecated(since="0.7.0", note="moved to rand_distr crate")]
#[derive(Clone, Copy, Debug)]
pub struct Exp1;
@@ -64,17 +57,8 @@ impl Distribution<f64> for Exp1 {
/// This distribution has density function: `f(x) = lambda * exp(-lambda * x)`
/// for `x > 0`.
///
-/// Note that [`Exp1`](struct.Exp1.html) is an optimised implementation for `lambda = 1`.
-///
-/// # Example
-///
-/// ```
-/// use rand::distributions::{Exp, Distribution};
-///
-/// let exp = Exp::new(2.0);
-/// let v = exp.sample(&mut rand::thread_rng());
-/// println!("{} is from a Exp(2) distribution", v);
-/// ```
+/// Note that [`Exp1`](crate::distributions::Exp1) is an optimised implementation for `lambda = 1`.
+#[deprecated(since="0.7.0", note="moved to rand_distr crate")]
#[derive(Clone, Copy, Debug)]
pub struct Exp {
/// `lambda` stored as `1/lambda`, since this is what we scale by.
@@ -100,13 +84,13 @@ impl Distribution<f64> for Exp {
#[cfg(test)]
mod test {
- use distributions::Distribution;
+ use crate::distributions::Distribution;
use super::Exp;
#[test]
fn test_exp() {
let exp = Exp::new(10.0);
- let mut rng = ::test::rng(221);
+ let mut rng = crate::test::rng(221);
for _ in 0..1000 {
assert!(exp.sample(&mut rng) >= 0.0);
}
diff --git a/rand/src/distributions/float.rs b/rand/src/distributions/float.rs
index ece12f5..bda523a 100644
--- a/rand/src/distributions/float.rs
+++ b/rand/src/distributions/float.rs
@@ -9,9 +9,9 @@
//! Basic floating-point number distributions
use core::mem;
-use Rng;
-use distributions::{Distribution, Standard};
-use distributions::utils::FloatSIMDUtils;
+use crate::Rng;
+use crate::distributions::{Distribution, Standard};
+use crate::distributions::utils::FloatSIMDUtils;
#[cfg(feature="simd_support")]
use packed_simd::*;
@@ -36,9 +36,9 @@ use packed_simd::*;
/// println!("f32 from (0, 1): {}", val);
/// ```
///
-/// [`Standard`]: struct.Standard.html
-/// [`Open01`]: struct.Open01.html
-/// [`Uniform`]: uniform/struct.Uniform.html
+/// [`Standard`]: crate::distributions::Standard
+/// [`Open01`]: crate::distributions::Open01
+/// [`Uniform`]: crate::distributions::uniform::Uniform
#[derive(Clone, Copy, Debug)]
pub struct OpenClosed01;
@@ -62,14 +62,16 @@ pub struct OpenClosed01;
/// println!("f32 from (0, 1): {}", val);
/// ```
///
-/// [`Standard`]: struct.Standard.html
-/// [`OpenClosed01`]: struct.OpenClosed01.html
-/// [`Uniform`]: uniform/struct.Uniform.html
+/// [`Standard`]: crate::distributions::Standard
+/// [`OpenClosed01`]: crate::distributions::OpenClosed01
+/// [`Uniform`]: crate::distributions::uniform::Uniform
#[derive(Clone, Copy, Debug)]
pub struct Open01;
-pub(crate) trait IntoFloat {
+// This trait is needed by both this lib and rand_distr hence is a hidden export
+#[doc(hidden)]
+pub trait IntoFloat {
type F;
/// Helper method to combine the fraction and a contant exponent into a
@@ -93,9 +95,7 @@ macro_rules! float_impls {
// The exponent is encoded using an offset-binary representation
let exponent_bits: $u_scalar =
(($exponent_bias + exponent) as $u_scalar) << $fraction_bits;
- // TODO: use from_bits when min compiler > 1.25 (see #545)
- // $ty::from_bits(self | exponent_bits)
- unsafe{ mem::transmute(self | exponent_bits) }
+ $ty::from_bits(self | exponent_bits)
}
}
@@ -168,9 +168,9 @@ float_impls! { f64x8, u64x8, f64, u64, 52, 1023 }
#[cfg(test)]
mod tests {
- use Rng;
- use distributions::{Open01, OpenClosed01};
- use rngs::mock::StepRng;
+ use crate::Rng;
+ use crate::distributions::{Open01, OpenClosed01};
+ use crate::rngs::mock::StepRng;
#[cfg(feature="simd_support")]
use packed_simd::*;
diff --git a/rand/src/distributions/gamma.rs b/rand/src/distributions/gamma.rs
index 43ac2bc..b5a97f5 100644
--- a/rand/src/distributions/gamma.rs
+++ b/rand/src/distributions/gamma.rs
@@ -8,13 +8,14 @@
// except according to those terms.
//! The Gamma and derived distributions.
+#![allow(deprecated)]
use self::GammaRepr::*;
use self::ChiSquaredRepr::*;
-use Rng;
-use distributions::normal::StandardNormal;
-use distributions::{Distribution, Exp, Open01};
+use crate::Rng;
+use crate::distributions::normal::StandardNormal;
+use crate::distributions::{Distribution, Exp, Open01};
/// The Gamma distribution `Gamma(shape, scale)` distribution.
///
@@ -32,20 +33,11 @@ use distributions::{Distribution, Exp, Open01};
/// == 1`, and using the boosting technique described in that paper for
/// `shape < 1`.
///
-/// # Example
-///
-/// ```
-/// use rand::distributions::{Distribution, Gamma};
-///
-/// let gamma = Gamma::new(2.0, 5.0);
-/// let v = gamma.sample(&mut rand::thread_rng());
-/// println!("{} is from a Gamma(2, 5) distribution", v);
-/// ```
-///
/// [^1]: George Marsaglia and Wai Wan Tsang. 2000. "A Simple Method for
/// Generating Gamma Variables" *ACM Trans. Math. Softw.* 26, 3
/// (September 2000), 363-372.
/// DOI:[10.1145/358407.358414](https://doi.acm.org/10.1145/358407.358414)
+#[deprecated(since="0.7.0", note="moved to rand_distr crate")]
#[derive(Clone, Copy, Debug)]
pub struct Gamma {
repr: GammaRepr,
@@ -174,16 +166,7 @@ impl Distribution<f64> for GammaLargeShape {
/// of `k` independent standard normal random variables. For other
/// `k`, this uses the equivalent characterisation
/// `χ²(k) = Gamma(k/2, 2)`.
-///
-/// # Example
-///
-/// ```
-/// use rand::distributions::{ChiSquared, Distribution};
-///
-/// let chi = ChiSquared::new(11.0);
-/// let v = chi.sample(&mut rand::thread_rng());
-/// println!("{} is from a χ²(11) distribution", v)
-/// ```
+#[deprecated(since="0.7.0", note="moved to rand_distr crate")]
#[derive(Clone, Copy, Debug)]
pub struct ChiSquared {
repr: ChiSquaredRepr,
@@ -229,16 +212,7 @@ impl Distribution<f64> for ChiSquared {
/// This distribution is equivalent to the ratio of two normalised
/// chi-squared distributions, that is, `F(m,n) = (χ²(m)/m) /
/// (χ²(n)/n)`.
-///
-/// # Example
-///
-/// ```
-/// use rand::distributions::{FisherF, Distribution};
-///
-/// let f = FisherF::new(2.0, 32.0);
-/// let v = f.sample(&mut rand::thread_rng());
-/// println!("{} is from an F(2, 32) distribution", v)
-/// ```
+#[deprecated(since="0.7.0", note="moved to rand_distr crate")]
#[derive(Clone, Copy, Debug)]
pub struct FisherF {
numer: ChiSquared,
@@ -270,16 +244,7 @@ impl Distribution<f64> for FisherF {
/// The Student t distribution, `t(nu)`, where `nu` is the degrees of
/// freedom.
-///
-/// # Example
-///
-/// ```
-/// use rand::distributions::{StudentT, Distribution};
-///
-/// let t = StudentT::new(11.0);
-/// let v = t.sample(&mut rand::thread_rng());
-/// println!("{} is from a t(11) distribution", v)
-/// ```
+#[deprecated(since="0.7.0", note="moved to rand_distr crate")]
#[derive(Clone, Copy, Debug)]
pub struct StudentT {
chi: ChiSquared,
@@ -305,16 +270,7 @@ impl Distribution<f64> for StudentT {
}
/// The Beta distribution with shape parameters `alpha` and `beta`.
-///
-/// # Example
-///
-/// ```
-/// use rand::distributions::{Distribution, Beta};
-///
-/// let beta = Beta::new(2.0, 5.0);
-/// let v = beta.sample(&mut rand::thread_rng());
-/// println!("{} is from a Beta(2, 5) distribution", v);
-/// ```
+#[deprecated(since="0.7.0", note="moved to rand_distr crate")]
#[derive(Clone, Copy, Debug)]
pub struct Beta {
gamma_a: Gamma,
@@ -345,30 +301,32 @@ impl Distribution<f64> for Beta {
#[cfg(test)]
mod test {
- use distributions::Distribution;
+ use crate::distributions::Distribution;
use super::{Beta, ChiSquared, StudentT, FisherF};
+ const N: u32 = 100;
+
#[test]
fn test_chi_squared_one() {
let chi = ChiSquared::new(1.0);
- let mut rng = ::test::rng(201);
- for _ in 0..1000 {
+ let mut rng = crate::test::rng(201);
+ for _ in 0..N {
chi.sample(&mut rng);
}
}
#[test]
fn test_chi_squared_small() {
let chi = ChiSquared::new(0.5);
- let mut rng = ::test::rng(202);
- for _ in 0..1000 {
+ let mut rng = crate::test::rng(202);
+ for _ in 0..N {
chi.sample(&mut rng);
}
}
#[test]
fn test_chi_squared_large() {
let chi = ChiSquared::new(30.0);
- let mut rng = ::test::rng(203);
- for _ in 0..1000 {
+ let mut rng = crate::test::rng(203);
+ for _ in 0..N {
chi.sample(&mut rng);
}
}
@@ -381,8 +339,8 @@ mod test {
#[test]
fn test_f() {
let f = FisherF::new(2.0, 32.0);
- let mut rng = ::test::rng(204);
- for _ in 0..1000 {
+ let mut rng = crate::test::rng(204);
+ for _ in 0..N {
f.sample(&mut rng);
}
}
@@ -390,8 +348,8 @@ mod test {
#[test]
fn test_t() {
let t = StudentT::new(11.0);
- let mut rng = ::test::rng(205);
- for _ in 0..1000 {
+ let mut rng = crate::test::rng(205);
+ for _ in 0..N {
t.sample(&mut rng);
}
}
@@ -399,8 +357,8 @@ mod test {
#[test]
fn test_beta() {
let beta = Beta::new(1.0, 2.0);
- let mut rng = ::test::rng(201);
- for _ in 0..1000 {
+ let mut rng = crate::test::rng(201);
+ for _ in 0..N {
beta.sample(&mut rng);
}
}
diff --git a/rand/src/distributions/integer.rs b/rand/src/distributions/integer.rs
index 7e408db..5238339 100644
--- a/rand/src/distributions/integer.rs
+++ b/rand/src/distributions/integer.rs
@@ -8,8 +8,10 @@
//! The implementations of the `Standard` distribution for integer types.
-use {Rng};
-use distributions::{Distribution, Standard};
+use crate::{Rng};
+use crate::distributions::{Distribution, Standard};
+use core::num::{NonZeroU8, NonZeroU16, NonZeroU32, NonZeroU64, NonZeroUsize};
+#[cfg(not(target_os = "emscripten"))] use core::num::NonZeroU128;
#[cfg(feature="simd_support")]
use packed_simd::*;
#[cfg(all(target_arch = "x86", feature="nightly"))]
@@ -45,13 +47,13 @@ impl Distribution<u64> for Standard {
}
}
-#[cfg(all(rustc_1_26, not(target_os = "emscripten")))]
+#[cfg(not(target_os = "emscripten"))]
impl Distribution<u128> for Standard {
#[inline]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u128 {
// Use LE; we explicitly generate one value before the next.
- let x = rng.next_u64() as u128;
- let y = rng.next_u64() as u128;
+ let x = u128::from(rng.next_u64());
+ let y = u128::from(rng.next_u64());
(y << 64) | x
}
}
@@ -85,9 +87,30 @@ impl_int_from_uint! { i8, u8 }
impl_int_from_uint! { i16, u16 }
impl_int_from_uint! { i32, u32 }
impl_int_from_uint! { i64, u64 }
-#[cfg(all(rustc_1_26, not(target_os = "emscripten")))] impl_int_from_uint! { i128, u128 }
+#[cfg(not(target_os = "emscripten"))] impl_int_from_uint! { i128, u128 }
impl_int_from_uint! { isize, usize }
+macro_rules! impl_nzint {
+ ($ty:ty, $new:path) => {
+ impl Distribution<$ty> for Standard {
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> $ty {
+ loop {
+ if let Some(nz) = $new(rng.gen()) {
+ break nz;
+ }
+ }
+ }
+ }
+ }
+}
+
+impl_nzint!(NonZeroU8, NonZeroU8::new);
+impl_nzint!(NonZeroU16, NonZeroU16::new);
+impl_nzint!(NonZeroU32, NonZeroU32::new);
+impl_nzint!(NonZeroU64, NonZeroU64::new);
+#[cfg(not(target_os = "emscripten"))] impl_nzint!(NonZeroU128, NonZeroU128::new);
+impl_nzint!(NonZeroUsize, NonZeroUsize::new);
+
#[cfg(feature="simd_support")]
macro_rules! simd_impl {
($(($intrinsic:ident, $vec:ty),)+) => {$(
@@ -135,19 +158,19 @@ simd_impl!((__m64, u8x8), (__m128i, u8x16), (__m256i, u8x32),);
#[cfg(test)]
mod tests {
- use Rng;
- use distributions::{Standard};
+ use crate::Rng;
+ use crate::distributions::{Standard};
#[test]
fn test_integers() {
- let mut rng = ::test::rng(806);
+ let mut rng = crate::test::rng(806);
rng.sample::<isize, _>(Standard);
rng.sample::<i8, _>(Standard);
rng.sample::<i16, _>(Standard);
rng.sample::<i32, _>(Standard);
rng.sample::<i64, _>(Standard);
- #[cfg(all(rustc_1_26, not(target_os = "emscripten")))]
+ #[cfg(not(target_os = "emscripten"))]
rng.sample::<i128, _>(Standard);
rng.sample::<usize, _>(Standard);
@@ -155,7 +178,7 @@ mod tests {
rng.sample::<u16, _>(Standard);
rng.sample::<u32, _>(Standard);
rng.sample::<u64, _>(Standard);
- #[cfg(all(rustc_1_26, not(target_os = "emscripten")))]
+ #[cfg(not(target_os = "emscripten"))]
rng.sample::<u128, _>(Standard);
}
}
diff --git a/rand/src/distributions/mod.rs b/rand/src/distributions/mod.rs
index 5e879cb..02ece6f 100644
--- a/rand/src/distributions/mod.rs
+++ b/rand/src/distributions/mod.rs
@@ -7,12 +7,12 @@
// option. This file may not be copied, modified, or distributed
// except according to those terms.
-//! Generating random samples from probability distributions.
+//! Generating random samples from probability distributions
//!
//! This module is the home of the [`Distribution`] trait and several of its
//! implementations. It is the workhorse behind some of the convenient
-//! functionality of the [`Rng`] trait, including [`gen`], [`gen_range`] and
-//! of course [`sample`].
+//! functionality of the [`Rng`] trait, e.g. [`Rng::gen`], [`Rng::gen_range`] and
+//! of course [`Rng::sample`].
//!
//! Abstractly, a [probability distribution] describes the probability of
//! occurance of each value in its sample space.
@@ -40,8 +40,14 @@
//! possible to generate type `T` with [`Rng::gen()`], and by extension also
//! with the [`random()`] function.
//!
+//! ## Random characters
+//!
+//! [`Alphanumeric`] is a simple distribution to sample random letters and
+//! numbers of the `char` type; in contrast [`Standard`] may sample any valid
+//! `char`.
+//!
//!
-//! # Distribution to sample from a `Uniform` range
+//! # Uniform numeric ranges
//!
//! The [`Uniform`] distribution is more flexible than [`Standard`], but also
//! more specialised: it supports fewer target types, but allows the sample
@@ -56,158 +62,84 @@
//!
//! User types `T` may also implement `Distribution<T>` for [`Uniform`],
//! although this is less straightforward than for [`Standard`] (see the
-//! documentation in the [`uniform` module]. Doing so enables generation of
+//! documentation in the [`uniform`] module. Doing so enables generation of
//! values of type `T` with [`Rng::gen_range`].
//!
-//!
-//! # Other distributions
+//! ## Open and half-open ranges
//!
//! There are surprisingly many ways to uniformly generate random floats. A
//! range between 0 and 1 is standard, but the exact bounds (open vs closed)
//! and accuracy differ. In addition to the [`Standard`] distribution Rand offers
-//! [`Open01`] and [`OpenClosed01`]. See [Floating point implementation] for
-//! more details.
-//!
-//! [`Alphanumeric`] is a simple distribution to sample random letters and
-//! numbers of the `char` type; in contrast [`Standard`] may sample any valid
-//! `char`.
-//!
-//! [`WeightedIndex`] can be used to do weighted sampling from a set of items,
-//! such as from an array.
-//!
-//! # Non-uniform probability distributions
-//!
-//! Rand currently provides the following probability distributions:
-//!
-//! - Related to real-valued quantities that grow linearly
-//! (e.g. errors, offsets):
-//! - [`Normal`] distribution, and [`StandardNormal`] as a primitive
-//! - [`Cauchy`] distribution
-//! - Related to Bernoulli trials (yes/no events, with a given probability):
-//! - [`Binomial`] distribution
-//! - [`Bernoulli`] distribution, similar to [`Rng::gen_bool`].
-//! - Related to positive real-valued quantities that grow exponentially
-//! (e.g. prices, incomes, populations):
-//! - [`LogNormal`] distribution
-//! - Related to the occurrence of independent events at a given rate:
-//! - [`Pareto`] distribution
-//! - [`Poisson`] distribution
-//! - [`Exp`]onential distribution, and [`Exp1`] as a primitive
-//! - [`Weibull`] distribution
-//! - Gamma and derived distributions:
-//! - [`Gamma`] distribution
-//! - [`ChiSquared`] distribution
-//! - [`StudentT`] distribution
-//! - [`FisherF`] distribution
-//! - Triangular distribution:
-//! - [`Beta`] distribution
-//! - [`Triangular`] distribution
-//! - Multivariate probability distributions
-//! - [`Dirichlet`] distribution
-//! - [`UnitSphereSurface`] distribution
-//! - [`UnitCircle`] distribution
+//! [`Open01`] and [`OpenClosed01`]. See "Floating point implementation" section of
+//! [`Standard`] documentation for more details.
//!
-//! # Examples
+//! # Non-uniform sampling
//!
-//! Sampling from a distribution:
+//! Sampling a simple true/false outcome with a given probability has a name:
+//! the [`Bernoulli`] distribution (this is used by [`Rng::gen_bool`]).
//!
-//! ```
-//! use rand::{thread_rng, Rng};
-//! use rand::distributions::Exp;
+//! For weighted sampling from a sequence of discrete values, use the
+//! [`weighted`] module.
//!
-//! let exp = Exp::new(2.0);
-//! let v = thread_rng().sample(exp);
-//! println!("{} is from an Exp(2) distribution", v);
-//! ```
-//!
-//! Implementing the [`Standard`] distribution for a user type:
-//!
-//! ```
-//! # #![allow(dead_code)]
-//! use rand::Rng;
-//! use rand::distributions::{Distribution, Standard};
-//!
-//! struct MyF32 {
-//! x: f32,
-//! }
-//!
-//! impl Distribution<MyF32> for Standard {
-//! fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> MyF32 {
-//! MyF32 { x: rng.gen() }
-//! }
-//! }
-//! ```
+//! This crate no longer includes other non-uniform distributions; instead
+//! it is recommended that you use either [`rand_distr`] or [`statrs`].
//!
//!
//! [probability distribution]: https://en.wikipedia.org/wiki/Probability_distribution
-//! [`Distribution`]: trait.Distribution.html
-//! [`gen_range`]: ../trait.Rng.html#method.gen_range
-//! [`gen`]: ../trait.Rng.html#method.gen
-//! [`sample`]: ../trait.Rng.html#method.sample
-//! [`new_inclusive`]: struct.Uniform.html#method.new_inclusive
-//! [`random()`]: ../fn.random.html
-//! [`Rng::gen_bool`]: ../trait.Rng.html#method.gen_bool
-//! [`Rng::gen_range`]: ../trait.Rng.html#method.gen_range
-//! [`Rng::gen()`]: ../trait.Rng.html#method.gen
-//! [`Rng`]: ../trait.Rng.html
-//! [`uniform` module]: uniform/index.html
-//! [Floating point implementation]: struct.Standard.html#floating-point-implementation
-// distributions
-//! [`Alphanumeric`]: struct.Alphanumeric.html
-//! [`Bernoulli`]: struct.Bernoulli.html
-//! [`Beta`]: struct.Beta.html
-//! [`Binomial`]: struct.Binomial.html
-//! [`Cauchy`]: struct.Cauchy.html
-//! [`ChiSquared`]: struct.ChiSquared.html
-//! [`Dirichlet`]: struct.Dirichlet.html
-//! [`Exp`]: struct.Exp.html
-//! [`Exp1`]: struct.Exp1.html
-//! [`FisherF`]: struct.FisherF.html
-//! [`Gamma`]: struct.Gamma.html
-//! [`LogNormal`]: struct.LogNormal.html
-//! [`Normal`]: struct.Normal.html
-//! [`Open01`]: struct.Open01.html
-//! [`OpenClosed01`]: struct.OpenClosed01.html
-//! [`Pareto`]: struct.Pareto.html
-//! [`Poisson`]: struct.Poisson.html
-//! [`Standard`]: struct.Standard.html
-//! [`StandardNormal`]: struct.StandardNormal.html
-//! [`StudentT`]: struct.StudentT.html
-//! [`Triangular`]: struct.Triangular.html
-//! [`Uniform`]: struct.Uniform.html
-//! [`Uniform::new`]: struct.Uniform.html#method.new
-//! [`Uniform::new_inclusive`]: struct.Uniform.html#method.new_inclusive
-//! [`UnitSphereSurface`]: struct.UnitSphereSurface.html
-//! [`UnitCircle`]: struct.UnitCircle.html
-//! [`Weibull`]: struct.Weibull.html
-//! [`WeightedIndex`]: struct.WeightedIndex.html
+//! [`rand_distr`]: https://crates.io/crates/rand_distr
+//! [`statrs`]: https://crates.io/crates/statrs
+
+//! [`Alphanumeric`]: distributions::Alphanumeric
+//! [`Bernoulli`]: distributions::Bernoulli
+//! [`Open01`]: distributions::Open01
+//! [`OpenClosed01`]: distributions::OpenClosed01
+//! [`Standard`]: distributions::Standard
+//! [`Uniform`]: distributions::Uniform
+//! [`Uniform::new`]: distributions::Uniform::new
+//! [`Uniform::new_inclusive`]: distributions::Uniform::new_inclusive
+//! [`weighted`]: distributions::weighted
+//! [`rand_distr`]: https://crates.io/crates/rand_distr
+//! [`statrs`]: https://crates.io/crates/statrs
-#[cfg(any(rustc_1_26, features="nightly"))]
use core::iter;
-use Rng;
+use crate::Rng;
pub use self::other::Alphanumeric;
#[doc(inline)] pub use self::uniform::Uniform;
pub use self::float::{OpenClosed01, Open01};
-pub use self::bernoulli::Bernoulli;
+pub use self::bernoulli::{Bernoulli, BernoulliError};
#[cfg(feature="alloc")] pub use self::weighted::{WeightedIndex, WeightedError};
+
+// The following are all deprecated after being moved to rand_distr
+#[allow(deprecated)]
#[cfg(feature="std")] pub use self::unit_sphere::UnitSphereSurface;
+#[allow(deprecated)]
#[cfg(feature="std")] pub use self::unit_circle::UnitCircle;
+#[allow(deprecated)]
#[cfg(feature="std")] pub use self::gamma::{Gamma, ChiSquared, FisherF,
StudentT, Beta};
+#[allow(deprecated)]
#[cfg(feature="std")] pub use self::normal::{Normal, LogNormal, StandardNormal};
+#[allow(deprecated)]
#[cfg(feature="std")] pub use self::exponential::{Exp, Exp1};
+#[allow(deprecated)]
#[cfg(feature="std")] pub use self::pareto::Pareto;
+#[allow(deprecated)]
#[cfg(feature="std")] pub use self::poisson::Poisson;
+#[allow(deprecated)]
#[cfg(feature="std")] pub use self::binomial::Binomial;
+#[allow(deprecated)]
#[cfg(feature="std")] pub use self::cauchy::Cauchy;
+#[allow(deprecated)]
#[cfg(feature="std")] pub use self::dirichlet::Dirichlet;
+#[allow(deprecated)]
#[cfg(feature="std")] pub use self::triangular::Triangular;
+#[allow(deprecated)]
#[cfg(feature="std")] pub use self::weibull::Weibull;
pub mod uniform;
mod bernoulli;
-#[cfg(feature="alloc")] mod weighted;
+#[cfg(feature="alloc")] pub mod weighted;
#[cfg(feature="std")] mod unit_sphere;
#[cfg(feature="std")] mod unit_circle;
#[cfg(feature="std")] mod gamma;
@@ -222,6 +154,9 @@ mod bernoulli;
#[cfg(feature="std")] mod weibull;
mod float;
+#[doc(hidden)] pub mod hidden_export {
+ pub use super::float::IntoFloat; // used by rand_distr
+}
mod integer;
mod other;
mod utils;
@@ -238,8 +173,7 @@ mod utils;
/// advantage of not needing to consider thread safety, and for most
/// distributions efficient state-less sampling algorithms are available.
///
-/// [`Rng`]: ../trait.Rng.html
-/// [`sample_iter`]: trait.Distribution.html#method.sample_iter
+/// [`sample_iter`]: Distribution::method.sample_iter
pub trait Distribution<T> {
/// Generate a random value of `T`, using `rng` as the source of randomness.
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> T;
@@ -247,33 +181,39 @@ pub trait Distribution<T> {
/// Create an iterator that generates random values of `T`, using `rng` as
/// the source of randomness.
///
+ /// Note that this function takes `self` by value. This works since
+ /// `Distribution<T>` is impl'd for `&D` where `D: Distribution<T>`,
+ /// however borrowing is not automatic hence `distr.sample_iter(...)` may
+ /// need to be replaced with `(&distr).sample_iter(...)` to borrow or
+ /// `(&*distr).sample_iter(...)` to reborrow an existing reference.
+ ///
/// # Example
///
/// ```
/// use rand::thread_rng;
/// use rand::distributions::{Distribution, Alphanumeric, Uniform, Standard};
///
- /// let mut rng = thread_rng();
+ /// let rng = thread_rng();
///
/// // Vec of 16 x f32:
- /// let v: Vec<f32> = Standard.sample_iter(&mut rng).take(16).collect();
+ /// let v: Vec<f32> = Standard.sample_iter(rng).take(16).collect();
///
/// // String:
- /// let s: String = Alphanumeric.sample_iter(&mut rng).take(7).collect();
+ /// let s: String = Alphanumeric.sample_iter(rng).take(7).collect();
///
/// // Dice-rolling:
/// let die_range = Uniform::new_inclusive(1, 6);
- /// let mut roll_die = die_range.sample_iter(&mut rng);
+ /// let mut roll_die = die_range.sample_iter(rng);
/// while roll_die.next().unwrap() != 6 {
/// println!("Not a 6; rolling again!");
/// }
/// ```
- fn sample_iter<'a, R>(&'a self, rng: &'a mut R) -> DistIter<'a, Self, R, T>
- where Self: Sized, R: Rng
+ fn sample_iter<R>(self, rng: R) -> DistIter<Self, R, T>
+ where R: Rng, Self: Sized
{
DistIter {
distr: self,
- rng: rng,
+ rng,
phantom: ::core::marker::PhantomData,
}
}
@@ -292,23 +232,25 @@ impl<'a, T, D: Distribution<T>> Distribution<T> for &'a D {
/// This `struct` is created by the [`sample_iter`] method on [`Distribution`].
/// See its documentation for more.
///
-/// [`Distribution`]: trait.Distribution.html
-/// [`sample_iter`]: trait.Distribution.html#method.sample_iter
+/// [`sample_iter`]: Distribution::sample_iter
#[derive(Debug)]
-pub struct DistIter<'a, D: 'a, R: 'a, T> {
- distr: &'a D,
- rng: &'a mut R,
+pub struct DistIter<D, R, T> {
+ distr: D,
+ rng: R,
phantom: ::core::marker::PhantomData<T>,
}
-impl<'a, D, R, T> Iterator for DistIter<'a, D, R, T>
- where D: Distribution<T>, R: Rng + 'a
+impl<D, R, T> Iterator for DistIter<D, R, T>
+ where D: Distribution<T>, R: Rng
{
type Item = T;
#[inline(always)]
fn next(&mut self) -> Option<T> {
- Some(self.distr.sample(self.rng))
+ // Here, self.rng may be a reference, but we must take &mut anyway.
+ // Even if sample could take an R: Rng by value, we would need to do this
+ // since Rng is not copyable and we cannot enforce that this is "reborrowable".
+ Some(self.distr.sample(&mut self.rng))
}
fn size_hint(&self) -> (usize, Option<usize>) {
@@ -316,20 +258,19 @@ impl<'a, D, R, T> Iterator for DistIter<'a, D, R, T>
}
}
-#[cfg(rustc_1_26)]
-impl<'a, D, R, T> iter::FusedIterator for DistIter<'a, D, R, T>
- where D: Distribution<T>, R: Rng + 'a {}
+impl<D, R, T> iter::FusedIterator for DistIter<D, R, T>
+ where D: Distribution<T>, R: Rng {}
#[cfg(features = "nightly")]
-impl<'a, D, R, T> iter::TrustedLen for DistIter<'a, D, R, T>
- where D: Distribution<T>, R: Rng + 'a {}
+impl<D, R, T> iter::TrustedLen for DistIter<D, R, T>
+ where D: Distribution<T>, R: Rng {}
/// A generic random value distribution, implemented for many primitive types.
/// Usually generates values with a numerically uniform distribution, and with a
/// range appropriate to the type.
///
-/// ## Built-in Implementations
+/// ## Provided implementations
///
/// Assuming the provided `Rng` is well-behaved, these implementations
/// generate values with the following ranges and distributions:
@@ -346,20 +287,42 @@ impl<'a, D, R, T> iter::TrustedLen for DistIter<'a, D, R, T>
/// * Wrapping integers (`Wrapping<T>`), besides the type identical to their
/// normal integer variants.
///
-/// The following aggregate types also implement the distribution `Standard` as
-/// long as their component types implement it:
+/// The `Standard` distribution also supports generation of the following
+/// compound types where all component types are supported:
///
-/// * Tuples and arrays: Each element of the tuple or array is generated
-/// independently, using the `Standard` distribution recursively.
-/// * `Option<T>` where `Standard` is implemented for `T`: Returns `None` with
-/// probability 0.5; otherwise generates a random `x: T` and returns `Some(x)`.
+/// * Tuples (up to 12 elements): each element is generated sequentially.
+/// * Arrays (up to 32 elements): each element is generated sequentially;
+/// see also [`Rng::fill`] which supports arbitrary array length for integer
+/// types and tends to be faster for `u32` and smaller types.
+/// * `Option<T>` first generates a `bool`, and if true generates and returns
+/// `Some(value)` where `value: T`, otherwise returning `None`.
///
-/// # Example
+/// ## Custom implementations
+///
+/// The [`Standard`] distribution may be implemented for user types as follows:
+///
+/// ```
+/// # #![allow(dead_code)]
+/// use rand::Rng;
+/// use rand::distributions::{Distribution, Standard};
+///
+/// struct MyF32 {
+/// x: f32,
+/// }
+///
+/// impl Distribution<MyF32> for Standard {
+/// fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> MyF32 {
+/// MyF32 { x: rng.gen() }
+/// }
+/// }
+/// ```
+///
+/// ## Example usage
/// ```
/// use rand::prelude::*;
/// use rand::distributions::Standard;
///
-/// let val: f32 = SmallRng::from_entropy().sample(Standard);
+/// let val: f32 = StdRng::from_entropy().sample(Standard);
/// println!("f32 from [0, 1): {}", val);
/// ```
///
@@ -379,243 +342,40 @@ impl<'a, D, R, T> iter::TrustedLen for DistIter<'a, D, R, T>
/// faster on some architectures (on modern Intel CPUs all methods have
/// approximately equal performance).
///
-/// [`Open01`]: struct.Open01.html
-/// [`OpenClosed01`]: struct.OpenClosed01.html
-/// [`Uniform`]: uniform/struct.Uniform.html
+/// [`Uniform`]: uniform::Uniform
#[derive(Clone, Copy, Debug)]
pub struct Standard;
-/// A value with a particular weight for use with `WeightedChoice`.
-#[deprecated(since="0.6.0", note="use WeightedIndex instead")]
-#[allow(deprecated)]
-#[derive(Copy, Clone, Debug)]
-pub struct Weighted<T> {
- /// The numerical weight of this item
- pub weight: u32,
- /// The actual item which is being weighted
- pub item: T,
-}
-
-/// A distribution that selects from a finite collection of weighted items.
-///
-/// Deprecated: use [`WeightedIndex`] instead.
-///
-/// [`WeightedIndex`]: struct.WeightedIndex.html
-#[deprecated(since="0.6.0", note="use WeightedIndex instead")]
-#[allow(deprecated)]
-#[derive(Debug)]
-pub struct WeightedChoice<'a, T:'a> {
- items: &'a mut [Weighted<T>],
- weight_range: Uniform<u32>,
-}
-
-#[deprecated(since="0.6.0", note="use WeightedIndex instead")]
-#[allow(deprecated)]
-impl<'a, T: Clone> WeightedChoice<'a, T> {
- /// Create a new `WeightedChoice`.
- ///
- /// Panics if:
- ///
- /// - `items` is empty
- /// - the total weight is 0
- /// - the total weight is larger than a `u32` can contain.
- pub fn new(items: &'a mut [Weighted<T>]) -> WeightedChoice<'a, T> {
- // strictly speaking, this is subsumed by the total weight == 0 case
- assert!(!items.is_empty(), "WeightedChoice::new called with no items");
-
- let mut running_total: u32 = 0;
-
- // we convert the list from individual weights to cumulative
- // weights so we can binary search. This *could* drop elements
- // with weight == 0 as an optimisation.
- for item in items.iter_mut() {
- running_total = match running_total.checked_add(item.weight) {
- Some(n) => n,
- None => panic!("WeightedChoice::new called with a total weight \
- larger than a u32 can contain")
- };
-
- item.weight = running_total;
- }
- assert!(running_total != 0, "WeightedChoice::new called with a total weight of 0");
-
- WeightedChoice {
- items,
- // we're likely to be generating numbers in this range
- // relatively often, so might as well cache it
- weight_range: Uniform::new(0, running_total)
- }
- }
-}
-
-#[deprecated(since="0.6.0", note="use WeightedIndex instead")]
-#[allow(deprecated)]
-impl<'a, T: Clone> Distribution<T> for WeightedChoice<'a, T> {
- fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> T {
- // we want to find the first element that has cumulative
- // weight > sample_weight, which we do by binary since the
- // cumulative weights of self.items are sorted.
-
- // choose a weight in [0, total_weight)
- let sample_weight = self.weight_range.sample(rng);
-
- // short circuit when it's the first item
- if sample_weight < self.items[0].weight {
- return self.items[0].item.clone();
- }
-
- let mut idx = 0;
- let mut modifier = self.items.len();
-
- // now we know that every possibility has an element to the
- // left, so we can just search for the last element that has
- // cumulative weight <= sample_weight, then the next one will
- // be "it". (Note that this greatest element will never be the
- // last element of the vector, since sample_weight is chosen
- // in [0, total_weight) and the cumulative weight of the last
- // one is exactly the total weight.)
- while modifier > 1 {
- let i = idx + modifier / 2;
- if self.items[i].weight <= sample_weight {
- // we're small, so look to the right, but allow this
- // exact element still.
- idx = i;
- // we need the `/ 2` to round up otherwise we'll drop
- // the trailing elements when `modifier` is odd.
- modifier += 1;
- } else {
- // otherwise we're too big, so go left. (i.e. do
- // nothing)
- }
- modifier /= 2;
- }
- self.items[idx + 1].item.clone()
- }
-}
-
-#[cfg(test)]
+#[cfg(all(test, feature = "std"))]
mod tests {
- use rngs::mock::StepRng;
- #[allow(deprecated)]
- use super::{WeightedChoice, Weighted, Distribution};
+ use crate::Rng;
+ use super::{Distribution, Uniform};
#[test]
- #[allow(deprecated)]
- fn test_weighted_choice() {
- // this makes assumptions about the internal implementation of
- // WeightedChoice. It may fail when the implementation in
- // `distributions::uniform::UniformInt` changes.
-
- macro_rules! t {
- ($items:expr, $expected:expr) => {{
- let mut items = $items;
- let mut total_weight = 0;
- for item in &items { total_weight += item.weight; }
-
- let wc = WeightedChoice::new(&mut items);
- let expected = $expected;
-
- // Use extremely large steps between the random numbers, because
- // we test with small ranges and `UniformInt` is designed to prefer
- // the most significant bits.
- let mut rng = StepRng::new(0, !0 / (total_weight as u64));
-
- for &val in expected.iter() {
- assert_eq!(wc.sample(&mut rng), val)
- }
- }}
- }
-
- t!([Weighted { weight: 1, item: 10}], [10]);
-
- // skip some
- t!([Weighted { weight: 0, item: 20},
- Weighted { weight: 2, item: 21},
- Weighted { weight: 0, item: 22},
- Weighted { weight: 1, item: 23}],
- [21, 21, 23]);
-
- // different weights
- t!([Weighted { weight: 4, item: 30},
- Weighted { weight: 3, item: 31}],
- [30, 31, 30, 31, 30, 31, 30]);
-
- // check that we're binary searching
- // correctly with some vectors of odd
- // length.
- t!([Weighted { weight: 1, item: 40},
- Weighted { weight: 1, item: 41},
- Weighted { weight: 1, item: 42},
- Weighted { weight: 1, item: 43},
- Weighted { weight: 1, item: 44}],
- [40, 41, 42, 43, 44]);
- t!([Weighted { weight: 1, item: 50},
- Weighted { weight: 1, item: 51},
- Weighted { weight: 1, item: 52},
- Weighted { weight: 1, item: 53},
- Weighted { weight: 1, item: 54},
- Weighted { weight: 1, item: 55},
- Weighted { weight: 1, item: 56}],
- [50, 54, 51, 55, 52, 56, 53]);
- }
-
- #[test]
- #[allow(deprecated)]
- fn test_weighted_clone_initialization() {
- let initial : Weighted<u32> = Weighted {weight: 1, item: 1};
- let clone = initial.clone();
- assert_eq!(initial.weight, clone.weight);
- assert_eq!(initial.item, clone.item);
- }
-
- #[test] #[should_panic]
- #[allow(deprecated)]
- fn test_weighted_clone_change_weight() {
- let initial : Weighted<u32> = Weighted {weight: 1, item: 1};
- let mut clone = initial.clone();
- clone.weight = 5;
- assert_eq!(initial.weight, clone.weight);
- }
-
- #[test] #[should_panic]
- #[allow(deprecated)]
- fn test_weighted_clone_change_item() {
- let initial : Weighted<u32> = Weighted {weight: 1, item: 1};
- let mut clone = initial.clone();
- clone.item = 5;
- assert_eq!(initial.item, clone.item);
-
- }
-
- #[test] #[should_panic]
- #[allow(deprecated)]
- fn test_weighted_choice_no_items() {
- WeightedChoice::<isize>::new(&mut []);
- }
- #[test] #[should_panic]
- #[allow(deprecated)]
- fn test_weighted_choice_zero_weight() {
- WeightedChoice::new(&mut [Weighted { weight: 0, item: 0},
- Weighted { weight: 0, item: 1}]);
- }
- #[test] #[should_panic]
- #[allow(deprecated)]
- fn test_weighted_choice_weight_overflows() {
- let x = ::core::u32::MAX / 2; // x + x + 2 is the overflow
- WeightedChoice::new(&mut [Weighted { weight: x, item: 0 },
- Weighted { weight: 1, item: 1 },
- Weighted { weight: x, item: 2 },
- Weighted { weight: 1, item: 3 }]);
- }
-
- #[cfg(feature="std")]
- #[test]
fn test_distributions_iter() {
- use distributions::Normal;
- let mut rng = ::test::rng(210);
- let distr = Normal::new(10.0, 10.0);
- let results: Vec<_> = distr.sample_iter(&mut rng).take(100).collect();
+ use crate::distributions::Open01;
+ let mut rng = crate::test::rng(210);
+ let distr = Open01;
+ let results: Vec<f32> = distr.sample_iter(&mut rng).take(100).collect();
println!("{:?}", results);
}
+
+ #[test]
+ fn test_make_an_iter() {
+ fn ten_dice_rolls_other_than_five<'a, R: Rng>(rng: &'a mut R) -> impl Iterator<Item = i32> + 'a {
+ Uniform::new_inclusive(1, 6)
+ .sample_iter(rng)
+ .filter(|x| *x != 5)
+ .take(10)
+ }
+
+ let mut rng = crate::test::rng(211);
+ let mut count = 0;
+ for val in ten_dice_rolls_other_than_five(&mut rng) {
+ assert!(val >= 1 && val <= 6 && val != 5);
+ count += 1;
+ }
+ assert_eq!(count, 10);
+ }
}
diff --git a/rand/src/distributions/normal.rs b/rand/src/distributions/normal.rs
index b8d632e..7808baf 100644
--- a/rand/src/distributions/normal.rs
+++ b/rand/src/distributions/normal.rs
@@ -8,10 +8,11 @@
// except according to those terms.
//! The normal and derived distributions.
+#![allow(deprecated)]
-use Rng;
-use distributions::{ziggurat_tables, Distribution, Open01};
-use distributions::utils::ziggurat;
+use crate::Rng;
+use crate::distributions::{ziggurat_tables, Distribution, Open01};
+use crate::distributions::utils::ziggurat;
/// Samples floating-point numbers according to the normal distribution
/// `N(0, 1)` (a.k.a. a standard normal, or Gaussian). This is equivalent to
@@ -25,15 +26,7 @@ use distributions::utils::ziggurat;
/// Generate Normal Random Samples*](
/// https://www.doornik.com/research/ziggurat.pdf).
/// Nuffield College, Oxford
-///
-/// # Example
-/// ```
-/// use rand::prelude::*;
-/// use rand::distributions::StandardNormal;
-///
-/// let val: f64 = SmallRng::from_entropy().sample(StandardNormal);
-/// println!("{}", val);
-/// ```
+#[deprecated(since="0.7.0", note="moved to rand_distr crate")]
#[derive(Clone, Copy, Debug)]
pub struct StandardNormal;
@@ -80,18 +73,8 @@ impl Distribution<f64> for StandardNormal {
/// Note that [`StandardNormal`] is an optimised implementation for mean 0, and
/// standard deviation 1.
///
-/// # Example
-///
-/// ```
-/// use rand::distributions::{Normal, Distribution};
-///
-/// // mean 2, standard deviation 3
-/// let normal = Normal::new(2.0, 3.0);
-/// let v = normal.sample(&mut rand::thread_rng());
-/// println!("{} is from a N(2, 9) distribution", v)
-/// ```
-///
-/// [`StandardNormal`]: struct.StandardNormal.html
+/// [`StandardNormal`]: crate::distributions::StandardNormal
+#[deprecated(since="0.7.0", note="moved to rand_distr crate")]
#[derive(Clone, Copy, Debug)]
pub struct Normal {
mean: f64,
@@ -126,17 +109,7 @@ impl Distribution<f64> for Normal {
///
/// If `X` is log-normal distributed, then `ln(X)` is `N(mean, std_dev**2)`
/// distributed.
-///
-/// # Example
-///
-/// ```
-/// use rand::distributions::{LogNormal, Distribution};
-///
-/// // mean 2, standard deviation 3
-/// let log_normal = LogNormal::new(2.0, 3.0);
-/// let v = log_normal.sample(&mut rand::thread_rng());
-/// println!("{} is from an ln N(2, 9) distribution", v)
-/// ```
+#[deprecated(since="0.7.0", note="moved to rand_distr crate")]
#[derive(Clone, Copy, Debug)]
pub struct LogNormal {
norm: Normal
@@ -163,13 +136,13 @@ impl Distribution<f64> for LogNormal {
#[cfg(test)]
mod tests {
- use distributions::Distribution;
+ use crate::distributions::Distribution;
use super::{Normal, LogNormal};
#[test]
fn test_normal() {
let norm = Normal::new(10.0, 10.0);
- let mut rng = ::test::rng(210);
+ let mut rng = crate::test::rng(210);
for _ in 0..1000 {
norm.sample(&mut rng);
}
@@ -184,7 +157,7 @@ mod tests {
#[test]
fn test_log_normal() {
let lnorm = LogNormal::new(10.0, 10.0);
- let mut rng = ::test::rng(211);
+ let mut rng = crate::test::rng(211);
for _ in 0..1000 {
lnorm.sample(&mut rng);
}
diff --git a/rand/src/distributions/other.rs b/rand/src/distributions/other.rs
index 2295f79..6ec0473 100644
--- a/rand/src/distributions/other.rs
+++ b/rand/src/distributions/other.rs
@@ -11,8 +11,8 @@
use core::char;
use core::num::Wrapping;
-use {Rng};
-use distributions::{Distribution, Standard, Uniform};
+use crate::Rng;
+use crate::distributions::{Distribution, Standard, Uniform};
// ----- Sampling distributions -----
@@ -116,6 +116,7 @@ macro_rules! tuple_impl {
}
impl Distribution<()> for Standard {
+ #[allow(clippy::unused_unit)]
#[inline]
fn sample<R: Rng + ?Sized>(&self, _: &mut R) -> () { () }
}
@@ -176,13 +177,13 @@ impl<T> Distribution<Wrapping<T>> for Standard where Standard: Distribution<T> {
#[cfg(test)]
mod tests {
- use {Rng, RngCore, Standard};
- use distributions::Alphanumeric;
+ use crate::{Rng, RngCore, Standard};
+ use crate::distributions::Alphanumeric;
#[cfg(all(not(feature="std"), feature="alloc"))] use alloc::string::String;
#[test]
fn test_misc() {
- let rng: &mut RngCore = &mut ::test::rng(820);
+ let rng: &mut dyn RngCore = &mut crate::test::rng(820);
rng.sample::<char, _>(Standard);
rng.sample::<bool, _>(Standard);
@@ -192,7 +193,7 @@ mod tests {
#[test]
fn test_chars() {
use core::iter;
- let mut rng = ::test::rng(805);
+ let mut rng = crate::test::rng(805);
// Test by generating a relatively large number of chars, so we also
// take the rejection sampling path.
@@ -203,7 +204,7 @@ mod tests {
#[test]
fn test_alphanumeric() {
- let mut rng = ::test::rng(806);
+ let mut rng = crate::test::rng(806);
// Test by generating a relatively large number of chars, so we also
// take the rejection sampling path.
diff --git a/rand/src/distributions/pareto.rs b/rand/src/distributions/pareto.rs
index 744a157..edc9122 100644
--- a/rand/src/distributions/pareto.rs
+++ b/rand/src/distributions/pareto.rs
@@ -7,20 +7,13 @@
// except according to those terms.
//! The Pareto distribution.
+#![allow(deprecated)]
-use Rng;
-use distributions::{Distribution, OpenClosed01};
+use crate::Rng;
+use crate::distributions::{Distribution, OpenClosed01};
/// Samples floating-point numbers according to the Pareto distribution
-///
-/// # Example
-/// ```
-/// use rand::prelude::*;
-/// use rand::distributions::Pareto;
-///
-/// let val: f64 = SmallRng::from_entropy().sample(Pareto::new(1., 2.));
-/// println!("{}", val);
-/// ```
+#[deprecated(since="0.7.0", note="moved to rand_distr crate")]
#[derive(Clone, Copy, Debug)]
pub struct Pareto {
scale: f64,
@@ -51,7 +44,7 @@ impl Distribution<f64> for Pareto {
#[cfg(test)]
mod tests {
- use distributions::Distribution;
+ use crate::distributions::Distribution;
use super::Pareto;
#[test]
@@ -65,7 +58,7 @@ mod tests {
let scale = 1.0;
let shape = 2.0;
let d = Pareto::new(scale, shape);
- let mut rng = ::test::rng(1);
+ let mut rng = crate::test::rng(1);
for _ in 0..1000 {
let r = d.sample(&mut rng);
assert!(r >= scale);
diff --git a/rand/src/distributions/poisson.rs b/rand/src/distributions/poisson.rs
index 1244caa..9fd6e99 100644
--- a/rand/src/distributions/poisson.rs
+++ b/rand/src/distributions/poisson.rs
@@ -8,25 +8,17 @@
// except according to those terms.
//! The Poisson distribution.
+#![allow(deprecated)]
-use Rng;
-use distributions::{Distribution, Cauchy};
-use distributions::utils::log_gamma;
+use crate::Rng;
+use crate::distributions::{Distribution, Cauchy};
+use crate::distributions::utils::log_gamma;
/// The Poisson distribution `Poisson(lambda)`.
///
/// This distribution has a density function:
/// `f(k) = lambda^k * exp(-lambda) / k!` for `k >= 0`.
-///
-/// # Example
-///
-/// ```
-/// use rand::distributions::{Poisson, Distribution};
-///
-/// let poi = Poisson::new(2.0);
-/// let v = poi.sample(&mut rand::thread_rng());
-/// println!("{} is from a Poisson(2) distribution", v);
-/// ```
+#[deprecated(since="0.7.0", note="moved to rand_distr crate")]
#[derive(Clone, Copy, Debug)]
pub struct Poisson {
lambda: f64,
@@ -113,13 +105,14 @@ impl Distribution<u64> for Poisson {
#[cfg(test)]
mod test {
- use distributions::Distribution;
+ use crate::distributions::Distribution;
use super::Poisson;
#[test]
+ #[cfg(not(miri))] // Miri is too slow
fn test_poisson_10() {
let poisson = Poisson::new(10.0);
- let mut rng = ::test::rng(123);
+ let mut rng = crate::test::rng(123);
let mut sum = 0;
for _ in 0..1000 {
sum += poisson.sample(&mut rng);
@@ -130,10 +123,11 @@ mod test {
}
#[test]
+ #[cfg(not(miri))] // Miri doesn't support transcendental functions
fn test_poisson_15() {
// Take the 'high expected values' path
let poisson = Poisson::new(15.0);
- let mut rng = ::test::rng(123);
+ let mut rng = crate::test::rng(123);
let mut sum = 0;
for _ in 0..1000 {
sum += poisson.sample(&mut rng);
diff --git a/rand/src/distributions/triangular.rs b/rand/src/distributions/triangular.rs
index a6eef5c..3e8f8b0 100644
--- a/rand/src/distributions/triangular.rs
+++ b/rand/src/distributions/triangular.rs
@@ -5,22 +5,15 @@
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
+
//! The triangular distribution.
+#![allow(deprecated)]
-use Rng;
-use distributions::{Distribution, Standard};
+use crate::Rng;
+use crate::distributions::{Distribution, Standard};
/// The triangular distribution.
-///
-/// # Example
-///
-/// ```rust
-/// use rand::distributions::{Triangular, Distribution};
-///
-/// let d = Triangular::new(0., 5., 2.5);
-/// let v = d.sample(&mut rand::thread_rng());
-/// println!("{} is from a triangular distribution", v);
-/// ```
+#[deprecated(since="0.7.0", note="moved to rand_distr crate")]
#[derive(Clone, Copy, Debug)]
pub struct Triangular {
min: f64,
@@ -61,7 +54,7 @@ impl Distribution<f64> for Triangular {
#[cfg(test)]
mod test {
- use distributions::Distribution;
+ use crate::distributions::Distribution;
use super::Triangular;
#[test]
@@ -78,7 +71,7 @@ mod test {
#[test]
fn test_sample() {
let norm = Triangular::new(0., 1., 0.5);
- let mut rng = ::test::rng(1);
+ let mut rng = crate::test::rng(1);
for _ in 0..1000 {
norm.sample(&mut rng);
}
diff --git a/rand/src/distributions/uniform.rs b/rand/src/distributions/uniform.rs
index ceed77d..8c90f4e 100644
--- a/rand/src/distributions/uniform.rs
+++ b/rand/src/distributions/uniform.rs
@@ -15,13 +15,13 @@
//! [`Uniform`].
//!
//! This distribution is provided with support for several primitive types
-//! (all integer and floating-point types) as well as `std::time::Duration`,
+//! (all integer and floating-point types) as well as [`std::time::Duration`],
//! and supports extension to user-defined types via a type-specific *back-end*
//! implementation.
//!
//! The types [`UniformInt`], [`UniformFloat`] and [`UniformDuration`] are the
//! back-ends supporting sampling from primitive integer and floating-point
-//! ranges as well as from `std::time::Duration`; these types do not normally
+//! ranges as well as from [`std::time::Duration`]; these types do not normally
//! need to be used directly (unless implementing a derived back-end).
//!
//! # Example usage
@@ -100,28 +100,26 @@
//! let x = uniform.sample(&mut thread_rng());
//! ```
//!
-//! [`Uniform`]: struct.Uniform.html
-//! [`Rng::gen_range`]: ../../trait.Rng.html#method.gen_range
-//! [`SampleUniform`]: trait.SampleUniform.html
-//! [`UniformSampler`]: trait.UniformSampler.html
-//! [`UniformInt`]: struct.UniformInt.html
-//! [`UniformFloat`]: struct.UniformFloat.html
-//! [`UniformDuration`]: struct.UniformDuration.html
-//! [`SampleBorrow::borrow`]: trait.SampleBorrow.html#method.borrow
+//! [`SampleUniform`]: crate::distributions::uniform::SampleUniform
+//! [`UniformSampler`]: crate::distributions::uniform::UniformSampler
+//! [`UniformInt`]: crate::distributions::uniform::UniformInt
+//! [`UniformFloat`]: crate::distributions::uniform::UniformFloat
+//! [`UniformDuration`]: crate::distributions::uniform::UniformDuration
+//! [`SampleBorrow::borrow`]: crate::distributions::uniform::SampleBorrow::borrow
#[cfg(feature = "std")]
use std::time::Duration;
-#[cfg(all(not(feature = "std"), rustc_1_25))]
+#[cfg(not(feature = "std"))]
use core::time::Duration;
-use Rng;
-use distributions::Distribution;
-use distributions::float::IntoFloat;
-use distributions::utils::{WideningMultiply, FloatSIMDUtils, FloatAsSIMD, BoolAsSIMD};
+use crate::Rng;
+use crate::distributions::Distribution;
+use crate::distributions::float::IntoFloat;
+use crate::distributions::utils::{WideningMultiply, FloatSIMDUtils, FloatAsSIMD, BoolAsSIMD};
#[cfg(not(feature = "std"))]
#[allow(unused_imports)] // rustc doesn't detect that this is actually used
-use distributions::utils::Float;
+use crate::distributions::utils::Float;
#[cfg(feature="simd_support")]
@@ -165,10 +163,8 @@ use packed_simd::*;
/// }
/// ```
///
-/// [`Uniform::new`]: struct.Uniform.html#method.new
-/// [`Uniform::new_inclusive`]: struct.Uniform.html#method.new_inclusive
-/// [`new`]: struct.Uniform.html#method.new
-/// [`new_inclusive`]: struct.Uniform.html#method.new_inclusive
+/// [`new`]: Uniform::new
+/// [`new_inclusive`]: Uniform::new_inclusive
#[derive(Clone, Copy, Debug)]
pub struct Uniform<X: SampleUniform> {
inner: X::Sampler,
@@ -206,9 +202,7 @@ impl<X: SampleUniform> Distribution<X> for Uniform<X> {
/// See the [module documentation] on how to implement [`Uniform`] range
/// sampling for a custom type.
///
-/// [`UniformSampler`]: trait.UniformSampler.html
-/// [module documentation]: index.html
-/// [`Uniform`]: struct.Uniform.html
+/// [module documentation]: crate::distributions::uniform
pub trait SampleUniform: Sized {
/// The `UniformSampler` implementation supporting type `X`.
type Sampler: UniformSampler<X = Self>;
@@ -222,9 +216,8 @@ pub trait SampleUniform: Sized {
/// Implementation of [`sample_single`] is optional, and is only useful when
/// the implementation can be faster than `Self::new(low, high).sample(rng)`.
///
-/// [module documentation]: index.html
-/// [`Uniform`]: struct.Uniform.html
-/// [`sample_single`]: trait.UniformSampler.html#method.sample_single
+/// [module documentation]: crate::distributions::uniform
+/// [`sample_single`]: UniformSampler::sample_single
pub trait UniformSampler: Sized {
/// The type sampled by this implementation.
type X;
@@ -253,14 +246,11 @@ pub trait UniformSampler: Sized {
/// Sample a single value uniformly from a range with inclusive lower bound
/// and exclusive upper bound `[low, high)`.
///
- /// Usually users should not call this directly but instead use
- /// `Uniform::sample_single`, which asserts that `low < high` before calling
- /// this.
- ///
- /// Via this method, implementations can provide a method optimized for
- /// sampling only a single value from the specified range. The default
- /// implementation simply calls `UniformSampler::new` then `sample` on the
- /// result.
+ /// By default this is implemented using
+ /// `UniformSampler::new(low, high).sample(rng)`. However, for some types
+ /// more optimal implementations for single usage may be provided via this
+ /// method (which is the case for integers and floats).
+ /// Results may not be identical.
fn sample_single<R: Rng + ?Sized, B1, B2>(low: B1, high: B2, rng: &mut R)
-> Self::X
where B1: SampleBorrow<Self::X> + Sized,
@@ -277,7 +267,6 @@ impl<X: SampleUniform> From<::core::ops::Range<X>> for Uniform<X> {
}
}
-#[cfg(rustc_1_27)]
impl<X: SampleUniform> From<::core::ops::RangeInclusive<X>> for Uniform<X> {
fn from(r: ::core::ops::RangeInclusive<X>) -> Uniform<X> {
Uniform::new_inclusive(r.start(), r.end())
@@ -288,11 +277,11 @@ impl<X: SampleUniform> From<::core::ops::RangeInclusive<X>> for Uniform<X> {
/// only for SampleUniform and references to SampleUniform in
/// order to resolve ambiguity issues.
///
-/// [`Borrow`]: https://doc.rust-lang.org/std/borrow/trait.Borrow.html
+/// [`Borrow`]: std::borrow::Borrow
pub trait SampleBorrow<Borrowed> {
/// Immutably borrows from an owned value. See [`Borrow::borrow`]
///
- /// [`Borrow::borrow`]: https://doc.rust-lang.org/std/borrow/trait.Borrow.html#tymethod.borrow
+ /// [`Borrow::borrow`]: std::borrow::Borrow::borrow
fn borrow(&self) -> &Borrowed;
}
impl<Borrowed> SampleBorrow<Borrowed> for Borrowed where Borrowed: SampleUniform {
@@ -316,48 +305,42 @@ impl<'a, Borrowed> SampleBorrow<Borrowed> for &'a Borrowed where Borrowed: Sampl
///
/// # Implementation notes
///
+/// For simplicity, we use the same generic struct `UniformInt<X>` for all
+/// integer types `X`. This gives us only one field type, `X`; to store unsigned
+/// values of this size, we take use the fact that these conversions are no-ops.
+///
/// For a closed range, the number of possible numbers we should generate is
-/// `range = (high - low + 1)`. It is not possible to end up with a uniform
-/// distribution if we map *all* the random integers that can be generated to
-/// this range. We have to map integers from a `zone` that is a multiple of the
-/// range. The rest of the integers, that cause a bias, are rejected.
+/// `range = (high - low + 1)`. To avoid bias, we must ensure that the size of
+/// our sample space, `zone`, is a multiple of `range`; other values must be
+/// rejected (by replacing with a new random sample).
///
-/// The problem with `range` is that to cover the full range of the type, it has
-/// to store `unsigned_max + 1`, which can't be represented. But if the range
-/// covers the full range of the type, no modulus is needed. A range of size 0
-/// can't exist, so we use that to represent this special case. Wrapping
-/// arithmetic even makes representing `unsigned_max + 1` as 0 simple.
+/// As a special case, we use `range = 0` to represent the full range of the
+/// result type (i.e. for `new_inclusive($ty::MIN, $ty::MAX)`).
///
-/// We don't calculate `zone` directly, but first calculate the number of
-/// integers to reject. To handle `unsigned_max + 1` not fitting in the type,
-/// we use:
-/// `ints_to_reject = (unsigned_max + 1) % range;`
-/// `ints_to_reject = (unsigned_max - range + 1) % range;`
+/// The optimum `zone` is the largest product of `range` which fits in our
+/// (unsigned) target type. We calculate this by calculating how many numbers we
+/// must reject: `reject = (MAX + 1) % range = (MAX - range + 1) % range`. Any (large)
+/// product of `range` will suffice, thus in `sample_single` we multiply by a
+/// power of 2 via bit-shifting (faster but may cause more rejections).
///
-/// The smallest integer PRNGs generate is `u32`. That is why for small integer
-/// sizes (`i8`/`u8` and `i16`/`u16`) there is an optimization: don't pick the
-/// largest zone that can fit in the small type, but pick the largest zone that
-/// can fit in an `u32`. `ints_to_reject` is always less than half the size of
-/// the small integer. This means the first bit of `zone` is always 1, and so
-/// are all the other preceding bits of a larger integer. The easiest way to
-/// grow the `zone` for the larger type is to simply sign extend it.
+/// The smallest integer PRNGs generate is `u32`. For 8- and 16-bit outputs we
+/// use `u32` for our `zone` and samples (because it's not slower and because
+/// it reduces the chance of having to reject a sample). In this case we cannot
+/// store `zone` in the target type since it is too large, however we know
+/// `ints_to_reject < range <= $unsigned::MAX`.
///
/// An alternative to using a modulus is widening multiply: After a widening
/// multiply by `range`, the result is in the high word. Then comparing the low
/// word against `zone` makes sure our distribution is uniform.
-///
-/// [`UniformSampler`]: trait.UniformSampler.html
-/// [`Uniform`]: struct.Uniform.html
#[derive(Clone, Copy, Debug)]
pub struct UniformInt<X> {
low: X,
range: X,
- zone: X,
+ z: X, // either ints_to_reject or zone depending on implementation
}
macro_rules! uniform_int_impl {
- ($ty:ty, $signed:ty, $unsigned:ident,
- $i_large:ident, $u_large:ident) => {
+ ($ty:ty, $unsigned:ident, $u_large:ident) => {
impl SampleUniform for $ty {
type Sampler = UniformInt<$ty>;
}
@@ -392,34 +375,30 @@ macro_rules! uniform_int_impl {
let high = *high_b.borrow();
assert!(low <= high,
"Uniform::new_inclusive called with `low > high`");
- let unsigned_max = ::core::$unsigned::MAX;
+ let unsigned_max = ::core::$u_large::MAX;
let range = high.wrapping_sub(low).wrapping_add(1) as $unsigned;
let ints_to_reject =
if range > 0 {
+ let range = $u_large::from(range);
(unsigned_max - range + 1) % range
} else {
0
};
- let zone = unsigned_max - ints_to_reject;
UniformInt {
low: low,
// These are really $unsigned values, but store as $ty:
range: range as $ty,
- zone: zone as $ty
+ z: ints_to_reject as $unsigned as $ty
}
}
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
let range = self.range as $unsigned as $u_large;
if range > 0 {
- // Grow `zone` to fit a type of at least 32 bits, by
- // sign-extending it (the first bit is always 1, so are all
- // the preceding bits of the larger type).
- // For types that already have the right size, all the
- // casting is a no-op.
- let zone = self.zone as $signed as $i_large as $u_large;
+ let unsigned_max = ::core::$u_large::MAX;
+ let zone = unsigned_max - (self.z as $unsigned as $u_large);
loop {
let v: $u_large = rng.gen();
let (hi, lo) = v.wmul(range);
@@ -441,7 +420,7 @@ macro_rules! uniform_int_impl {
let low = *low_b.borrow();
let high = *high_b.borrow();
assert!(low < high,
- "Uniform::sample_single called with low >= high");
+ "UniformSampler::sample_single: low >= high");
let range = high.wrapping_sub(low) as $unsigned as $u_large;
let zone =
if ::core::$unsigned::MAX <= ::core::u16::MAX as $unsigned {
@@ -469,20 +448,20 @@ macro_rules! uniform_int_impl {
}
}
-uniform_int_impl! { i8, i8, u8, i32, u32 }
-uniform_int_impl! { i16, i16, u16, i32, u32 }
-uniform_int_impl! { i32, i32, u32, i32, u32 }
-uniform_int_impl! { i64, i64, u64, i64, u64 }
-#[cfg(all(rustc_1_26, not(target_os = "emscripten")))]
-uniform_int_impl! { i128, i128, u128, u128, u128 }
-uniform_int_impl! { isize, isize, usize, isize, usize }
-uniform_int_impl! { u8, i8, u8, i32, u32 }
-uniform_int_impl! { u16, i16, u16, i32, u32 }
-uniform_int_impl! { u32, i32, u32, i32, u32 }
-uniform_int_impl! { u64, i64, u64, i64, u64 }
-uniform_int_impl! { usize, isize, usize, isize, usize }
-#[cfg(all(rustc_1_26, not(target_os = "emscripten")))]
-uniform_int_impl! { u128, u128, u128, i128, u128 }
+uniform_int_impl! { i8, u8, u32 }
+uniform_int_impl! { i16, u16, u32 }
+uniform_int_impl! { i32, u32, u32 }
+uniform_int_impl! { i64, u64, u64 }
+#[cfg(not(target_os = "emscripten"))]
+uniform_int_impl! { i128, u128, u128 }
+uniform_int_impl! { isize, usize, usize }
+uniform_int_impl! { u8, u8, u32 }
+uniform_int_impl! { u16, u16, u32 }
+uniform_int_impl! { u32, u32, u32 }
+uniform_int_impl! { u64, u64, u64 }
+uniform_int_impl! { usize, usize, usize }
+#[cfg(not(target_os = "emscripten"))]
+uniform_int_impl! { u128, u128, u128 }
#[cfg(all(feature = "simd_support", feature = "nightly"))]
macro_rules! uniform_simd_int_impl {
@@ -544,13 +523,13 @@ macro_rules! uniform_simd_int_impl {
low: low,
// These are really $unsigned values, but store as $ty:
range: range.cast(),
- zone: zone.cast(),
+ z: zone.cast(),
}
}
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
let range: $unsigned = self.range.cast();
- let zone: $unsigned = self.zone.cast();
+ let zone: $unsigned = self.z.cast();
// This might seem very slow, generating a whole new
// SIMD vector for every sample rejection. For most uses
@@ -646,11 +625,9 @@ uniform_simd_int_impl! {
/// multiply and addition. Values produced this way have what equals 22 bits of
/// random digits for an `f32`, and 52 for an `f64`.
///
-/// [`UniformSampler`]: trait.UniformSampler.html
-/// [`new`]: trait.UniformSampler.html#tymethod.new
-/// [`new_inclusive`]: trait.UniformSampler.html#tymethod.new_inclusive
-/// [`Uniform`]: struct.Uniform.html
-/// [`Standard`]: ../struct.Standard.html
+/// [`new`]: UniformSampler::new
+/// [`new_inclusive`]: UniformSampler::new_inclusive
+/// [`Standard`]: crate::distributions::Standard
#[derive(Clone, Copy, Debug)]
pub struct UniformFloat<X> {
low: X,
@@ -748,7 +725,7 @@ macro_rules! uniform_float_impl {
let low = *low_b.borrow();
let high = *high_b.borrow();
assert!(low.all_lt(high),
- "Uniform::sample_single called with low >= high");
+ "UniformSampler::sample_single: low >= high");
let mut scale = high - low;
loop {
@@ -799,7 +776,7 @@ macro_rules! uniform_float_impl {
let mask = !scale.finite_mask();
if mask.any() {
assert!(low.all_finite() && high.all_finite(),
- "Uniform::sample_single called with non-finite boundaries");
+ "Uniform::sample_single: low and high must be finite");
scale = scale.decrease_masked(mask);
}
}
@@ -833,17 +810,12 @@ uniform_float_impl! { f64x8, u64x8, f64, u64, 64 - 52 }
///
/// Unless you are implementing [`UniformSampler`] for your own types, this type
/// should not be used directly, use [`Uniform`] instead.
-///
-/// [`UniformSampler`]: trait.UniformSampler.html
-/// [`Uniform`]: struct.Uniform.html
-#[cfg(any(feature = "std", rustc_1_25))]
#[derive(Clone, Copy, Debug)]
pub struct UniformDuration {
mode: UniformDurationMode,
offset: u32,
}
-#[cfg(any(feature = "std", rustc_1_25))]
#[derive(Debug, Copy, Clone)]
enum UniformDurationMode {
Small {
@@ -860,12 +832,10 @@ enum UniformDurationMode {
}
}
-#[cfg(any(feature = "std", rustc_1_25))]
impl SampleUniform for Duration {
type Sampler = UniformDuration;
}
-#[cfg(any(feature = "std", rustc_1_25))]
impl UniformSampler for UniformDuration {
type X = Duration;
@@ -895,8 +865,8 @@ impl UniformSampler for UniformDuration {
let mut high_n = high.subsec_nanos();
if high_n < low_n {
- high_s = high_s - 1;
- high_n = high_n + 1_000_000_000;
+ high_s -= 1;
+ high_n += 1_000_000_000;
}
let mode = if low_s == high_s {
@@ -907,10 +877,10 @@ impl UniformSampler for UniformDuration {
} else {
let max = high_s
.checked_mul(1_000_000_000)
- .and_then(|n| n.checked_add(high_n as u64));
+ .and_then(|n| n.checked_add(u64::from(high_n)));
if let Some(higher_bound) = max {
- let lower_bound = low_s * 1_000_000_000 + low_n as u64;
+ let lower_bound = low_s * 1_000_000_000 + u64::from(low_n);
UniformDurationMode::Medium {
nanos: Uniform::new_inclusive(lower_bound, higher_bound),
}
@@ -959,10 +929,10 @@ impl UniformSampler for UniformDuration {
#[cfg(test)]
mod tests {
- use Rng;
- use rngs::mock::StepRng;
- use distributions::uniform::Uniform;
- use distributions::utils::FloatAsSIMD;
+ use crate::Rng;
+ use crate::rngs::mock::StepRng;
+ use crate::distributions::uniform::Uniform;
+ use crate::distributions::utils::FloatAsSIMD;
#[cfg(feature="simd_support")] use packed_simd::*;
#[should_panic]
@@ -973,7 +943,7 @@ mod tests {
#[test]
fn test_uniform_good_limits_equal_int() {
- let mut rng = ::test::rng(804);
+ let mut rng = crate::test::rng(804);
let dist = Uniform::new_inclusive(10, 10);
for _ in 0..20 {
assert_eq!(rng.sample(dist), 10);
@@ -987,13 +957,14 @@ mod tests {
}
#[test]
+ #[cfg(not(miri))] // Miri is too slow
fn test_integers() {
use core::{i8, i16, i32, i64, isize};
use core::{u8, u16, u32, u64, usize};
- #[cfg(all(rustc_1_26, not(target_os = "emscripten")))]
+ #[cfg(not(target_os = "emscripten"))]
use core::{i128, u128};
- let mut rng = ::test::rng(251);
+ let mut rng = crate::test::rng(251);
macro_rules! t {
($ty:ident, $v:expr, $le:expr, $lt:expr) => {{
for &(low, high) in $v.iter() {
@@ -1054,7 +1025,7 @@ mod tests {
}
t!(i8, i16, i32, i64, isize,
u8, u16, u32, u64, usize);
- #[cfg(all(rustc_1_26, not(target_os = "emscripten")))]
+ #[cfg(not(target_os = "emscripten"))]
t!(i128, u128);
#[cfg(all(feature = "simd_support", feature = "nightly"))]
@@ -1071,8 +1042,9 @@ mod tests {
}
#[test]
+ #[cfg(not(miri))] // Miri is too slow
fn test_floats() {
- let mut rng = ::test::rng(252);
+ let mut rng = crate::test::rng(252);
let mut zero_rng = StepRng::new(0, 0);
let mut max_rng = StepRng::new(0xffff_ffff_ffff_ffff, 0);
macro_rules! t {
@@ -1155,11 +1127,12 @@ mod tests {
#[cfg(all(feature="std",
not(target_arch = "wasm32"),
not(target_arch = "asmjs")))]
+ #[cfg(not(miri))] // Miri does not support catching panics
fn test_float_assertions() {
use std::panic::catch_unwind;
use super::SampleUniform;
fn range<T: SampleUniform>(low: T, high: T) {
- let mut rng = ::test::rng(253);
+ let mut rng = crate::test::rng(253);
rng.gen_range(low, high);
}
@@ -1209,14 +1182,14 @@ mod tests {
#[test]
- #[cfg(any(feature = "std", rustc_1_25))]
+ #[cfg(not(miri))] // Miri is too slow
fn test_durations() {
#[cfg(feature = "std")]
use std::time::Duration;
- #[cfg(all(not(feature = "std"), rustc_1_25))]
+ #[cfg(not(feature = "std"))]
use core::time::Duration;
- let mut rng = ::test::rng(253);
+ let mut rng = crate::test::rng(253);
let v = &[(Duration::new(10, 50000), Duration::new(100, 1234)),
(Duration::new(0, 100), Duration::new(1, 50)),
@@ -1232,7 +1205,7 @@ mod tests {
#[test]
fn test_custom_uniform() {
- use distributions::uniform::{UniformSampler, UniformFloat, SampleUniform, SampleBorrow};
+ use crate::distributions::uniform::{UniformSampler, UniformFloat, SampleUniform, SampleBorrow};
#[derive(Clone, Copy, PartialEq, PartialOrd)]
struct MyF32 {
x: f32,
@@ -1267,7 +1240,7 @@ mod tests {
let (low, high) = (MyF32{ x: 17.0f32 }, MyF32{ x: 22.0f32 });
let uniform = Uniform::new(low, high);
- let mut rng = ::test::rng(804);
+ let mut rng = crate::test::rng(804);
for _ in 0..100 {
let x: MyF32 = rng.sample(uniform);
assert!(low <= x && x < high);
@@ -1284,7 +1257,6 @@ mod tests {
assert_eq!(r.inner.scale, 5.0);
}
- #[cfg(rustc_1_27)]
#[test]
fn test_uniform_from_std_range_inclusive() {
let r = Uniform::from(2u32..=6);
diff --git a/rand/src/distributions/unit_circle.rs b/rand/src/distributions/unit_circle.rs
index 01ab76a..56e75b6 100644
--- a/rand/src/distributions/unit_circle.rs
+++ b/rand/src/distributions/unit_circle.rs
@@ -6,28 +6,21 @@
// option. This file may not be copied, modified, or distributed
// except according to those terms.
-use Rng;
-use distributions::{Distribution, Uniform};
+#![allow(deprecated)]
+#![allow(clippy::all)]
+
+use crate::Rng;
+use crate::distributions::{Distribution, Uniform};
/// Samples uniformly from the edge of the unit circle in two dimensions.
///
/// Implemented via a method by von Neumann[^1].
///
-///
-/// # Example
-///
-/// ```
-/// use rand::distributions::{UnitCircle, Distribution};
-///
-/// let circle = UnitCircle::new();
-/// let v = circle.sample(&mut rand::thread_rng());
-/// println!("{:?} is from the unit circle.", v)
-/// ```
-///
/// [^1]: von Neumann, J. (1951) [*Various Techniques Used in Connection with
/// Random Digits.*](https://mcnp.lanl.gov/pdf_files/nbs_vonneumann.pdf)
/// NBS Appl. Math. Ser., No. 12. Washington, DC: U.S. Government Printing
/// Office, pp. 36-38.
+#[deprecated(since="0.7.0", note="moved to rand_distr crate")]
#[derive(Clone, Copy, Debug)]
pub struct UnitCircle;
@@ -61,7 +54,7 @@ impl Distribution<[f64; 2]> for UnitCircle {
#[cfg(test)]
mod tests {
- use distributions::Distribution;
+ use crate::distributions::Distribution;
use super::UnitCircle;
/// Assert that two numbers are almost equal to each other.
@@ -82,7 +75,7 @@ mod tests {
#[test]
fn norm() {
- let mut rng = ::test::rng(1);
+ let mut rng = crate::test::rng(1);
let dist = UnitCircle::new();
for _ in 0..1000 {
let x = dist.sample(&mut rng);
@@ -92,10 +85,17 @@ mod tests {
#[test]
fn value_stability() {
- let mut rng = ::test::rng(2);
- let dist = UnitCircle::new();
- assert_eq!(dist.sample(&mut rng), [-0.8032118336637037, 0.5956935036263119]);
- assert_eq!(dist.sample(&mut rng), [-0.4742919588505423, -0.880367615130018]);
- assert_eq!(dist.sample(&mut rng), [0.9297328981467168, 0.368234623716601]);
+ let mut rng = crate::test::rng(2);
+ let expected = [
+ [-0.9965658683520504, -0.08280380447614634],
+ [-0.9790853270389644, -0.20345004884984505],
+ [-0.8449189758898707, 0.5348943112253227],
+ ];
+ let samples = [
+ UnitCircle.sample(&mut rng),
+ UnitCircle.sample(&mut rng),
+ UnitCircle.sample(&mut rng),
+ ];
+ assert_eq!(samples, expected);
}
}
diff --git a/rand/src/distributions/unit_sphere.rs b/rand/src/distributions/unit_sphere.rs
index 37de88b..188f48c 100644
--- a/rand/src/distributions/unit_sphere.rs
+++ b/rand/src/distributions/unit_sphere.rs
@@ -6,27 +6,20 @@
// option. This file may not be copied, modified, or distributed
// except according to those terms.
-use Rng;
-use distributions::{Distribution, Uniform};
+#![allow(deprecated)]
+#![allow(clippy::all)]
+
+use crate::Rng;
+use crate::distributions::{Distribution, Uniform};
/// Samples uniformly from the surface of the unit sphere in three dimensions.
///
/// Implemented via a method by Marsaglia[^1].
///
-///
-/// # Example
-///
-/// ```
-/// use rand::distributions::{UnitSphereSurface, Distribution};
-///
-/// let sphere = UnitSphereSurface::new();
-/// let v = sphere.sample(&mut rand::thread_rng());
-/// println!("{:?} is from the unit sphere surface.", v)
-/// ```
-///
/// [^1]: Marsaglia, George (1972). [*Choosing a Point from the Surface of a
/// Sphere.*](https://doi.org/10.1214/aoms/1177692644)
/// Ann. Math. Statist. 43, no. 2, 645--646.
+#[deprecated(since="0.7.0", note="moved to rand_distr crate")]
#[derive(Clone, Copy, Debug)]
pub struct UnitSphereSurface;
@@ -56,7 +49,7 @@ impl Distribution<[f64; 3]> for UnitSphereSurface {
#[cfg(test)]
mod tests {
- use distributions::Distribution;
+ use crate::distributions::Distribution;
use super::UnitSphereSurface;
/// Assert that two numbers are almost equal to each other.
@@ -77,7 +70,7 @@ mod tests {
#[test]
fn norm() {
- let mut rng = ::test::rng(1);
+ let mut rng = crate::test::rng(1);
let dist = UnitSphereSurface::new();
for _ in 0..1000 {
let x = dist.sample(&mut rng);
@@ -87,13 +80,17 @@ mod tests {
#[test]
fn value_stability() {
- let mut rng = ::test::rng(2);
- let dist = UnitSphereSurface::new();
- assert_eq!(dist.sample(&mut rng),
- [-0.24950027180862533, -0.7552572587896719, 0.6060825747478084]);
- assert_eq!(dist.sample(&mut rng),
- [0.47604534507233487, -0.797200864987207, -0.3712837328763685]);
- assert_eq!(dist.sample(&mut rng),
- [0.9795722330927367, 0.18692349236651176, 0.07414747571708524]);
+ let mut rng = crate::test::rng(2);
+ let expected = [
+ [0.03247542860231647, -0.7830477442152738, 0.6211131755296027],
+ [-0.09978440840914075, 0.9706650829833128, -0.21875184231323952],
+ [0.2735582468624679, 0.9435374242279655, -0.1868234852870203],
+ ];
+ let samples = [
+ UnitSphereSurface.sample(&mut rng),
+ UnitSphereSurface.sample(&mut rng),
+ UnitSphereSurface.sample(&mut rng),
+ ];
+ assert_eq!(samples, expected);
}
}
diff --git a/rand/src/distributions/utils.rs b/rand/src/distributions/utils.rs
index d4d3642..3af4e86 100644
--- a/rand/src/distributions/utils.rs
+++ b/rand/src/distributions/utils.rs
@@ -11,9 +11,9 @@
#[cfg(feature="simd_support")]
use packed_simd::*;
#[cfg(feature="std")]
-use distributions::ziggurat_tables;
+use crate::distributions::ziggurat_tables;
#[cfg(feature="std")]
-use Rng;
+use crate::Rng;
pub trait WideningMultiply<RHS = Self> {
@@ -61,7 +61,7 @@ macro_rules! wmul_impl {
wmul_impl! { u8, u16, 8 }
wmul_impl! { u16, u32, 16 }
wmul_impl! { u32, u64, 32 }
-#[cfg(all(rustc_1_26, not(target_os = "emscripten")))]
+#[cfg(not(target_os = "emscripten"))]
wmul_impl! { u64, u128, 64 }
// This code is a translation of the __mulddi3 function in LLVM's
@@ -125,9 +125,9 @@ macro_rules! wmul_impl_large {
)+
};
}
-#[cfg(not(all(rustc_1_26, not(target_os = "emscripten"))))]
+#[cfg(target_os = "emscripten")]
wmul_impl_large! { u64, 32 }
-#[cfg(all(rustc_1_26, not(target_os = "emscripten")))]
+#[cfg(not(target_os = "emscripten"))]
wmul_impl_large! { u128, 64 }
macro_rules! wmul_impl_usize {
@@ -249,13 +249,9 @@ pub(crate) trait FloatSIMDUtils {
/// Implement functions available in std builds but missing from core primitives
#[cfg(not(std))]
pub(crate) trait Float : Sized {
- type Bits;
-
fn is_nan(self) -> bool;
fn is_infinite(self) -> bool;
fn is_finite(self) -> bool;
- fn to_bits(self) -> Self::Bits;
- fn from_bits(v: Self::Bits) -> Self;
}
/// Implement functions on f32/f64 to give them APIs similar to SIMD types
@@ -289,8 +285,6 @@ macro_rules! scalar_float_impl {
($ty:ident, $uty:ident) => {
#[cfg(not(std))]
impl Float for $ty {
- type Bits = $uty;
-
#[inline]
fn is_nan(self) -> bool {
self != self
@@ -305,17 +299,6 @@ macro_rules! scalar_float_impl {
fn is_finite(self) -> bool {
!(self.is_nan() || self.is_infinite())
}
-
- #[inline]
- fn to_bits(self) -> Self::Bits {
- unsafe { ::core::mem::transmute(self) }
- }
-
- #[inline]
- fn from_bits(v: Self::Bits) -> Self {
- // It turns out the safety issues with sNaN were overblown! Hooray!
- unsafe { ::core::mem::transmute(v) }
- }
}
impl FloatSIMDUtils for $ty {
@@ -383,6 +366,7 @@ macro_rules! simd_impl {
<$ty>::from_bits(<$uty>::from_bits(self) + <$uty>::from_bits(mask))
}
type UInt = $uty;
+ #[inline]
fn cast_from_int(i: Self::UInt) -> Self { i.cast() }
}
}
@@ -464,7 +448,7 @@ pub fn ziggurat<R: Rng + ?Sized, P, Z>(
mut pdf: P,
mut zero_case: Z)
-> f64 where P: FnMut(f64) -> f64, Z: FnMut(&mut R, f64) -> f64 {
- use distributions::float::IntoFloat;
+ use crate::distributions::float::IntoFloat;
loop {
// As an optimisation we re-implement the conversion to a f64.
// From the remaining 12 most significant bits we use 8 to construct `i`.
diff --git a/rand/src/distributions/weibull.rs b/rand/src/distributions/weibull.rs
index 5fbe10a..483714f 100644
--- a/rand/src/distributions/weibull.rs
+++ b/rand/src/distributions/weibull.rs
@@ -7,20 +7,13 @@
// except according to those terms.
//! The Weibull distribution.
+#![allow(deprecated)]
-use Rng;
-use distributions::{Distribution, OpenClosed01};
+use crate::Rng;
+use crate::distributions::{Distribution, OpenClosed01};
/// Samples floating-point numbers according to the Weibull distribution
-///
-/// # Example
-/// ```
-/// use rand::prelude::*;
-/// use rand::distributions::Weibull;
-///
-/// let val: f64 = SmallRng::from_entropy().sample(Weibull::new(1., 10.));
-/// println!("{}", val);
-/// ```
+#[deprecated(since="0.7.0", note="moved to rand_distr crate")]
#[derive(Clone, Copy, Debug)]
pub struct Weibull {
inv_shape: f64,
@@ -48,7 +41,7 @@ impl Distribution<f64> for Weibull {
#[cfg(test)]
mod tests {
- use distributions::Distribution;
+ use crate::distributions::Distribution;
use super::Weibull;
#[test]
@@ -62,7 +55,7 @@ mod tests {
let scale = 1.0;
let shape = 2.0;
let d = Weibull::new(scale, shape);
- let mut rng = ::test::rng(1);
+ let mut rng = crate::test::rng(1);
for _ in 0..1000 {
let r = d.sample(&mut rng);
assert!(r >= 0.);
diff --git a/rand/src/distributions/weighted/alias_method.rs b/rand/src/distributions/weighted/alias_method.rs
new file mode 100644
index 0000000..bdd4ba0
--- /dev/null
+++ b/rand/src/distributions/weighted/alias_method.rs
@@ -0,0 +1,499 @@
+//! This module contains an implementation of alias method for sampling random
+//! indices with probabilities proportional to a collection of weights.
+
+use super::WeightedError;
+#[cfg(not(feature = "std"))]
+use crate::alloc::vec::Vec;
+#[cfg(not(feature = "std"))]
+use crate::alloc::vec;
+use core::fmt;
+use core::iter::Sum;
+use core::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Sub, SubAssign};
+use crate::distributions::uniform::SampleUniform;
+use crate::distributions::Distribution;
+use crate::distributions::Uniform;
+use crate::Rng;
+
+/// A distribution using weighted sampling to pick a discretely selected item.
+///
+/// Sampling a [`WeightedIndex<W>`] distribution returns the index of a randomly
+/// selected element from the vector used to create the [`WeightedIndex<W>`].
+/// The chance of a given element being picked is proportional to the value of
+/// the element. The weights can have any type `W` for which a implementation of
+/// [`Weight`] exists.
+///
+/// # Performance
+///
+/// Given that `n` is the number of items in the vector used to create an
+/// [`WeightedIndex<W>`], [`WeightedIndex<W>`] will require `O(n)` amount of
+/// memory. More specifically it takes up some constant amount of memory plus
+/// the vector used to create it and a [`Vec<u32>`] with capacity `n`.
+///
+/// Time complexity for the creation of a [`WeightedIndex<W>`] is `O(n)`.
+/// Sampling is `O(1)`, it makes a call to [`Uniform<u32>::sample`] and a call
+/// to [`Uniform<W>::sample`].
+///
+/// # Example
+///
+/// ```
+/// use rand::distributions::weighted::alias_method::WeightedIndex;
+/// use rand::prelude::*;
+///
+/// let choices = vec!['a', 'b', 'c'];
+/// let weights = vec![2, 1, 1];
+/// let dist = WeightedIndex::new(weights).unwrap();
+/// let mut rng = thread_rng();
+/// for _ in 0..100 {
+/// // 50% chance to print 'a', 25% chance to print 'b', 25% chance to print 'c'
+/// println!("{}", choices[dist.sample(&mut rng)]);
+/// }
+///
+/// let items = [('a', 0), ('b', 3), ('c', 7)];
+/// let dist2 = WeightedIndex::new(items.iter().map(|item| item.1).collect()).unwrap();
+/// for _ in 0..100 {
+/// // 0% chance to print 'a', 30% chance to print 'b', 70% chance to print 'c'
+/// println!("{}", items[dist2.sample(&mut rng)].0);
+/// }
+/// ```
+///
+/// [`WeightedIndex<W>`]: crate::distributions::weighted::alias_method::WeightedIndex
+/// [`Weight`]: crate::distributions::weighted::alias_method::Weight
+/// [`Vec<u32>`]: Vec
+/// [`Uniform<u32>::sample`]: Distribution::sample
+/// [`Uniform<W>::sample`]: Distribution::sample
+pub struct WeightedIndex<W: Weight> {
+ aliases: Vec<u32>,
+ no_alias_odds: Vec<W>,
+ uniform_index: Uniform<u32>,
+ uniform_within_weight_sum: Uniform<W>,
+}
+
+impl<W: Weight> WeightedIndex<W> {
+ /// Creates a new [`WeightedIndex`].
+ ///
+ /// Returns an error if:
+ /// - The vector is empty.
+ /// - The vector is longer than `u32::MAX`.
+ /// - For any weight `w`: `w < 0` or `w > max` where `max = W::MAX /
+ /// weights.len()`.
+ /// - The sum of weights is zero.
+ pub fn new(weights: Vec<W>) -> Result<Self, WeightedError> {
+ let n = weights.len();
+ if n == 0 {
+ return Err(WeightedError::NoItem);
+ } else if n > ::core::u32::MAX as usize {
+ return Err(WeightedError::TooMany);
+ }
+ let n = n as u32;
+
+ let max_weight_size = W::try_from_u32_lossy(n)
+ .map(|n| W::MAX / n)
+ .unwrap_or(W::ZERO);
+ if !weights
+ .iter()
+ .all(|&w| W::ZERO <= w && w <= max_weight_size)
+ {
+ return Err(WeightedError::InvalidWeight);
+ }
+
+ // The sum of weights will represent 100% of no alias odds.
+ let weight_sum = Weight::sum(weights.as_slice());
+ // Prevent floating point overflow due to rounding errors.
+ let weight_sum = if weight_sum > W::MAX {
+ W::MAX
+ } else {
+ weight_sum
+ };
+ if weight_sum == W::ZERO {
+ return Err(WeightedError::AllWeightsZero);
+ }
+
+ // `weight_sum` would have been zero if `try_from_lossy` causes an error here.
+ let n_converted = W::try_from_u32_lossy(n).unwrap();
+
+ let mut no_alias_odds = weights;
+ for odds in no_alias_odds.iter_mut() {
+ *odds *= n_converted;
+ // Prevent floating point overflow due to rounding errors.
+ *odds = if *odds > W::MAX { W::MAX } else { *odds };
+ }
+
+ /// This struct is designed to contain three data structures at once,
+ /// sharing the same memory. More precisely it contains two linked lists
+ /// and an alias map, which will be the output of this method. To keep
+ /// the three data structures from getting in each other's way, it must
+ /// be ensured that a single index is only ever in one of them at the
+ /// same time.
+ struct Aliases {
+ aliases: Vec<u32>,
+ smalls_head: u32,
+ bigs_head: u32,
+ }
+
+ impl Aliases {
+ fn new(size: u32) -> Self {
+ Aliases {
+ aliases: vec![0; size as usize],
+ smalls_head: ::core::u32::MAX,
+ bigs_head: ::core::u32::MAX,
+ }
+ }
+
+ fn push_small(&mut self, idx: u32) {
+ self.aliases[idx as usize] = self.smalls_head;
+ self.smalls_head = idx;
+ }
+
+ fn push_big(&mut self, idx: u32) {
+ self.aliases[idx as usize] = self.bigs_head;
+ self.bigs_head = idx;
+ }
+
+ fn pop_small(&mut self) -> u32 {
+ let popped = self.smalls_head;
+ self.smalls_head = self.aliases[popped as usize];
+ popped
+ }
+
+ fn pop_big(&mut self) -> u32 {
+ let popped = self.bigs_head;
+ self.bigs_head = self.aliases[popped as usize];
+ popped
+ }
+
+ fn smalls_is_empty(&self) -> bool {
+ self.smalls_head == ::core::u32::MAX
+ }
+
+ fn bigs_is_empty(&self) -> bool {
+ self.bigs_head == ::core::u32::MAX
+ }
+
+ fn set_alias(&mut self, idx: u32, alias: u32) {
+ self.aliases[idx as usize] = alias;
+ }
+ }
+
+ let mut aliases = Aliases::new(n);
+
+ // Split indices into those with small weights and those with big weights.
+ for (index, &odds) in no_alias_odds.iter().enumerate() {
+ if odds < weight_sum {
+ aliases.push_small(index as u32);
+ } else {
+ aliases.push_big(index as u32);
+ }
+ }
+
+ // Build the alias map by finding an alias with big weight for each index with
+ // small weight.
+ while !aliases.smalls_is_empty() && !aliases.bigs_is_empty() {
+ let s = aliases.pop_small();
+ let b = aliases.pop_big();
+
+ aliases.set_alias(s, b);
+ no_alias_odds[b as usize] = no_alias_odds[b as usize]
+ - weight_sum
+ + no_alias_odds[s as usize];
+
+ if no_alias_odds[b as usize] < weight_sum {
+ aliases.push_small(b);
+ } else {
+ aliases.push_big(b);
+ }
+ }
+
+ // The remaining indices should have no alias odds of about 100%. This is due to
+ // numeric accuracy. Otherwise they would be exactly 100%.
+ while !aliases.smalls_is_empty() {
+ no_alias_odds[aliases.pop_small() as usize] = weight_sum;
+ }
+ while !aliases.bigs_is_empty() {
+ no_alias_odds[aliases.pop_big() as usize] = weight_sum;
+ }
+
+ // Prepare distributions for sampling. Creating them beforehand improves
+ // sampling performance.
+ let uniform_index = Uniform::new(0, n);
+ let uniform_within_weight_sum = Uniform::new(W::ZERO, weight_sum);
+
+ Ok(Self {
+ aliases: aliases.aliases,
+ no_alias_odds,
+ uniform_index,
+ uniform_within_weight_sum,
+ })
+ }
+}
+
+impl<W: Weight> Distribution<usize> for WeightedIndex<W> {
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> usize {
+ let candidate = rng.sample(self.uniform_index);
+ if rng.sample(&self.uniform_within_weight_sum) < self.no_alias_odds[candidate as usize] {
+ candidate as usize
+ } else {
+ self.aliases[candidate as usize] as usize
+ }
+ }
+}
+
+impl<W: Weight> fmt::Debug for WeightedIndex<W>
+where
+ W: fmt::Debug,
+ Uniform<W>: fmt::Debug,
+{
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ f.debug_struct("WeightedIndex")
+ .field("aliases", &self.aliases)
+ .field("no_alias_odds", &self.no_alias_odds)
+ .field("uniform_index", &self.uniform_index)
+ .field("uniform_within_weight_sum", &self.uniform_within_weight_sum)
+ .finish()
+ }
+}
+
+impl<W: Weight> Clone for WeightedIndex<W>
+where
+ Uniform<W>: Clone,
+{
+ fn clone(&self) -> Self {
+ Self {
+ aliases: self.aliases.clone(),
+ no_alias_odds: self.no_alias_odds.clone(),
+ uniform_index: self.uniform_index.clone(),
+ uniform_within_weight_sum: self.uniform_within_weight_sum.clone(),
+ }
+ }
+}
+
+/// Trait that must be implemented for weights, that are used with
+/// [`WeightedIndex`]. Currently no guarantees on the correctness of
+/// [`WeightedIndex`] are given for custom implementations of this trait.
+pub trait Weight:
+ Sized
+ + Copy
+ + SampleUniform
+ + PartialOrd
+ + Add<Output = Self>
+ + AddAssign
+ + Sub<Output = Self>
+ + SubAssign
+ + Mul<Output = Self>
+ + MulAssign
+ + Div<Output = Self>
+ + DivAssign
+ + Sum
+{
+ /// Maximum number representable by `Self`.
+ const MAX: Self;
+
+ /// Element of `Self` equivalent to 0.
+ const ZERO: Self;
+
+ /// Produce an instance of `Self` from a `u32` value, or return `None` if
+ /// out of range. Loss of precision (where `Self` is a floating point type)
+ /// is acceptable.
+ fn try_from_u32_lossy(n: u32) -> Option<Self>;
+
+ /// Sums all values in slice `values`.
+ fn sum(values: &[Self]) -> Self {
+ values.iter().map(|x| *x).sum()
+ }
+}
+
+macro_rules! impl_weight_for_float {
+ ($T: ident) => {
+ impl Weight for $T {
+ const MAX: Self = ::core::$T::MAX;
+ const ZERO: Self = 0.0;
+
+ fn try_from_u32_lossy(n: u32) -> Option<Self> {
+ Some(n as $T)
+ }
+
+ fn sum(values: &[Self]) -> Self {
+ pairwise_sum(values)
+ }
+ }
+ };
+}
+
+/// In comparison to naive accumulation, the pairwise sum algorithm reduces
+/// rounding errors when there are many floating point values.
+fn pairwise_sum<T: Weight>(values: &[T]) -> T {
+ if values.len() <= 32 {
+ values.iter().map(|x| *x).sum()
+ } else {
+ let mid = values.len() / 2;
+ let (a, b) = values.split_at(mid);
+ pairwise_sum(a) + pairwise_sum(b)
+ }
+}
+
+macro_rules! impl_weight_for_int {
+ ($T: ident) => {
+ impl Weight for $T {
+ const MAX: Self = ::core::$T::MAX;
+ const ZERO: Self = 0;
+
+ fn try_from_u32_lossy(n: u32) -> Option<Self> {
+ let n_converted = n as Self;
+ if n_converted >= Self::ZERO && n_converted as u32 == n {
+ Some(n_converted)
+ } else {
+ None
+ }
+ }
+ }
+ };
+}
+
+impl_weight_for_float!(f64);
+impl_weight_for_float!(f32);
+impl_weight_for_int!(usize);
+#[cfg(not(target_os = "emscripten"))]
+impl_weight_for_int!(u128);
+impl_weight_for_int!(u64);
+impl_weight_for_int!(u32);
+impl_weight_for_int!(u16);
+impl_weight_for_int!(u8);
+impl_weight_for_int!(isize);
+#[cfg(not(target_os = "emscripten"))]
+impl_weight_for_int!(i128);
+impl_weight_for_int!(i64);
+impl_weight_for_int!(i32);
+impl_weight_for_int!(i16);
+impl_weight_for_int!(i8);
+
+#[cfg(test)]
+mod test {
+ use super::*;
+
+ #[test]
+ #[cfg(not(miri))] // Miri is too slow
+ fn test_weighted_index_f32() {
+ test_weighted_index(f32::into);
+
+ // Floating point special cases
+ assert_eq!(
+ WeightedIndex::new(vec![::core::f32::INFINITY]).unwrap_err(),
+ WeightedError::InvalidWeight
+ );
+ assert_eq!(
+ WeightedIndex::new(vec![-0_f32]).unwrap_err(),
+ WeightedError::AllWeightsZero
+ );
+ assert_eq!(
+ WeightedIndex::new(vec![-1_f32]).unwrap_err(),
+ WeightedError::InvalidWeight
+ );
+ assert_eq!(
+ WeightedIndex::new(vec![-::core::f32::INFINITY]).unwrap_err(),
+ WeightedError::InvalidWeight
+ );
+ assert_eq!(
+ WeightedIndex::new(vec![::core::f32::NAN]).unwrap_err(),
+ WeightedError::InvalidWeight
+ );
+ }
+
+ #[cfg(not(target_os = "emscripten"))]
+ #[test]
+ #[cfg(not(miri))] // Miri is too slow
+ fn test_weighted_index_u128() {
+ test_weighted_index(|x: u128| x as f64);
+ }
+
+ #[cfg(all(rustc_1_26, not(target_os = "emscripten")))]
+ #[test]
+ #[cfg(not(miri))] // Miri is too slow
+ fn test_weighted_index_i128() {
+ test_weighted_index(|x: i128| x as f64);
+
+ // Signed integer special cases
+ assert_eq!(
+ WeightedIndex::new(vec![-1_i128]).unwrap_err(),
+ WeightedError::InvalidWeight
+ );
+ assert_eq!(
+ WeightedIndex::new(vec![::core::i128::MIN]).unwrap_err(),
+ WeightedError::InvalidWeight
+ );
+ }
+
+ #[test]
+ #[cfg(not(miri))] // Miri is too slow
+ fn test_weighted_index_u8() {
+ test_weighted_index(u8::into);
+ }
+
+ #[test]
+ #[cfg(not(miri))] // Miri is too slow
+ fn test_weighted_index_i8() {
+ test_weighted_index(i8::into);
+
+ // Signed integer special cases
+ assert_eq!(
+ WeightedIndex::new(vec![-1_i8]).unwrap_err(),
+ WeightedError::InvalidWeight
+ );
+ assert_eq!(
+ WeightedIndex::new(vec![::core::i8::MIN]).unwrap_err(),
+ WeightedError::InvalidWeight
+ );
+ }
+
+ fn test_weighted_index<W: Weight, F: Fn(W) -> f64>(w_to_f64: F)
+ where
+ WeightedIndex<W>: fmt::Debug,
+ {
+ const NUM_WEIGHTS: u32 = 10;
+ const ZERO_WEIGHT_INDEX: u32 = 3;
+ const NUM_SAMPLES: u32 = 15000;
+ let mut rng = crate::test::rng(0x9c9fa0b0580a7031);
+
+ let weights = {
+ let mut weights = Vec::with_capacity(NUM_WEIGHTS as usize);
+ let random_weight_distribution = crate::distributions::Uniform::new_inclusive(
+ W::ZERO,
+ W::MAX / W::try_from_u32_lossy(NUM_WEIGHTS).unwrap(),
+ );
+ for _ in 0..NUM_WEIGHTS {
+ weights.push(rng.sample(&random_weight_distribution));
+ }
+ weights[ZERO_WEIGHT_INDEX as usize] = W::ZERO;
+ weights
+ };
+ let weight_sum = weights.iter().map(|w| *w).sum::<W>();
+ let expected_counts = weights
+ .iter()
+ .map(|&w| w_to_f64(w) / w_to_f64(weight_sum) * NUM_SAMPLES as f64)
+ .collect::<Vec<f64>>();
+ let weight_distribution = WeightedIndex::new(weights).unwrap();
+
+ let mut counts = vec![0; NUM_WEIGHTS as usize];
+ for _ in 0..NUM_SAMPLES {
+ counts[rng.sample(&weight_distribution)] += 1;
+ }
+
+ assert_eq!(counts[ZERO_WEIGHT_INDEX as usize], 0);
+ for (count, expected_count) in counts.into_iter().zip(expected_counts) {
+ let difference = (count as f64 - expected_count).abs();
+ let max_allowed_difference = NUM_SAMPLES as f64 / NUM_WEIGHTS as f64 * 0.1;
+ assert!(difference <= max_allowed_difference);
+ }
+
+ assert_eq!(
+ WeightedIndex::<W>::new(vec![]).unwrap_err(),
+ WeightedError::NoItem
+ );
+ assert_eq!(
+ WeightedIndex::new(vec![W::ZERO]).unwrap_err(),
+ WeightedError::AllWeightsZero
+ );
+ assert_eq!(
+ WeightedIndex::new(vec![W::MAX, W::MAX]).unwrap_err(),
+ WeightedError::InvalidWeight
+ );
+ }
+}
diff --git a/rand/src/distributions/weighted.rs b/rand/src/distributions/weighted/mod.rs
index 01c8fe6..2711637 100644
--- a/rand/src/distributions/weighted.rs
+++ b/rand/src/distributions/weighted/mod.rs
@@ -6,14 +6,26 @@
// option. This file may not be copied, modified, or distributed
// except according to those terms.
-use Rng;
-use distributions::Distribution;
-use distributions::uniform::{UniformSampler, SampleUniform, SampleBorrow};
-use ::core::cmp::PartialOrd;
+//! Weighted index sampling
+//!
+//! This module provides two implementations for sampling indices:
+//!
+//! * [`WeightedIndex`] allows `O(log N)` sampling
+//! * [`alias_method::WeightedIndex`] allows `O(1)` sampling, but with
+//! much greater set-up cost
+//!
+//! [`alias_method::WeightedIndex`]: alias_method/struct.WeightedIndex.html
+
+pub mod alias_method;
+
+use crate::Rng;
+use crate::distributions::Distribution;
+use crate::distributions::uniform::{UniformSampler, SampleUniform, SampleBorrow};
+use core::cmp::PartialOrd;
use core::fmt;
// Note that this whole module is only imported if feature="alloc" is enabled.
-#[cfg(not(feature="std"))] use alloc::vec::Vec;
+#[cfg(not(feature="std"))] use crate::alloc::vec::Vec;
/// A distribution using weighted sampling to pick a discretely selected
/// item.
@@ -40,9 +52,9 @@ use core::fmt;
/// `N` is the number of weights.
///
/// Sampling from `WeightedIndex` will result in a single call to
-/// [`Uniform<X>::sample`], which typically will request a single value from
-/// the underlying [`RngCore`], though the exact number depends on the
-/// implementaiton of [`Uniform<X>::sample`].
+/// `Uniform<X>::sample` (method of the [`Distribution`] trait), which typically
+/// will request a single value from the underlying [`RngCore`], though the
+/// exact number depends on the implementaiton of `Uniform<X>::sample`.
///
/// # Example
///
@@ -67,12 +79,12 @@ use core::fmt;
/// }
/// ```
///
-/// [`Uniform<X>`]: struct.Uniform.html
-/// [`Uniform<X>::sample`]: struct.Uniform.html#method.sample
-/// [`RngCore`]: ../trait.RngCore.html
+/// [`Uniform<X>`]: crate::distributions::uniform::Uniform
+/// [`RngCore`]: crate::RngCore
#[derive(Debug, Clone)]
pub struct WeightedIndex<X: SampleUniform + PartialOrd> {
cumulative_weights: Vec<X>,
+ total_weight: X,
weight_distribution: X::Sampler,
}
@@ -84,8 +96,7 @@ impl<X: SampleUniform + PartialOrd> WeightedIndex<X> {
/// Returns an error if the iterator is empty, if any weight is `< 0`, or
/// if its total value is 0.
///
- /// [`Distribution`]: trait.Distribution.html
- /// [`Uniform<X>`]: struct.Uniform.html
+ /// [`Uniform<X>`]: crate::distributions::uniform::Uniform
pub fn new<I>(weights: I) -> Result<WeightedIndex<X>, WeightedError>
where I: IntoIterator,
I::Item: SampleBorrow<X>,
@@ -100,13 +111,13 @@ impl<X: SampleUniform + PartialOrd> WeightedIndex<X> {
let zero = <X as Default>::default();
if total_weight < zero {
- return Err(WeightedError::NegativeWeight);
+ return Err(WeightedError::InvalidWeight);
}
let mut weights = Vec::<X>::with_capacity(iter.size_hint().0);
for w in iter {
if *w.borrow() < zero {
- return Err(WeightedError::NegativeWeight);
+ return Err(WeightedError::InvalidWeight);
}
weights.push(total_weight.clone());
total_weight += w.borrow();
@@ -115,9 +126,98 @@ impl<X: SampleUniform + PartialOrd> WeightedIndex<X> {
if total_weight == zero {
return Err(WeightedError::AllWeightsZero);
}
- let distr = X::Sampler::new(zero, total_weight);
+ let distr = X::Sampler::new(zero, total_weight.clone());
- Ok(WeightedIndex { cumulative_weights: weights, weight_distribution: distr })
+ Ok(WeightedIndex { cumulative_weights: weights, total_weight, weight_distribution: distr })
+ }
+
+ /// Update a subset of weights, without changing the number of weights.
+ ///
+ /// `new_weights` must be sorted by the index.
+ ///
+ /// Using this method instead of `new` might be more efficient if only a small number of
+ /// weights is modified. No allocations are performed, unless the weight type `X` uses
+ /// allocation internally.
+ ///
+ /// In case of error, `self` is not modified.
+ pub fn update_weights(&mut self, new_weights: &[(usize, &X)]) -> Result<(), WeightedError>
+ where X: for<'a> ::core::ops::AddAssign<&'a X> +
+ for<'a> ::core::ops::SubAssign<&'a X> +
+ Clone +
+ Default {
+ if new_weights.is_empty() {
+ return Ok(());
+ }
+
+ let zero = <X as Default>::default();
+
+ let mut total_weight = self.total_weight.clone();
+
+ // Check for errors first, so we don't modify `self` in case something
+ // goes wrong.
+ let mut prev_i = None;
+ for &(i, w) in new_weights {
+ if let Some(old_i) = prev_i {
+ if old_i >= i {
+ return Err(WeightedError::InvalidWeight);
+ }
+ }
+ if *w < zero {
+ return Err(WeightedError::InvalidWeight);
+ }
+ if i >= self.cumulative_weights.len() + 1 {
+ return Err(WeightedError::TooMany);
+ }
+
+ let mut old_w = if i < self.cumulative_weights.len() {
+ self.cumulative_weights[i].clone()
+ } else {
+ self.total_weight.clone()
+ };
+ if i > 0 {
+ old_w -= &self.cumulative_weights[i - 1];
+ }
+
+ total_weight -= &old_w;
+ total_weight += w;
+ prev_i = Some(i);
+ }
+ if total_weight == zero {
+ return Err(WeightedError::AllWeightsZero);
+ }
+
+ // Update the weights. Because we checked all the preconditions in the
+ // previous loop, this should never panic.
+ let mut iter = new_weights.iter();
+
+ let mut prev_weight = zero.clone();
+ let mut next_new_weight = iter.next();
+ let &(first_new_index, _) = next_new_weight.unwrap();
+ let mut cumulative_weight = if first_new_index > 0 {
+ self.cumulative_weights[first_new_index - 1].clone()
+ } else {
+ zero.clone()
+ };
+ for i in first_new_index..self.cumulative_weights.len() {
+ match next_new_weight {
+ Some(&(j, w)) if i == j => {
+ cumulative_weight += w;
+ next_new_weight = iter.next();
+ },
+ _ => {
+ let mut tmp = self.cumulative_weights[i].clone();
+ tmp -= &prev_weight; // We know this is positive.
+ cumulative_weight += &tmp;
+ }
+ }
+ prev_weight = cumulative_weight.clone();
+ core::mem::swap(&mut prev_weight, &mut self.cumulative_weights[i]);
+ }
+
+ self.total_weight = total_weight;
+ self.weight_distribution = X::Sampler::new(zero, self.total_weight.clone());
+
+ Ok(())
}
}
@@ -137,8 +237,9 @@ mod test {
use super::*;
#[test]
+ #[cfg(not(miri))] // Miri is too slow
fn test_weightedindex() {
- let mut r = ::test::rng(700);
+ let mut r = crate::test::rng(700);
const N_REPS: u32 = 5000;
let weights = [1u32, 2, 3, 0, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7];
let total_weight = weights.iter().sum::<u32>() as f32;
@@ -186,31 +287,61 @@ mod test {
assert_eq!(WeightedIndex::new(&[10][0..0]).unwrap_err(), WeightedError::NoItem);
assert_eq!(WeightedIndex::new(&[0]).unwrap_err(), WeightedError::AllWeightsZero);
- assert_eq!(WeightedIndex::new(&[10, 20, -1, 30]).unwrap_err(), WeightedError::NegativeWeight);
- assert_eq!(WeightedIndex::new(&[-10, 20, 1, 30]).unwrap_err(), WeightedError::NegativeWeight);
- assert_eq!(WeightedIndex::new(&[-10]).unwrap_err(), WeightedError::NegativeWeight);
+ assert_eq!(WeightedIndex::new(&[10, 20, -1, 30]).unwrap_err(), WeightedError::InvalidWeight);
+ assert_eq!(WeightedIndex::new(&[-10, 20, 1, 30]).unwrap_err(), WeightedError::InvalidWeight);
+ assert_eq!(WeightedIndex::new(&[-10]).unwrap_err(), WeightedError::InvalidWeight);
+ }
+
+ #[test]
+ fn test_update_weights() {
+ let data = [
+ (&[10u32, 2, 3, 4][..],
+ &[(1, &100), (2, &4)][..], // positive change
+ &[10, 100, 4, 4][..]),
+ (&[1u32, 2, 3, 0, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7][..],
+ &[(2, &1), (5, &1), (13, &100)][..], // negative change and last element
+ &[1u32, 2, 1, 0, 5, 1, 7, 1, 2, 3, 4, 5, 6, 100][..]),
+ ];
+
+ for (weights, update, expected_weights) in data.into_iter() {
+ let total_weight = weights.iter().sum::<u32>();
+ let mut distr = WeightedIndex::new(weights.to_vec()).unwrap();
+ assert_eq!(distr.total_weight, total_weight);
+
+ distr.update_weights(update).unwrap();
+ let expected_total_weight = expected_weights.iter().sum::<u32>();
+ let expected_distr = WeightedIndex::new(expected_weights.to_vec()).unwrap();
+ assert_eq!(distr.total_weight, expected_total_weight);
+ assert_eq!(distr.total_weight, expected_distr.total_weight);
+ assert_eq!(distr.cumulative_weights, expected_distr.cumulative_weights);
+ }
}
}
/// Error type returned from `WeightedIndex::new`.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum WeightedError {
- /// The provided iterator contained no items.
+ /// The provided weight collection contains no items.
NoItem,
- /// A weight lower than zero was used.
- NegativeWeight,
+ /// A weight is either less than zero, greater than the supported maximum or
+ /// otherwise invalid.
+ InvalidWeight,
- /// All items in the provided iterator had a weight of zero.
+ /// All items in the provided weight collection are zero.
AllWeightsZero,
+
+ /// Too many weights are provided (length greater than `u32::MAX`)
+ TooMany,
}
impl WeightedError {
fn msg(&self) -> &str {
match *self {
- WeightedError::NoItem => "No items found",
- WeightedError::NegativeWeight => "Item has negative weight",
- WeightedError::AllWeightsZero => "All items had weight zero",
+ WeightedError::NoItem => "No weights provided.",
+ WeightedError::InvalidWeight => "A weight is invalid.",
+ WeightedError::AllWeightsZero => "All weights are zero.",
+ WeightedError::TooMany => "Too many weights (hit u32::MAX)",
}
}
}
@@ -220,7 +351,7 @@ impl ::std::error::Error for WeightedError {
fn description(&self) -> &str {
self.msg()
}
- fn cause(&self) -> Option<&::std::error::Error> {
+ fn cause(&self) -> Option<&dyn (::std::error::Error)> {
None
}
}
diff --git a/rand/src/lib.rs b/rand/src/lib.rs
index ca231b5..b4167c3 100644
--- a/rand/src/lib.rs
+++ b/rand/src/lib.rs
@@ -17,7 +17,7 @@
//! To get you started quickly, the easiest and highest-level way to get
//! a random value is to use [`random()`]; alternatively you can use
//! [`thread_rng()`]. The [`Rng`] trait provides a useful API on all RNGs, while
-//! the [`distributions` module] and [`seq` module] provide further
+//! the [`distributions`] and [`seq`] modules provide further
//! functionality on top of RNGs.
//!
//! ```
@@ -39,12 +39,6 @@
//!
//! For the user guide and futher documentation, please read
//! [The Rust Rand Book](https://rust-random.github.io/book).
-//!
-//! [`distributions` module]: distributions/index.html
-//! [`random()`]: fn.random.html
-//! [`Rng`]: trait.Rng.html
-//! [`seq` module]: seq/index.html
-//! [`thread_rng()`]: fn.thread_rng.html
#![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk.png",
@@ -56,112 +50,64 @@
#![doc(test(attr(allow(unused_variables), deny(warnings))))]
#![cfg_attr(not(feature="std"), no_std)]
-#![cfg_attr(all(feature="alloc", not(feature="std")), feature(alloc))]
#![cfg_attr(all(feature="simd_support", feature="nightly"), feature(stdsimd))]
-#[cfg(feature = "std")] extern crate core;
-#[cfg(all(feature = "alloc", not(feature="std")))] #[macro_use] extern crate alloc;
-
-#[cfg(feature="simd_support")] extern crate packed_simd;
+#![allow(clippy::excessive_precision, clippy::unreadable_literal, clippy::float_cmp)]
-#[cfg(feature = "rand_os")]
-extern crate rand_os;
+#[cfg(all(feature="alloc", not(feature="std")))]
+extern crate alloc;
-extern crate rand_core;
-extern crate rand_isaac; // only for deprecations
-extern crate rand_chacha; // only for deprecations
-extern crate rand_hc;
-extern crate rand_pcg;
-extern crate rand_xorshift;
+#[cfg(feature = "getrandom")]
+use getrandom_package as getrandom;
-#[cfg(feature = "log")] #[macro_use] extern crate log;
#[allow(unused)]
-#[cfg(not(feature = "log"))] macro_rules! trace { ($($x:tt)*) => () }
+macro_rules! trace { ($($x:tt)*) => (
+ #[cfg(feature = "log")] {
+ log::trace!($($x)*)
+ }
+) }
#[allow(unused)]
-#[cfg(not(feature = "log"))] macro_rules! debug { ($($x:tt)*) => () }
+macro_rules! debug { ($($x:tt)*) => (
+ #[cfg(feature = "log")] {
+ log::debug!($($x)*)
+ }
+) }
#[allow(unused)]
-#[cfg(not(feature = "log"))] macro_rules! info { ($($x:tt)*) => () }
+macro_rules! info { ($($x:tt)*) => (
+ #[cfg(feature = "log")] {
+ log::info!($($x)*)
+ }
+) }
#[allow(unused)]
-#[cfg(not(feature = "log"))] macro_rules! warn { ($($x:tt)*) => () }
+macro_rules! warn { ($($x:tt)*) => (
+ #[cfg(feature = "log")] {
+ log::warn!($($x)*)
+ }
+) }
#[allow(unused)]
-#[cfg(not(feature = "log"))] macro_rules! error { ($($x:tt)*) => () }
-
+macro_rules! error { ($($x:tt)*) => (
+ #[cfg(feature = "log")] {
+ log::error!($($x)*)
+ }
+) }
// Re-exports from rand_core
-pub use rand_core::{RngCore, CryptoRng, SeedableRng};
-pub use rand_core::{ErrorKind, Error};
+pub use rand_core::{RngCore, CryptoRng, SeedableRng, Error};
// Public exports
-#[cfg(feature="std")] pub use rngs::thread::thread_rng;
+#[cfg(feature="std")] pub use crate::rngs::thread::thread_rng;
// Public modules
pub mod distributions;
pub mod prelude;
-#[deprecated(since="0.6.0")]
-pub mod prng;
pub mod rngs;
pub mod seq;
-////////////////////////////////////////////////////////////////////////////////
-// Compatibility re-exports. Documentation is hidden; will be removed eventually.
-
-#[doc(hidden)] mod deprecated;
-
-#[allow(deprecated)]
-#[doc(hidden)] pub use deprecated::ReseedingRng;
-
-#[allow(deprecated)]
-#[cfg(feature="std")] #[doc(hidden)] pub use deprecated::EntropyRng;
-
-#[allow(deprecated)]
-#[cfg(feature="rand_os")]
-#[doc(hidden)]
-pub use deprecated::OsRng;
-
-#[allow(deprecated)]
-#[doc(hidden)] pub use deprecated::{ChaChaRng, IsaacRng, Isaac64Rng, XorShiftRng};
-#[allow(deprecated)]
-#[doc(hidden)] pub use deprecated::StdRng;
-
-
-#[allow(deprecated)]
-#[doc(hidden)]
-pub mod jitter {
- pub use deprecated::JitterRng;
- pub use rngs::TimerError;
-}
-#[allow(deprecated)]
-#[cfg(feature="rand_os")]
-#[doc(hidden)]
-pub mod os {
- pub use deprecated::OsRng;
-}
-#[allow(deprecated)]
-#[doc(hidden)]
-pub mod chacha {
- pub use deprecated::ChaChaRng;
-}
-#[allow(deprecated)]
-#[doc(hidden)]
-pub mod isaac {
- pub use deprecated::{IsaacRng, Isaac64Rng};
-}
-#[allow(deprecated)]
-#[cfg(feature="std")]
-#[doc(hidden)]
-pub mod read {
- pub use deprecated::ReadRng;
-}
-
-#[allow(deprecated)]
-#[cfg(feature="std")] #[doc(hidden)] pub use deprecated::ThreadRng;
-
-////////////////////////////////////////////////////////////////////////////////
-
use core::{mem, slice};
-use distributions::{Distribution, Standard};
-use distributions::uniform::{SampleUniform, UniformSampler, SampleBorrow};
+use core::num::Wrapping;
+use crate::distributions::{Distribution, Standard};
+use crate::distributions::uniform::{SampleUniform, UniformSampler, SampleBorrow};
/// An automatically-implemented extension trait on [`RngCore`] providing high-level
/// generic methods for sampling values and other convenience methods.
@@ -200,13 +146,9 @@ use distributions::uniform::{SampleUniform, UniformSampler, SampleBorrow};
///
/// # let v = foo(&mut thread_rng());
/// ```
-///
-/// [`RngCore`]: trait.RngCore.html
pub trait Rng: RngCore {
/// Return a random value supporting the [`Standard`] distribution.
///
- /// [`Standard`]: distributions/struct.Standard.html
- ///
/// # Example
///
/// ```
@@ -217,8 +159,31 @@ pub trait Rng: RngCore {
/// println!("{}", x);
/// println!("{:?}", rng.gen::<(f64, bool)>());
/// ```
+ ///
+ /// # Arrays and tuples
+ ///
+ /// The `rng.gen()` method is able to generate arrays (up to 32 elements)
+ /// and tuples (up to 12 elements), so long as all element types can be
+ /// generated.
+ ///
+ /// For arrays of integers, especially for those with small element types
+ /// (< 64 bit), it will likely be faster to instead use [`Rng::fill`].
+ ///
+ /// ```
+ /// use rand::{thread_rng, Rng};
+ ///
+ /// let mut rng = thread_rng();
+ /// let tuple: (u8, i32, char) = rng.gen(); // arbitrary tuple support
+ ///
+ /// let arr1: [f32; 32] = rng.gen(); // array construction
+ /// let mut arr2 = [0u8; 128];
+ /// rng.fill(&mut arr2); // array fill
+ /// ```
+ ///
+ /// [`Standard`]: distributions::Standard
#[inline]
- fn gen<T>(&mut self) -> T where Standard: Distribution<T> {
+ fn gen<T>(&mut self) -> T
+ where Standard: Distribution<T> {
Standard.sample(self)
}
@@ -245,10 +210,12 @@ pub trait Rng: RngCore {
/// println!("{}", m);
/// ```
///
- /// [`Uniform`]: distributions/uniform/struct.Uniform.html
+ /// [`Uniform`]: distributions::uniform::Uniform
fn gen_range<T: SampleUniform, B1, B2>(&mut self, low: B1, high: B2) -> T
- where B1: SampleBorrow<T> + Sized,
- B2: SampleBorrow<T> + Sized {
+ where
+ B1: SampleBorrow<T> + Sized,
+ B2: SampleBorrow<T> + Sized,
+ {
T::Sampler::sample_single(low, high, self)
}
@@ -272,34 +239,39 @@ pub trait Rng: RngCore {
/// Create an iterator that generates values using the given distribution.
///
+ /// Note that this function takes its arguments by value. This works since
+ /// `(&mut R): Rng where R: Rng` and
+ /// `(&D): Distribution where D: Distribution`,
+ /// however borrowing is not automatic hence `rng.sample_iter(...)` may
+ /// need to be replaced with `(&mut rng).sample_iter(...)`.
+ ///
/// # Example
///
/// ```
/// use rand::{thread_rng, Rng};
/// use rand::distributions::{Alphanumeric, Uniform, Standard};
///
- /// let mut rng = thread_rng();
+ /// let rng = thread_rng();
///
/// // Vec of 16 x f32:
- /// let v: Vec<f32> = thread_rng().sample_iter(&Standard).take(16).collect();
+ /// let v: Vec<f32> = rng.sample_iter(Standard).take(16).collect();
///
/// // String:
- /// let s: String = rng.sample_iter(&Alphanumeric).take(7).collect();
+ /// let s: String = rng.sample_iter(Alphanumeric).take(7).collect();
///
/// // Combined values
- /// println!("{:?}", thread_rng().sample_iter(&Standard).take(5)
+ /// println!("{:?}", rng.sample_iter(Standard).take(5)
/// .collect::<Vec<(f64, bool)>>());
///
/// // Dice-rolling:
/// let die_range = Uniform::new_inclusive(1, 6);
- /// let mut roll_die = rng.sample_iter(&die_range);
+ /// let mut roll_die = rng.sample_iter(die_range);
/// while roll_die.next().unwrap() != 6 {
/// println!("Not a 6; rolling again!");
/// }
/// ```
- fn sample_iter<'a, T, D: Distribution<T>>(&'a mut self, distr: &'a D)
- -> distributions::DistIter<'a, D, Self, T> where Self: Sized
- {
+ fn sample_iter<T, D>(self, distr: D) -> distributions::DistIter<D, Self, T>
+ where D: Distribution<T>, Self: Sized {
distr.sample_iter(self)
}
@@ -323,9 +295,8 @@ pub trait Rng: RngCore {
/// thread_rng().fill(&mut arr[..]);
/// ```
///
- /// [`fill_bytes`]: trait.RngCore.html#method.fill_bytes
- /// [`try_fill`]: trait.Rng.html#method.try_fill
- /// [`AsByteSliceMut`]: trait.AsByteSliceMut.html
+ /// [`fill_bytes`]: RngCore::fill_bytes
+ /// [`try_fill`]: Rng::try_fill
fn fill<T: AsByteSliceMut + ?Sized>(&mut self, dest: &mut T) {
self.fill_bytes(dest.as_byte_slice_mut());
dest.to_le();
@@ -338,10 +309,8 @@ pub trait Rng: RngCore {
/// On big-endian platforms this performs byte-swapping to ensure
/// portability of results from reproducible generators.
///
- /// This uses [`try_fill_bytes`] internally and forwards all RNG errors. In
- /// some cases errors may be resolvable; see [`ErrorKind`] and
- /// documentation for the RNG in use. If you do not plan to handle these
- /// errors you may prefer to use [`fill`].
+ /// This is identical to [`fill`] except that it uses [`try_fill_bytes`]
+ /// internally and forwards RNG errors.
///
/// # Example
///
@@ -358,10 +327,8 @@ pub trait Rng: RngCore {
/// # try_inner().unwrap()
/// ```
///
- /// [`ErrorKind`]: enum.ErrorKind.html
- /// [`try_fill_bytes`]: trait.RngCore.html#method.try_fill_bytes
- /// [`fill`]: trait.Rng.html#method.fill
- /// [`AsByteSliceMut`]: trait.AsByteSliceMut.html
+ /// [`try_fill_bytes`]: RngCore::try_fill_bytes
+ /// [`fill`]: Rng::fill
fn try_fill<T: AsByteSliceMut + ?Sized>(&mut self, dest: &mut T) -> Result<(), Error> {
self.try_fill_bytes(dest.as_byte_slice_mut())?;
dest.to_le();
@@ -386,10 +353,10 @@ pub trait Rng: RngCore {
///
/// If `p < 0` or `p > 1`.
///
- /// [`Bernoulli`]: distributions/bernoulli/struct.Bernoulli.html
+ /// [`Bernoulli`]: distributions::bernoulli::Bernoulli
#[inline]
fn gen_bool(&mut self, p: f64) -> bool {
- let d = distributions::Bernoulli::new(p);
+ let d = distributions::Bernoulli::new(p).unwrap();
self.sample(d)
}
@@ -415,55 +382,19 @@ pub trait Rng: RngCore {
/// println!("{}", rng.gen_ratio(2, 3));
/// ```
///
- /// [`Bernoulli`]: distributions/bernoulli/struct.Bernoulli.html
+ /// [`Bernoulli`]: distributions::bernoulli::Bernoulli
#[inline]
fn gen_ratio(&mut self, numerator: u32, denominator: u32) -> bool {
- let d = distributions::Bernoulli::from_ratio(numerator, denominator);
+ let d = distributions::Bernoulli::from_ratio(numerator, denominator).unwrap();
self.sample(d)
}
-
- /// Return a random element from `values`.
- ///
- /// Deprecated: use [`SliceRandom::choose`] instead.
- ///
- /// [`SliceRandom::choose`]: seq/trait.SliceRandom.html#method.choose
- #[deprecated(since="0.6.0", note="use SliceRandom::choose instead")]
- fn choose<'a, T>(&mut self, values: &'a [T]) -> Option<&'a T> {
- use seq::SliceRandom;
- values.choose(self)
- }
-
- /// Return a mutable pointer to a random element from `values`.
- ///
- /// Deprecated: use [`SliceRandom::choose_mut`] instead.
- ///
- /// [`SliceRandom::choose_mut`]: seq/trait.SliceRandom.html#method.choose_mut
- #[deprecated(since="0.6.0", note="use SliceRandom::choose_mut instead")]
- fn choose_mut<'a, T>(&mut self, values: &'a mut [T]) -> Option<&'a mut T> {
- use seq::SliceRandom;
- values.choose_mut(self)
- }
-
- /// Shuffle a mutable slice in place.
- ///
- /// Deprecated: use [`SliceRandom::shuffle`] instead.
- ///
- /// [`SliceRandom::shuffle`]: seq/trait.SliceRandom.html#method.shuffle
- #[deprecated(since="0.6.0", note="use SliceRandom::shuffle instead")]
- fn shuffle<T>(&mut self, values: &mut [T]) {
- use seq::SliceRandom;
- values.shuffle(self)
- }
}
impl<R: RngCore + ?Sized> Rng for R {}
/// Trait for casting types to byte slices
///
-/// This is used by the [`fill`] and [`try_fill`] methods.
-///
-/// [`fill`]: trait.Rng.html#method.fill
-/// [`try_fill`]: trait.Rng.html#method.try_fill
+/// This is used by the [`Rng::fill`] and [`Rng::try_fill`] methods.
pub trait AsByteSliceMut {
/// Return a mutable reference to self as a byte slice
fn as_byte_slice_mut(&mut self) -> &mut [u8];
@@ -481,6 +412,7 @@ impl AsByteSliceMut for [u8] {
}
macro_rules! impl_as_byte_slice {
+ () => {};
($t:ty) => {
impl AsByteSliceMut for [$t] {
fn as_byte_slice_mut(&mut self) -> &mut [u8] {
@@ -491,8 +423,7 @@ macro_rules! impl_as_byte_slice {
}
} else {
unsafe {
- slice::from_raw_parts_mut(&mut self[0]
- as *mut $t
+ slice::from_raw_parts_mut(self.as_mut_ptr()
as *mut u8,
self.len() * mem::size_of::<$t>()
)
@@ -506,26 +437,47 @@ macro_rules! impl_as_byte_slice {
}
}
}
+
+ impl AsByteSliceMut for [Wrapping<$t>] {
+ fn as_byte_slice_mut(&mut self) -> &mut [u8] {
+ if self.len() == 0 {
+ unsafe {
+ // must not use null pointer
+ slice::from_raw_parts_mut(0x1 as *mut u8, 0)
+ }
+ } else {
+ unsafe {
+ slice::from_raw_parts_mut(self.as_mut_ptr()
+ as *mut u8,
+ self.len() * mem::size_of::<$t>()
+ )
+ }
+ }
+ }
+
+ fn to_le(&mut self) {
+ for x in self {
+ *x = Wrapping(x.0.to_le());
+ }
+ }
+ }
+ };
+ ($t:ty, $($tt:ty,)*) => {
+ impl_as_byte_slice!($t);
+ // TODO: this could replace above impl once Rust #32463 is fixed
+ // impl_as_byte_slice!(Wrapping<$t>);
+ impl_as_byte_slice!($($tt,)*);
}
}
-impl_as_byte_slice!(u16);
-impl_as_byte_slice!(u32);
-impl_as_byte_slice!(u64);
-#[cfg(all(rustc_1_26, not(target_os = "emscripten")))] impl_as_byte_slice!(u128);
-impl_as_byte_slice!(usize);
-impl_as_byte_slice!(i8);
-impl_as_byte_slice!(i16);
-impl_as_byte_slice!(i32);
-impl_as_byte_slice!(i64);
-#[cfg(all(rustc_1_26, not(target_os = "emscripten")))] impl_as_byte_slice!(i128);
-impl_as_byte_slice!(isize);
+impl_as_byte_slice!(u16, u32, u64, usize,);
+#[cfg(not(target_os = "emscripten"))] impl_as_byte_slice!(u128);
+impl_as_byte_slice!(i8, i16, i32, i64, isize,);
+#[cfg(not(target_os = "emscripten"))] impl_as_byte_slice!(i128);
macro_rules! impl_as_byte_slice_arrays {
($n:expr,) => {};
- ($n:expr, $N:ident, $($NN:ident,)*) => {
- impl_as_byte_slice_arrays!($n - 1, $($NN,)*);
-
+ ($n:expr, $N:ident) => {
impl<T> AsByteSliceMut for [T; $n] where [T]: AsByteSliceMut {
fn as_byte_slice_mut(&mut self) -> &mut [u8] {
self[..].as_byte_slice_mut()
@@ -536,96 +488,19 @@ macro_rules! impl_as_byte_slice_arrays {
}
}
};
+ ($n:expr, $N:ident, $($NN:ident,)*) => {
+ impl_as_byte_slice_arrays!($n, $N);
+ impl_as_byte_slice_arrays!($n - 1, $($NN,)*);
+ };
(!div $n:expr,) => {};
(!div $n:expr, $N:ident, $($NN:ident,)*) => {
+ impl_as_byte_slice_arrays!($n, $N);
impl_as_byte_slice_arrays!(!div $n / 2, $($NN,)*);
-
- impl<T> AsByteSliceMut for [T; $n] where [T]: AsByteSliceMut {
- fn as_byte_slice_mut(&mut self) -> &mut [u8] {
- self[..].as_byte_slice_mut()
- }
-
- fn to_le(&mut self) {
- self[..].to_le()
- }
- }
};
}
impl_as_byte_slice_arrays!(32, N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,);
impl_as_byte_slice_arrays!(!div 4096, N,N,N,N,N,N,N,);
-
-/// A convenience extension to [`SeedableRng`] allowing construction from fresh
-/// entropy. This trait is automatically implemented for any PRNG implementing
-/// [`SeedableRng`] and is not intended to be implemented by users.
-///
-/// This is equivalent to using `SeedableRng::from_rng(EntropyRng::new())` then
-/// unwrapping the result.
-///
-/// Since this is convenient and secure, it is the recommended way to create
-/// PRNGs, though two alternatives may be considered:
-///
-/// * Deterministic creation using [`SeedableRng::from_seed`] with a fixed seed
-/// * Seeding from `thread_rng`: `SeedableRng::from_rng(thread_rng())?`;
-/// this will usually be faster and should also be secure, but requires
-/// trusting one extra component.
-///
-/// ## Example
-///
-/// ```
-/// use rand::{Rng, FromEntropy};
-/// use rand::rngs::StdRng;
-///
-/// let mut rng = StdRng::from_entropy();
-/// println!("Random die roll: {}", rng.gen_range(1, 7));
-/// ```
-///
-/// [`EntropyRng`]: rngs/struct.EntropyRng.html
-/// [`SeedableRng`]: trait.SeedableRng.html
-/// [`SeedableRng::from_seed`]: trait.SeedableRng.html#tymethod.from_seed
-#[cfg(feature="std")]
-pub trait FromEntropy: SeedableRng {
- /// Creates a new instance, automatically seeded with fresh entropy.
- ///
- /// Normally this will use `OsRng`, but if that fails `JitterRng` will be
- /// used instead. Both should be suitable for cryptography. It is possible
- /// that both entropy sources will fail though unlikely; failures would
- /// almost certainly be platform limitations or build issues, i.e. most
- /// applications targetting PC/mobile platforms should not need to worry
- /// about this failing.
- ///
- /// # Panics
- ///
- /// If all entropy sources fail this will panic. If you need to handle
- /// errors, use the following code, equivalent aside from error handling:
- ///
- /// ```
- /// # use rand::Error;
- /// use rand::prelude::*;
- /// use rand::rngs::EntropyRng;
- ///
- /// # fn try_inner() -> Result<(), Error> {
- /// // This uses StdRng, but is valid for any R: SeedableRng
- /// let mut rng = StdRng::from_rng(EntropyRng::new())?;
- ///
- /// println!("random number: {}", rng.gen_range(1, 10));
- /// # Ok(())
- /// # }
- ///
- /// # try_inner().unwrap()
- /// ```
- fn from_entropy() -> Self;
-}
-
-#[cfg(feature="std")]
-impl<R: SeedableRng> FromEntropy for R {
- fn from_entropy() -> R {
- R::from_rng(rngs::EntropyRng::new()).unwrap_or_else(|err|
- panic!("FromEntropy::from_entropy() failed: {}", err))
- }
-}
-
-
/// Generates a random value using the thread-local random number generator.
///
/// This is simply a shortcut for `thread_rng().gen()`. See [`thread_rng`] for
@@ -667,40 +542,26 @@ impl<R: SeedableRng> FromEntropy for R {
/// }
/// ```
///
-/// [`thread_rng`]: fn.thread_rng.html
-/// [`Standard`]: distributions/struct.Standard.html
+/// [`Standard`]: distributions::Standard
#[cfg(feature="std")]
#[inline]
-pub fn random<T>() -> T where Standard: Distribution<T> {
+pub fn random<T>() -> T
+where Standard: Distribution<T> {
thread_rng().gen()
}
#[cfg(test)]
mod test {
- use rngs::mock::StepRng;
- use rngs::StdRng;
+ use crate::rngs::mock::StepRng;
use super::*;
#[cfg(all(not(feature="std"), feature="alloc"))] use alloc::boxed::Box;
- pub struct TestRng<R> { inner: R }
-
- impl<R: RngCore> RngCore for TestRng<R> {
- fn next_u32(&mut self) -> u32 {
- self.inner.next_u32()
- }
- fn next_u64(&mut self) -> u64 {
- self.inner.next_u64()
- }
- fn fill_bytes(&mut self, dest: &mut [u8]) {
- self.inner.fill_bytes(dest)
- }
- fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
- self.inner.try_fill_bytes(dest)
- }
- }
-
- pub fn rng(seed: u64) -> TestRng<StdRng> {
- TestRng { inner: StdRng::seed_from_u64(seed) }
+ /// Construct a deterministic RNG with the given seed
+ pub fn rng(seed: u64) -> impl RngCore {
+ // For tests, we want a statistically good, fast, reproducible RNG.
+ // PCG32 will do fine, and will be easy to embed if we ever need to.
+ const INC: u64 = 11634580027462260723;
+ rand_pcg::Pcg32::new(seed, INC)
}
#[test]
@@ -740,6 +601,12 @@ mod test {
rng.fill(&mut array[..]);
assert_eq!(array, [x as u32, (x >> 32) as u32]);
assert_eq!(rng.next_u32(), x as u32);
+
+ // Check equivalence using wrapped arrays
+ let mut warray = [Wrapping(0u32); 2];
+ rng.fill(&mut warray[..]);
+ assert_eq!(array[0], warray[0].0);
+ assert_eq!(array[1], warray[1].0);
}
#[test]
@@ -796,9 +663,9 @@ mod test {
#[test]
fn test_rng_trait_object() {
- use distributions::{Distribution, Standard};
+ use crate::distributions::{Distribution, Standard};
let mut rng = rng(109);
- let mut r = &mut rng as &mut RngCore;
+ let mut r = &mut rng as &mut dyn RngCore;
r.next_u32();
r.gen::<i32>();
assert_eq!(r.gen_range(0, 1), 0);
@@ -808,9 +675,9 @@ mod test {
#[test]
#[cfg(feature="alloc")]
fn test_rng_boxed_trait() {
- use distributions::{Distribution, Standard};
+ use crate::distributions::{Distribution, Standard};
let rng = rng(110);
- let mut r = Box::new(rng) as Box<RngCore>;
+ let mut r = Box::new(rng) as Box<dyn RngCore>;
r.next_u32();
r.gen::<i32>();
assert_eq!(r.gen_range(0, 1), 0);
@@ -833,6 +700,7 @@ mod test {
}
#[test]
+ #[cfg(not(miri))] // Miri is too slow
fn test_gen_ratio_average() {
const NUM: u32 = 3;
const DENOM: u32 = 10;
diff --git a/rand/src/prelude.rs b/rand/src/prelude.rs
index 5d8a0e9..3c386e8 100644
--- a/rand/src/prelude.rs
+++ b/rand/src/prelude.rs
@@ -14,14 +14,15 @@
//!
//! ```
//! use rand::prelude::*;
-//! # let _ = StdRng::from_entropy();
-//! # let mut r = SmallRng::from_rng(thread_rng()).unwrap();
+//! # let mut r = StdRng::from_rng(thread_rng()).unwrap();
//! # let _: f32 = r.gen();
//! ```
-#[doc(no_inline)] pub use distributions::Distribution;
-#[doc(no_inline)] pub use rngs::{SmallRng, StdRng};
-#[doc(no_inline)] #[cfg(feature="std")] pub use rngs::ThreadRng;
-#[doc(no_inline)] pub use {Rng, RngCore, CryptoRng, SeedableRng};
-#[doc(no_inline)] #[cfg(feature="std")] pub use {FromEntropy, random, thread_rng};
-#[doc(no_inline)] pub use seq::{SliceRandom, IteratorRandom};
+#[doc(no_inline)] pub use crate::distributions::Distribution;
+#[doc(no_inline)] pub use crate::rngs::StdRng;
+#[cfg(feature="small_rng")]
+#[doc(no_inline)] pub use crate::rngs::SmallRng;
+#[doc(no_inline)] #[cfg(feature="std")] pub use crate::rngs::ThreadRng;
+#[doc(no_inline)] pub use crate::{Rng, RngCore, CryptoRng, SeedableRng};
+#[doc(no_inline)] #[cfg(feature="std")] pub use crate::{random, thread_rng};
+#[doc(no_inline)] pub use crate::seq::{SliceRandom, IteratorRandom};
diff --git a/rand/src/prng/mod.rs b/rand/src/prng/mod.rs
deleted file mode 100644
index 3c0d27b..0000000
--- a/rand/src/prng/mod.rs
+++ /dev/null
@@ -1,37 +0,0 @@
-// Copyright 2018 Developers of the Rand project.
-//
-// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
-// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
-// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
-// option. This file may not be copied, modified, or distributed
-// except according to those terms.
-
-//! Pseudo-random number generators.
-//!
-//! This module is deprecated:
-//!
-//! - documentation has moved to
-//! [The Book](https://rust-random.github.io/book/guide-rngs.html),
-//! - PRNGs have moved to other `rand_*` crates.
-
-// Deprecations (to be removed in 0.7)
-#[doc(hidden)] #[allow(deprecated)]
-pub use deprecated::XorShiftRng;
-#[doc(hidden)] pub mod isaac {
- // Note: we miss `IsaacCore` here but probably unimportant.
- #[allow(deprecated)] pub use deprecated::IsaacRng;
-}
-#[doc(hidden)] pub mod isaac64 {
- #[allow(deprecated)] pub use deprecated::Isaac64Rng;
-}
-#[doc(hidden)] #[allow(deprecated)] pub use deprecated::{IsaacRng, Isaac64Rng};
-#[doc(hidden)] pub mod chacha {
- // Note: we miss `ChaChaCore` here but probably unimportant.
- #[allow(deprecated)] pub use deprecated::ChaChaRng;
-}
-#[doc(hidden)] #[allow(deprecated)] pub use deprecated::ChaChaRng;
-#[doc(hidden)] pub mod hc128 {
- // Note: we miss `Hc128Core` here but probably unimportant.
- #[allow(deprecated)] pub use deprecated::Hc128Rng;
-}
-#[doc(hidden)] #[allow(deprecated)] pub use deprecated::Hc128Rng;
diff --git a/rand/src/rngs/adapter/mod.rs b/rand/src/rngs/adapter/mod.rs
index 60b832e..659ff26 100644
--- a/rand/src/rngs/adapter/mod.rs
+++ b/rand/src/rngs/adapter/mod.rs
@@ -8,8 +8,8 @@
//! Wrappers / adapters forming RNGs
-#[cfg(feature="std")] #[doc(hidden)] pub mod read;
+#[cfg(feature="std")] mod read;
mod reseeding;
-#[cfg(feature="std")] pub use self::read::ReadRng;
+#[cfg(feature="std")] pub use self::read::{ReadRng, ReadError};
pub use self::reseeding::ReseedingRng;
diff --git a/rand/src/rngs/adapter/read.rs b/rand/src/rngs/adapter/read.rs
index 30b6de6..901462e 100644
--- a/rand/src/rngs/adapter/read.rs
+++ b/rand/src/rngs/adapter/read.rs
@@ -10,12 +10,13 @@
//! A wrapper around any Read to treat it as an RNG.
use std::io::Read;
+use std::fmt;
-use rand_core::{RngCore, Error, ErrorKind, impls};
+use rand_core::{RngCore, Error, impls};
/// An RNG that reads random bytes straight from any type supporting
-/// `std::io::Read`, for example files.
+/// [`std::io::Read`], for example files.
///
/// This will work best with an infinite reader, but that is not required.
///
@@ -24,10 +25,10 @@ use rand_core::{RngCore, Error, ErrorKind, impls};
///
/// # Panics
///
-/// `ReadRng` uses `std::io::read_exact`, which retries on interrupts. All other
-/// errors from the underlying reader, including when it does not have enough
-/// data, will only be reported through [`try_fill_bytes`]. The other
-/// [`RngCore`] methods will panic in case of an error.
+/// `ReadRng` uses [`std::io::Read::read_exact`], which retries on interrupts.
+/// All other errors from the underlying reader, including when it does not
+/// have enough data, will only be reported through [`try_fill_bytes`].
+/// The other [`RngCore`] methods will panic in case of an error.
///
/// # Example
///
@@ -40,9 +41,8 @@ use rand_core::{RngCore, Error, ErrorKind, impls};
/// println!("{:x}", rng.gen::<u32>());
/// ```
///
-/// [`OsRng`]: ../struct.OsRng.html
-/// [`RngCore`]: ../../trait.RngCore.html
-/// [`try_fill_bytes`]: ../../trait.RngCore.html#method.tymethod.try_fill_bytes
+/// [`OsRng`]: crate::rngs::OsRng
+/// [`try_fill_bytes`]: RngCore::try_fill_bytes
#[derive(Debug)]
pub struct ReadRng<R> {
reader: R
@@ -72,24 +72,33 @@ impl<R: Read> RngCore for ReadRng<R> {
}
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
- if dest.len() == 0 { return Ok(()); }
+ if dest.is_empty() { return Ok(()); }
// Use `std::io::read_exact`, which retries on `ErrorKind::Interrupted`.
- self.reader.read_exact(dest).map_err(|err| {
- match err.kind() {
- ::std::io::ErrorKind::UnexpectedEof => Error::with_cause(
- ErrorKind::Unavailable,
- "not enough bytes available, reached end of source", err),
- _ => Error::with_cause(ErrorKind::Unavailable,
- "error reading from Read source", err)
- }
- })
+ self.reader.read_exact(dest).map_err(|e| Error::new(ReadError(e)))
}
}
+/// `ReadRng` error type
+#[derive(Debug)]
+pub struct ReadError(std::io::Error);
+
+impl fmt::Display for ReadError {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ write!(f, "ReadError: {}", self.0)
+ }
+}
+
+impl std::error::Error for ReadError {
+ fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
+ Some(&self.0)
+ }
+}
+
+
#[cfg(test)]
mod test {
use super::ReadRng;
- use {RngCore, ErrorKind};
+ use crate::RngCore;
#[test]
fn test_reader_rng_u64() {
@@ -132,6 +141,8 @@ mod test {
let mut rng = ReadRng::new(&v[..]);
- assert!(rng.try_fill_bytes(&mut w).err().unwrap().kind == ErrorKind::Unavailable);
+ let result = rng.try_fill_bytes(&mut w);
+ assert!(result.is_err());
+ println!("Error: {}", result.unwrap_err());
}
}
diff --git a/rand/src/rngs/adapter/reseeding.rs b/rand/src/rngs/adapter/reseeding.rs
index 016afab..ec88efe 100644
--- a/rand/src/rngs/adapter/reseeding.rs
+++ b/rand/src/rngs/adapter/reseeding.rs
@@ -12,7 +12,7 @@
use core::mem::size_of;
-use rand_core::{RngCore, CryptoRng, SeedableRng, Error, ErrorKind};
+use rand_core::{RngCore, CryptoRng, SeedableRng, Error};
use rand_core::block::{BlockRngCore, BlockRng};
/// A wrapper around any PRNG that implements [`BlockRngCore`], that adds the
@@ -24,7 +24,7 @@ use rand_core::block::{BlockRngCore, BlockRng};
/// - After `clone()`, the clone will be reseeded on first use.
/// - After a process is forked, the RNG in the child process is reseeded within
/// the next few generated values, depending on the block size of the
-/// underlying PRNG. For [`ChaChaCore`] and [`Hc128Core`] this is a maximum of
+/// underlying PRNG. For ChaCha and Hc128 this is a maximum of
/// 15 `u32` values before reseeding.
/// - After the PRNG has generated a configurable number of random bytes.
///
@@ -57,33 +57,24 @@ use rand_core::block::{BlockRngCore, BlockRng};
/// # Example
///
/// ```
-/// # extern crate rand;
-/// # extern crate rand_chacha;
-/// # fn main() {
/// use rand::prelude::*;
-/// use rand_chacha::ChaChaCore; // Internal part of ChaChaRng that
+/// use rand_chacha::ChaCha20Core; // Internal part of ChaChaRng that
/// // implements BlockRngCore
/// use rand::rngs::OsRng;
/// use rand::rngs::adapter::ReseedingRng;
///
-/// let prng = ChaChaCore::from_entropy();
-// FIXME: it is better to use EntropyRng as reseeder, but that doesn't implement
-// clone yet.
-/// let reseeder = OsRng::new().unwrap();
-/// let mut reseeding_rng = ReseedingRng::new(prng, 0, reseeder);
+/// let prng = ChaCha20Core::from_entropy();
+/// let mut reseeding_rng = ReseedingRng::new(prng, 0, OsRng);
///
/// println!("{}", reseeding_rng.gen::<u64>());
///
/// let mut cloned_rng = reseeding_rng.clone();
/// assert!(reseeding_rng.gen::<u64>() != cloned_rng.gen::<u64>());
-/// # }
/// ```
///
-/// [`ChaChaCore`]: ../../../rand_chacha/struct.ChaChaCore.html
-/// [`Hc128Core`]: ../../../rand_hc/struct.Hc128Core.html
-/// [`BlockRngCore`]: ../../../rand_core/block/trait.BlockRngCore.html
-/// [`ReseedingRng::new`]: struct.ReseedingRng.html#method.new
-/// [`reseed()`]: struct.ReseedingRng.html#method.reseed
+/// [`BlockRngCore`]: rand_core::block::BlockRngCore
+/// [`ReseedingRng::new`]: ReseedingRng::new
+/// [`reseed()`]: ReseedingRng::reseed
#[derive(Debug)]
pub struct ReseedingRng<R, Rsdr>(BlockRng<ReseedingCore<R, Rsdr>>)
where R: BlockRngCore + SeedableRng,
@@ -234,6 +225,7 @@ where R: BlockRngCore + SeedableRng,
results: &mut <Self as BlockRngCore>::Results,
global_fork_counter: usize)
{
+ #![allow(clippy::if_same_then_else)] // false positive
if self.is_forked(global_fork_counter) {
info!("Fork detected, reseeding RNG");
} else {
@@ -243,21 +235,13 @@ where R: BlockRngCore + SeedableRng,
let num_bytes =
results.as_ref().len() * size_of::<<R as BlockRngCore>::Item>();
- let threshold = if let Err(e) = self.reseed() {
- let delay = match e.kind {
- ErrorKind::Transient => num_bytes as i64,
- kind @ _ if kind.should_retry() => self.threshold >> 8,
- _ => self.threshold,
- };
- warn!("Reseeding RNG delayed reseeding by {} bytes due to \
- error from source: {}", delay, e);
- delay
- } else {
- self.fork_counter = global_fork_counter;
- self.threshold
- };
+ if let Err(e) = self.reseed() {
+ warn!("Reseeding RNG failed: {}", e);
+ let _ = e;
+ }
+ self.fork_counter = global_fork_counter;
- self.bytes_until_reseed = threshold - num_bytes as i64;
+ self.bytes_until_reseed = self.threshold - num_bytes as i64;
self.inner.generate(results);
}
}
@@ -282,12 +266,11 @@ where R: BlockRngCore + SeedableRng + CryptoRng,
Rsdr: RngCore + CryptoRng {}
-#[cfg(all(feature="std", unix, not(target_os="emscripten")))]
+#[cfg(all(unix, not(target_os="emscripten")))]
mod fork {
- extern crate libc;
-
- use std::sync::atomic::{AtomicUsize, ATOMIC_USIZE_INIT, Ordering};
- use std::sync::atomic::{AtomicBool, ATOMIC_BOOL_INIT};
+ use core::sync::atomic::{AtomicUsize, AtomicBool, Ordering};
+ #[allow(deprecated)] // Required for compatibility with Rust < 1.24.
+ use core::sync::atomic::{ATOMIC_USIZE_INIT, ATOMIC_BOOL_INIT};
// Fork protection
//
@@ -301,12 +284,14 @@ mod fork {
// don't update `fork_counter`, so a reseed is attempted as soon as
// possible.
+ #[allow(deprecated)]
static RESEEDING_RNG_FORK_COUNTER: AtomicUsize = ATOMIC_USIZE_INIT;
pub fn get_fork_counter() -> usize {
RESEEDING_RNG_FORK_COUNTER.load(Ordering::Relaxed)
}
+ #[allow(deprecated)]
static FORK_HANDLER_REGISTERED: AtomicBool = ATOMIC_BOOL_INIT;
extern fn fork_handler() {
@@ -316,14 +301,14 @@ mod fork {
}
pub fn register_fork_handler() {
- if FORK_HANDLER_REGISTERED.load(Ordering::Relaxed) == false {
+ if !FORK_HANDLER_REGISTERED.load(Ordering::Relaxed) {
unsafe { libc::pthread_atfork(None, None, Some(fork_handler)) };
FORK_HANDLER_REGISTERED.store(true, Ordering::Relaxed);
}
}
}
-#[cfg(not(all(feature="std", unix, not(target_os="emscripten"))))]
+#[cfg(not(all(unix, not(target_os="emscripten"))))]
mod fork {
pub fn get_fork_counter() -> usize { 0 }
pub fn register_fork_handler() {}
@@ -332,25 +317,27 @@ mod fork {
#[cfg(test)]
mod test {
- use {Rng, SeedableRng};
- use rand_chacha::ChaChaCore;
- use rngs::mock::StepRng;
+ use crate::{Rng, SeedableRng};
+ use crate::rngs::std::Core;
+ use crate::rngs::mock::StepRng;
use super::ReseedingRng;
#[test]
fn test_reseeding() {
let mut zero = StepRng::new(0, 0);
- let rng = ChaChaCore::from_rng(&mut zero).unwrap();
- let mut reseeding = ReseedingRng::new(rng, 32*4, zero);
-
- // Currently we only support for arrays up to length 32.
- // TODO: cannot generate seq via Rng::gen because it uses different alg
- let mut buf = [0u32; 32]; // Needs to be a multiple of the RNGs result
- // size to test exactly.
- reseeding.fill(&mut buf);
+ let rng = Core::from_rng(&mut zero).unwrap();
+ let thresh = 1; // reseed every time the buffer is exhausted
+ let mut reseeding = ReseedingRng::new(rng, thresh, zero);
+
+ // RNG buffer size is [u32; 64]
+ // Debug is only implemented up to length 32 so use two arrays
+ let mut buf = ([0u32; 32], [0u32; 32]);
+ reseeding.fill(&mut buf.0);
+ reseeding.fill(&mut buf.1);
let seq = buf;
for _ in 0..10 {
- reseeding.fill(&mut buf);
+ reseeding.fill(&mut buf.0);
+ reseeding.fill(&mut buf.1);
assert_eq!(buf, seq);
}
}
@@ -358,7 +345,7 @@ mod test {
#[test]
fn test_clone_reseeding() {
let mut zero = StepRng::new(0, 0);
- let rng = ChaChaCore::from_rng(&mut zero).unwrap();
+ let rng = Core::from_rng(&mut zero).unwrap();
let mut rng1 = ReseedingRng::new(rng, 32*4, zero);
let first: u32 = rng1.gen();
diff --git a/rand/src/rngs/entropy.rs b/rand/src/rngs/entropy.rs
index 372b4d7..1ed59ab 100644
--- a/rand/src/rngs/entropy.rs
+++ b/rand/src/rngs/entropy.rs
@@ -8,52 +8,21 @@
//! Entropy generator, or wrapper around external generators
-use rand_core::{RngCore, CryptoRng, Error, ErrorKind, impls};
-#[allow(unused)]
-use rngs;
+#![allow(deprecated)] // whole module is deprecated
+
+use rand_core::{RngCore, CryptoRng, Error};
+use crate::rngs::OsRng;
/// An interface returning random data from external source(s), provided
/// specifically for securely seeding algorithmic generators (PRNGs).
///
-/// Where possible, `EntropyRng` retrieves random data from the operating
-/// system's interface for random numbers ([`OsRng`]); if that fails it will
-/// fall back to the [`JitterRng`] entropy collector. In the latter case it will
-/// still try to use [`OsRng`] on the next usage.
-///
-/// If no secure source of entropy is available `EntropyRng` will panic on use;
-/// i.e. it should never output predictable data.
-///
-/// This is either a little slow ([`OsRng`] requires a system call) or extremely
-/// slow ([`JitterRng`] must use significant CPU time to generate sufficient
-/// jitter); for better performance it is common to seed a local PRNG from
-/// external entropy then primarily use the local PRNG ([`thread_rng`] is
-/// provided as a convenient, local, automatically-seeded CSPRNG).
-///
-/// # Panics
-///
-/// On most systems, like Windows, Linux, macOS and *BSD on common hardware, it
-/// is highly unlikely for both [`OsRng`] and [`JitterRng`] to fail. But on
-/// combinations like webassembly without Emscripten or stdweb both sources are
-/// unavailable. If both sources fail, only [`try_fill_bytes`] is able to
-/// report the error, and only the one from `OsRng`. The other [`RngCore`]
-/// methods will panic in case of an error.
-///
-/// [`OsRng`]: struct.OsRng.html
-/// [`JitterRng`]: jitter/struct.JitterRng.html
-/// [`thread_rng`]: ../fn.thread_rng.html
-/// [`RngCore`]: ../trait.RngCore.html
-/// [`try_fill_bytes`]: ../trait.RngCore.html#method.tymethod.try_fill_bytes
+/// This is deprecated. It is suggested you use [`rngs::OsRng`] instead.
+///
+/// [`rngs::OsRng`]: crate::rngs::OsRng
#[derive(Debug)]
+#[deprecated(since="0.7.0", note="use rngs::OsRng instead")]
pub struct EntropyRng {
- source: Source,
-}
-
-#[derive(Debug)]
-enum Source {
- Os(Os),
- Custom(Custom),
- Jitter(Jitter),
- None,
+ source: OsRng,
}
impl EntropyRng {
@@ -63,7 +32,7 @@ impl EntropyRng {
/// those are done on first use. This is done to make `new` infallible,
/// and `try_fill_bytes` the only place to report errors.
pub fn new() -> Self {
- EntropyRng { source: Source::None }
+ EntropyRng { source: OsRng }
}
}
@@ -75,167 +44,25 @@ impl Default for EntropyRng {
impl RngCore for EntropyRng {
fn next_u32(&mut self) -> u32 {
- impls::next_u32_via_fill(self)
+ self.source.next_u32()
}
fn next_u64(&mut self) -> u64 {
- impls::next_u64_via_fill(self)
+ self.source.next_u64()
}
fn fill_bytes(&mut self, dest: &mut [u8]) {
- self.try_fill_bytes(dest).unwrap_or_else(|err|
- panic!("all entropy sources failed; first error: {}", err))
+ self.source.fill_bytes(dest)
}
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
- let mut reported_error = None;
-
- if let Source::Os(ref mut os_rng) = self.source {
- match os_rng.fill(dest) {
- Ok(()) => return Ok(()),
- Err(err) => {
- warn!("EntropyRng: OsRng failed \
- [trying other entropy sources]: {}", err);
- reported_error = Some(err);
- },
- }
- } else if Os::is_supported() {
- match Os::new_and_fill(dest) {
- Ok(os_rng) => {
- debug!("EntropyRng: using OsRng");
- self.source = Source::Os(os_rng);
- return Ok(());
- },
- Err(err) => { reported_error = reported_error.or(Some(err)) },
- }
- }
-
- if let Source::Custom(ref mut rng) = self.source {
- match rng.fill(dest) {
- Ok(()) => return Ok(()),
- Err(err) => {
- warn!("EntropyRng: custom entropy source failed \
- [trying other entropy sources]: {}", err);
- reported_error = Some(err);
- },
- }
- } else if Custom::is_supported() {
- match Custom::new_and_fill(dest) {
- Ok(custom) => {
- debug!("EntropyRng: using custom entropy source");
- self.source = Source::Custom(custom);
- return Ok(());
- },
- Err(err) => { reported_error = reported_error.or(Some(err)) },
- }
- }
-
- if let Source::Jitter(ref mut jitter_rng) = self.source {
- match jitter_rng.fill(dest) {
- Ok(()) => return Ok(()),
- Err(err) => {
- warn!("EntropyRng: JitterRng failed: {}", err);
- reported_error = Some(err);
- },
- }
- } else if Jitter::is_supported() {
- match Jitter::new_and_fill(dest) {
- Ok(jitter_rng) => {
- debug!("EntropyRng: using JitterRng");
- self.source = Source::Jitter(jitter_rng);
- return Ok(());
- },
- Err(err) => { reported_error = reported_error.or(Some(err)) },
- }
- }
-
- if let Some(err) = reported_error {
- Err(Error::with_cause(ErrorKind::Unavailable,
- "All entropy sources failed",
- err))
- } else {
- Err(Error::new(ErrorKind::Unavailable,
- "No entropy sources available"))
- }
+ self.source.try_fill_bytes(dest)
}
}
impl CryptoRng for EntropyRng {}
-
-trait EntropySource {
- fn new_and_fill(dest: &mut [u8]) -> Result<Self, Error>
- where Self: Sized;
-
- fn fill(&mut self, dest: &mut [u8]) -> Result<(), Error>;
-
- fn is_supported() -> bool { true }
-}
-
-#[allow(unused)]
-#[derive(Clone, Debug)]
-struct NoSource;
-
-#[allow(unused)]
-impl EntropySource for NoSource {
- fn new_and_fill(dest: &mut [u8]) -> Result<Self, Error> {
- Err(Error::new(ErrorKind::Unavailable, "Source not supported"))
- }
-
- fn fill(&mut self, dest: &mut [u8]) -> Result<(), Error> {
- unreachable!()
- }
-
- fn is_supported() -> bool { false }
-}
-
-
-#[cfg(feature="rand_os")]
-#[derive(Clone, Debug)]
-pub struct Os(rngs::OsRng);
-
-#[cfg(feature="rand_os")]
-impl EntropySource for Os {
- fn new_and_fill(dest: &mut [u8]) -> Result<Self, Error> {
- let mut rng = rngs::OsRng::new()?;
- rng.try_fill_bytes(dest)?;
- Ok(Os(rng))
- }
-
- fn fill(&mut self, dest: &mut [u8]) -> Result<(), Error> {
- self.0.try_fill_bytes(dest)
- }
-}
-
-#[cfg(not(feature="std"))]
-type Os = NoSource;
-
-
-type Custom = NoSource;
-
-
-#[cfg(not(target_arch = "wasm32"))]
-#[derive(Clone, Debug)]
-pub struct Jitter(rngs::JitterRng);
-
-#[cfg(not(target_arch = "wasm32"))]
-impl EntropySource for Jitter {
- fn new_and_fill(dest: &mut [u8]) -> Result<Self, Error> {
- let mut rng = rngs::JitterRng::new()?;
- rng.try_fill_bytes(dest)?;
- Ok(Jitter(rng))
- }
-
- fn fill(&mut self, dest: &mut [u8]) -> Result<(), Error> {
- self.0.try_fill_bytes(dest)
- }
-}
-
-#[cfg(target_arch = "wasm32")]
-type Jitter = NoSource;
-
-
#[cfg(test)]
mod test {
use super::*;
diff --git a/rand/src/rngs/jitter.rs b/rand/src/rngs/jitter.rs
deleted file mode 100644
index 3e93477..0000000
--- a/rand/src/rngs/jitter.rs
+++ /dev/null
@@ -1,885 +0,0 @@
-// Copyright 2018 Developers of the Rand project.
-//
-// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
-// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
-// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
-// option. This file may not be copied, modified, or distributed
-// except according to those terms.
-//
-// Based on jitterentropy-library, http://www.chronox.de/jent.html.
-// Copyright Stephan Mueller <smueller@chronox.de>, 2014 - 2017.
-//
-// With permission from Stephan Mueller to relicense the Rust translation under
-// the MIT license.
-
-//! Non-physical true random number generator based on timing jitter.
-
-// Note: the C implementation of `Jitterentropy` relies on being compiled
-// without optimizations. This implementation goes through lengths to make the
-// compiler not optimize out code which does influence timing jitter, but is
-// technically dead code.
-
-use rand_core::{RngCore, CryptoRng, Error, ErrorKind, impls};
-
-use core::{fmt, mem, ptr};
-#[cfg(all(feature="std", not(target_arch = "wasm32")))]
-use std::sync::atomic::{AtomicUsize, ATOMIC_USIZE_INIT, Ordering};
-
-const MEMORY_BLOCKS: usize = 64;
-const MEMORY_BLOCKSIZE: usize = 32;
-const MEMORY_SIZE: usize = MEMORY_BLOCKS * MEMORY_BLOCKSIZE;
-
-/// A true random number generator based on jitter in the CPU execution time,
-/// and jitter in memory access time.
-///
-/// This is a true random number generator, as opposed to pseudo-random
-/// generators. Random numbers generated by `JitterRng` can be seen as fresh
-/// entropy. A consequence is that is orders of magnitude slower than [`OsRng`]
-/// and PRNGs (about 10<sup>3</sup>..10<sup>6</sup> slower).
-///
-/// There are very few situations where using this RNG is appropriate. Only very
-/// few applications require true entropy. A normal PRNG can be statistically
-/// indistinguishable, and a cryptographic PRNG should also be as impossible to
-/// predict.
-///
-/// Use of `JitterRng` is recommended for initializing cryptographic PRNGs when
-/// [`OsRng`] is not available.
-///
-/// `JitterRng` can be used without the standard library, but not conveniently,
-/// you must provide a high-precision timer and carefully have to follow the
-/// instructions of [`new_with_timer`].
-///
-/// This implementation is based on
-/// [Jitterentropy](http://www.chronox.de/jent.html) version 2.1.0.
-///
-/// Note: There is no accurate timer available on Wasm platforms, to help
-/// prevent fingerprinting or timing side-channel attacks. Therefore
-/// [`JitterRng::new()`] is not available on Wasm.
-///
-/// # Quality testing
-///
-/// [`JitterRng::new()`] has build-in, but limited, quality testing, however
-/// before using `JitterRng` on untested hardware, or after changes that could
-/// effect how the code is optimized (such as a new LLVM version), it is
-/// recommend to run the much more stringent
-/// [NIST SP 800-90B Entropy Estimation Suite](
-/// https://github.com/usnistgov/SP800-90B_EntropyAssessment).
-///
-/// Use the following code using [`timer_stats`] to collect the data:
-///
-/// ```no_run
-/// use rand::rngs::JitterRng;
-/// #
-/// # use std::error::Error;
-/// # use std::fs::File;
-/// # use std::io::Write;
-/// #
-/// # fn try_main() -> Result<(), Box<Error>> {
-/// let mut rng = JitterRng::new()?;
-///
-/// // 1_000_000 results are required for the
-/// // NIST SP 800-90B Entropy Estimation Suite
-/// const ROUNDS: usize = 1_000_000;
-/// let mut deltas_variable: Vec<u8> = Vec::with_capacity(ROUNDS);
-/// let mut deltas_minimal: Vec<u8> = Vec::with_capacity(ROUNDS);
-///
-/// for _ in 0..ROUNDS {
-/// deltas_variable.push(rng.timer_stats(true) as u8);
-/// deltas_minimal.push(rng.timer_stats(false) as u8);
-/// }
-///
-/// // Write out after the statistics collection loop, to not disturb the
-/// // test results.
-/// File::create("jitter_rng_var.bin")?.write(&deltas_variable)?;
-/// File::create("jitter_rng_min.bin")?.write(&deltas_minimal)?;
-/// #
-/// # Ok(())
-/// # }
-/// #
-/// # fn main() {
-/// # try_main().unwrap();
-/// # }
-/// ```
-///
-/// This will produce two files: `jitter_rng_var.bin` and `jitter_rng_min.bin`.
-/// Run the Entropy Estimation Suite in three configurations, as outlined below.
-/// Every run has two steps. One step to produce an estimation, another to
-/// validate the estimation.
-///
-/// 1. Estimate the expected amount of entropy that is at least available with
-/// each round of the entropy collector. This number should be greater than
-/// the amount estimated with `64 / test_timer()`.
-/// ```sh
-/// python noniid_main.py -v jitter_rng_var.bin 8
-/// restart.py -v jitter_rng_var.bin 8 <min-entropy>
-/// ```
-/// 2. Estimate the expected amount of entropy that is available in the last 4
-/// bits of the timer delta after running noice sources. Note that a value of
-/// `3.70` is the minimum estimated entropy for true randomness.
-/// ```sh
-/// python noniid_main.py -v -u 4 jitter_rng_var.bin 4
-/// restart.py -v -u 4 jitter_rng_var.bin 4 <min-entropy>
-/// ```
-/// 3. Estimate the expected amount of entropy that is available to the entropy
-/// collector if both noice sources only run their minimal number of times.
-/// This measures the absolute worst-case, and gives a lower bound for the
-/// available entropy.
-/// ```sh
-/// python noniid_main.py -v -u 4 jitter_rng_min.bin 4
-/// restart.py -v -u 4 jitter_rng_min.bin 4 <min-entropy>
-/// ```
-///
-/// [`OsRng`]: struct.OsRng.html
-/// [`JitterRng::new()`]: struct.JitterRng.html#method.new
-/// [`new_with_timer`]: struct.JitterRng.html#method.new_with_timer
-/// [`timer_stats`]: struct.JitterRng.html#method.timer_stats
-pub struct JitterRng {
- data: u64, // Actual random number
- // Number of rounds to run the entropy collector per 64 bits
- rounds: u8,
- // Timer used by `measure_jitter`
- timer: fn() -> u64,
- // Memory for the Memory Access noise source
- mem_prev_index: u16,
- // Make `next_u32` not waste 32 bits
- data_half_used: bool,
-}
-
-// Note: `JitterRng` maintains a small 64-bit entropy pool. With every
-// `generate` 64 new bits should be integrated in the pool. If a round of
-// `generate` were to collect less than the expected 64 bit, then the returned
-// value, and the new state of the entropy pool, would be in some way related to
-// the initial state. It is therefore better if the initial state of the entropy
-// pool is different on each call to `generate`. This has a few implications:
-// - `generate` should be called once before using `JitterRng` to produce the
-// first usable value (this is done by default in `new`);
-// - We do not zero the entropy pool after generating a result. The reference
-// implementation also does not support zeroing, but recommends generating a
-// new value without using it if you want to protect a previously generated
-// 'secret' value from someone inspecting the memory;
-// - Implementing `Clone` seems acceptable, as it would not cause the systematic
-// bias a constant might cause. Only instead of one value that could be
-// potentially related to the same initial state, there are now two.
-
-// Entropy collector state.
-// These values are not necessary to preserve across runs.
-struct EcState {
- // Previous time stamp to determine the timer delta
- prev_time: u64,
- // Deltas used for the stuck test
- last_delta: i32,
- last_delta2: i32,
- // Memory for the Memory Access noise source
- mem: [u8; MEMORY_SIZE],
-}
-
-impl EcState {
- // Stuck test by checking the:
- // - 1st derivation of the jitter measurement (time delta)
- // - 2nd derivation of the jitter measurement (delta of time deltas)
- // - 3rd derivation of the jitter measurement (delta of delta of time
- // deltas)
- //
- // All values must always be non-zero.
- // This test is a heuristic to see whether the last measurement holds
- // entropy.
- fn stuck(&mut self, current_delta: i32) -> bool {
- let delta2 = self.last_delta - current_delta;
- let delta3 = delta2 - self.last_delta2;
-
- self.last_delta = current_delta;
- self.last_delta2 = delta2;
-
- current_delta == 0 || delta2 == 0 || delta3 == 0
- }
-}
-
-// Custom Debug implementation that does not expose the internal state
-impl fmt::Debug for JitterRng {
- fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
- write!(f, "JitterRng {{}}")
- }
-}
-
-impl Clone for JitterRng {
- fn clone(&self) -> JitterRng {
- JitterRng {
- data: self.data,
- rounds: self.rounds,
- timer: self.timer,
- mem_prev_index: self.mem_prev_index,
- // The 32 bits that may still be unused from the previous round are
- // for the original to use, not for the clone.
- data_half_used: false,
- }
- }
-}
-
-/// An error that can occur when [`JitterRng::test_timer`] fails.
-///
-/// [`JitterRng::test_timer`]: struct.JitterRng.html#method.test_timer
-#[derive(Debug, Clone, PartialEq, Eq)]
-pub enum TimerError {
- /// No timer available.
- NoTimer,
- /// Timer too coarse to use as an entropy source.
- CoarseTimer,
- /// Timer is not monotonically increasing.
- NotMonotonic,
- /// Variations of deltas of time too small.
- TinyVariantions,
- /// Too many stuck results (indicating no added entropy).
- TooManyStuck,
- #[doc(hidden)]
- __Nonexhaustive,
-}
-
-impl TimerError {
- fn description(&self) -> &'static str {
- match *self {
- TimerError::NoTimer => "no timer available",
- TimerError::CoarseTimer => "coarse timer",
- TimerError::NotMonotonic => "timer not monotonic",
- TimerError::TinyVariantions => "time delta variations too small",
- TimerError::TooManyStuck => "too many stuck results",
- TimerError::__Nonexhaustive => unreachable!(),
- }
- }
-}
-
-impl fmt::Display for TimerError {
- fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
- write!(f, "{}", self.description())
- }
-}
-
-#[cfg(feature="std")]
-impl ::std::error::Error for TimerError {
- fn description(&self) -> &str {
- self.description()
- }
-}
-
-impl From<TimerError> for Error {
- fn from(err: TimerError) -> Error {
- // Timer check is already quite permissive of failures so we don't
- // expect false-positive failures, i.e. any error is irrecoverable.
- Error::with_cause(ErrorKind::Unavailable,
- "timer jitter failed basic quality tests", err)
- }
-}
-
-// Initialise to zero; must be positive
-#[cfg(all(feature="std", not(target_arch = "wasm32")))]
-static JITTER_ROUNDS: AtomicUsize = ATOMIC_USIZE_INIT;
-
-impl JitterRng {
- /// Create a new `JitterRng`. Makes use of `std::time` for a timer, or a
- /// platform-specific function with higher accuracy if necessary and
- /// available.
- ///
- /// During initialization CPU execution timing jitter is measured a few
- /// hundred times. If this does not pass basic quality tests, an error is
- /// returned. The test result is cached to make subsequent calls faster.
- #[cfg(all(feature="std", not(target_arch = "wasm32")))]
- pub fn new() -> Result<JitterRng, TimerError> {
- let mut state = JitterRng::new_with_timer(platform::get_nstime);
- let mut rounds = JITTER_ROUNDS.load(Ordering::Relaxed) as u8;
- if rounds == 0 {
- // No result yet: run test.
- // This allows the timer test to run multiple times; we don't care.
- rounds = state.test_timer()?;
- JITTER_ROUNDS.store(rounds as usize, Ordering::Relaxed);
- info!("JitterRng: using {} rounds per u64 output", rounds);
- }
- state.set_rounds(rounds);
-
- // Fill `data` with a non-zero value.
- state.gen_entropy();
- Ok(state)
- }
-
- /// Create a new `JitterRng`.
- /// A custom timer can be supplied, making it possible to use `JitterRng` in
- /// `no_std` environments.
- ///
- /// The timer must have nanosecond precision.
- ///
- /// This method is more low-level than `new()`. It is the responsibility of
- /// the caller to run [`test_timer`] before using any numbers generated with
- /// `JitterRng`, and optionally call [`set_rounds`]. Also it is important to
- /// consume at least one `u64` before using the first result to initialize
- /// the entropy collection pool.
- ///
- /// # Example
- ///
- /// ```
- /// # use rand::{Rng, Error};
- /// use rand::rngs::JitterRng;
- ///
- /// # fn try_inner() -> Result<(), Error> {
- /// fn get_nstime() -> u64 {
- /// use std::time::{SystemTime, UNIX_EPOCH};
- ///
- /// let dur = SystemTime::now().duration_since(UNIX_EPOCH).unwrap();
- /// // The correct way to calculate the current time is
- /// // `dur.as_secs() * 1_000_000_000 + dur.subsec_nanos() as u64`
- /// // But this is faster, and the difference in terms of entropy is
- /// // negligible (log2(10^9) == 29.9).
- /// dur.as_secs() << 30 | dur.subsec_nanos() as u64
- /// }
- ///
- /// let mut rng = JitterRng::new_with_timer(get_nstime);
- /// let rounds = rng.test_timer()?;
- /// rng.set_rounds(rounds); // optional
- /// let _ = rng.gen::<u64>();
- ///
- /// // Ready for use
- /// let v: u64 = rng.gen();
- /// # Ok(())
- /// # }
- ///
- /// # let _ = try_inner();
- /// ```
- ///
- /// [`test_timer`]: struct.JitterRng.html#method.test_timer
- /// [`set_rounds`]: struct.JitterRng.html#method.set_rounds
- pub fn new_with_timer(timer: fn() -> u64) -> JitterRng {
- JitterRng {
- data: 0,
- rounds: 64,
- timer,
- mem_prev_index: 0,
- data_half_used: false,
- }
- }
-
- /// Configures how many rounds are used to generate each 64-bit value.
- /// This must be greater than zero, and has a big impact on performance
- /// and output quality.
- ///
- /// [`new_with_timer`] conservatively uses 64 rounds, but often less rounds
- /// can be used. The `test_timer()` function returns the minimum number of
- /// rounds required for full strength (platform dependent), so one may use
- /// `rng.set_rounds(rng.test_timer()?);` or cache the value.
- ///
- /// [`new_with_timer`]: struct.JitterRng.html#method.new_with_timer
- pub fn set_rounds(&mut self, rounds: u8) {
- assert!(rounds > 0);
- self.rounds = rounds;
- }
-
- // Calculate a random loop count used for the next round of an entropy
- // collection, based on bits from a fresh value from the timer.
- //
- // The timer is folded to produce a number that contains at most `n_bits`
- // bits.
- //
- // Note: A constant should be added to the resulting random loop count to
- // prevent loops that run 0 times.
- #[inline(never)]
- fn random_loop_cnt(&mut self, n_bits: u32) -> u32 {
- let mut rounds = 0;
-
- let mut time = (self.timer)();
- // Mix with the current state of the random number balance the random
- // loop counter a bit more.
- time ^= self.data;
-
- // We fold the time value as much as possible to ensure that as many
- // bits of the time stamp are included as possible.
- let folds = (64 + n_bits - 1) / n_bits;
- let mask = (1 << n_bits) - 1;
- for _ in 0..folds {
- rounds ^= time & mask;
- time >>= n_bits;
- }
-
- rounds as u32
- }
-
- // CPU jitter noise source
- // Noise source based on the CPU execution time jitter
- //
- // This function injects the individual bits of the time value into the
- // entropy pool using an LFSR.
- //
- // The code is deliberately inefficient with respect to the bit shifting.
- // This function not only acts as folding operation, but this function's
- // execution is used to measure the CPU execution time jitter. Any change to
- // the loop in this function implies that careful retesting must be done.
- #[inline(never)]
- fn lfsr_time(&mut self, time: u64, var_rounds: bool) {
- fn lfsr(mut data: u64, time: u64) -> u64{
- for i in 1..65 {
- let mut tmp = time << (64 - i);
- tmp >>= 64 - 1;
-
- // Fibonacci LSFR with polynomial of
- // x^64 + x^61 + x^56 + x^31 + x^28 + x^23 + 1 which is
- // primitive according to
- // http://poincare.matf.bg.ac.rs/~ezivkovm/publications/primpol1.pdf
- // (the shift values are the polynomial values minus one
- // due to counting bits from 0 to 63). As the current
- // position is always the LSB, the polynomial only needs
- // to shift data in from the left without wrap.
- data ^= tmp;
- data ^= (data >> 63) & 1;
- data ^= (data >> 60) & 1;
- data ^= (data >> 55) & 1;
- data ^= (data >> 30) & 1;
- data ^= (data >> 27) & 1;
- data ^= (data >> 22) & 1;
- data = data.rotate_left(1);
- }
- data
- }
-
- // Note: in the reference implementation only the last round effects
- // `self.data`, all the other results are ignored. To make sure the
- // other rounds are not optimised out, we first run all but the last
- // round on a throw-away value instead of the real `self.data`.
- let mut lfsr_loop_cnt = 0;
- if var_rounds { lfsr_loop_cnt = self.random_loop_cnt(4) };
-
- let mut throw_away: u64 = 0;
- for _ in 0..lfsr_loop_cnt {
- throw_away = lfsr(throw_away, time);
- }
- black_box(throw_away);
-
- self.data = lfsr(self.data, time);
- }
-
- // Memory Access noise source
- // This is a noise source based on variations in memory access times
- //
- // This function performs memory accesses which will add to the timing
- // variations due to an unknown amount of CPU wait states that need to be
- // added when accessing memory. The memory size should be larger than the L1
- // caches as outlined in the documentation and the associated testing.
- //
- // The L1 cache has a very high bandwidth, albeit its access rate is usually
- // slower than accessing CPU registers. Therefore, L1 accesses only add
- // minimal variations as the CPU has hardly to wait. Starting with L2,
- // significant variations are added because L2 typically does not belong to
- // the CPU any more and therefore a wider range of CPU wait states is
- // necessary for accesses. L3 and real memory accesses have even a wider
- // range of wait states. However, to reliably access either L3 or memory,
- // the `self.mem` memory must be quite large which is usually not desirable.
- #[inline(never)]
- fn memaccess(&mut self, mem: &mut [u8; MEMORY_SIZE], var_rounds: bool) {
- let mut acc_loop_cnt = 128;
- if var_rounds { acc_loop_cnt += self.random_loop_cnt(4) };
-
- let mut index = self.mem_prev_index as usize;
- for _ in 0..acc_loop_cnt {
- // Addition of memblocksize - 1 to index with wrap around logic to
- // ensure that every memory location is hit evenly.
- // The modulus also allows the compiler to remove the indexing
- // bounds check.
- index = (index + MEMORY_BLOCKSIZE - 1) % MEMORY_SIZE;
-
- // memory access: just add 1 to one byte
- // memory access implies read from and write to memory location
- mem[index] = mem[index].wrapping_add(1);
- }
- self.mem_prev_index = index as u16;
- }
-
- // This is the heart of the entropy generation: calculate time deltas and
- // use the CPU jitter in the time deltas. The jitter is injected into the
- // entropy pool.
- //
- // Ensure that `ec.prev_time` is primed before using the output of this
- // function. This can be done by calling this function and not using its
- // result.
- fn measure_jitter(&mut self, ec: &mut EcState) -> Option<()> {
- // Invoke one noise source before time measurement to add variations
- self.memaccess(&mut ec.mem, true);
-
- // Get time stamp and calculate time delta to previous
- // invocation to measure the timing variations
- let time = (self.timer)();
- // Note: wrapping_sub combined with a cast to `i64` generates a correct
- // delta, even in the unlikely case this is a timer that is not strictly
- // monotonic.
- let current_delta = time.wrapping_sub(ec.prev_time) as i64 as i32;
- ec.prev_time = time;
-
- // Call the next noise source which also injects the data
- self.lfsr_time(current_delta as u64, true);
-
- // Check whether we have a stuck measurement (i.e. does the last
- // measurement holds entropy?).
- if ec.stuck(current_delta) { return None };
-
- // Rotate the data buffer by a prime number (any odd number would
- // do) to ensure that every bit position of the input time stamp
- // has an even chance of being merged with a bit position in the
- // entropy pool. We do not use one here as the adjacent bits in
- // successive time deltas may have some form of dependency. The
- // chosen value of 7 implies that the low 7 bits of the next
- // time delta value is concatenated with the current time delta.
- self.data = self.data.rotate_left(7);
-
- Some(())
- }
-
- // Shuffle the pool a bit by mixing some value with a bijective function
- // (XOR) into the pool.
- //
- // The function generates a mixer value that depends on the bits set and
- // the location of the set bits in the random number generated by the
- // entropy source. Therefore, based on the generated random number, this
- // mixer value can have 2^64 different values. That mixer value is
- // initialized with the first two SHA-1 constants. After obtaining the
- // mixer value, it is XORed into the random number.
- //
- // The mixer value is not assumed to contain any entropy. But due to the
- // XOR operation, it can also not destroy any entropy present in the
- // entropy pool.
- #[inline(never)]
- fn stir_pool(&mut self) {
- // This constant is derived from the first two 32 bit initialization
- // vectors of SHA-1 as defined in FIPS 180-4 section 5.3.1
- // The order does not really matter as we do not rely on the specific
- // numbers. We just pick the SHA-1 constants as they have a good mix of
- // bit set and unset.
- const CONSTANT: u64 = 0x67452301efcdab89;
-
- // The start value of the mixer variable is derived from the third
- // and fourth 32 bit initialization vector of SHA-1 as defined in
- // FIPS 180-4 section 5.3.1
- let mut mixer = 0x98badcfe10325476;
-
- // This is a constant time function to prevent leaking timing
- // information about the random number.
- // The normal code is:
- // ```
- // for i in 0..64 {
- // if ((self.data >> i) & 1) == 1 { mixer ^= CONSTANT; }
- // }
- // ```
- // This is a bit fragile, as LLVM really wants to use branches here, and
- // we rely on it to not recognise the opportunity.
- for i in 0..64 {
- let apply = (self.data >> i) & 1;
- let mask = !apply.wrapping_sub(1);
- mixer ^= CONSTANT & mask;
- mixer = mixer.rotate_left(1);
- }
-
- self.data ^= mixer;
- }
-
- fn gen_entropy(&mut self) -> u64 {
- trace!("JitterRng: collecting entropy");
-
- // Prime `ec.prev_time`, and run the noice sources to make sure the
- // first loop round collects the expected entropy.
- let mut ec = EcState {
- prev_time: (self.timer)(),
- last_delta: 0,
- last_delta2: 0,
- mem: [0; MEMORY_SIZE],
- };
- let _ = self.measure_jitter(&mut ec);
-
- for _ in 0..self.rounds {
- // If a stuck measurement is received, repeat measurement
- // Note: we do not guard against an infinite loop, that would mean
- // the timer suddenly became broken.
- while self.measure_jitter(&mut ec).is_none() {}
- }
-
- // Do a single read from `self.mem` to make sure the Memory Access noise
- // source is not optimised out.
- black_box(ec.mem[0]);
-
- self.stir_pool();
- self.data
- }
-
- /// Basic quality tests on the timer, by measuring CPU timing jitter a few
- /// hundred times.
- ///
- /// If succesful, this will return the estimated number of rounds necessary
- /// to collect 64 bits of entropy. Otherwise a [`TimerError`] with the cause
- /// of the failure will be returned.
- ///
- /// [`TimerError`]: enum.TimerError.html
- pub fn test_timer(&mut self) -> Result<u8, TimerError> {
- debug!("JitterRng: testing timer ...");
- // We could add a check for system capabilities such as `clock_getres`
- // or check for `CONFIG_X86_TSC`, but it does not make much sense as the
- // following sanity checks verify that we have a high-resolution timer.
-
- let mut delta_sum = 0;
- let mut old_delta = 0;
-
- let mut time_backwards = 0;
- let mut count_mod = 0;
- let mut count_stuck = 0;
-
- let mut ec = EcState {
- prev_time: (self.timer)(),
- last_delta: 0,
- last_delta2: 0,
- mem: [0; MEMORY_SIZE],
- };
-
- // TESTLOOPCOUNT needs some loops to identify edge systems.
- // 100 is definitely too little.
- const TESTLOOPCOUNT: u64 = 300;
- const CLEARCACHE: u64 = 100;
-
- for i in 0..(CLEARCACHE + TESTLOOPCOUNT) {
- // Measure time delta of core entropy collection logic
- let time = (self.timer)();
- self.memaccess(&mut ec.mem, true);
- self.lfsr_time(time, true);
- let time2 = (self.timer)();
-
- // Test whether timer works
- if time == 0 || time2 == 0 {
- return Err(TimerError::NoTimer);
- }
- let delta = time2.wrapping_sub(time) as i64 as i32;
-
- // Test whether timer is fine grained enough to provide delta even
- // when called shortly after each other -- this implies that we also
- // have a high resolution timer
- if delta == 0 {
- return Err(TimerError::CoarseTimer);
- }
-
- // Up to here we did not modify any variable that will be
- // evaluated later, but we already performed some work. Thus we
- // already have had an impact on the caches, branch prediction,
- // etc. with the goal to clear it to get the worst case
- // measurements.
- if i < CLEARCACHE { continue; }
-
- if ec.stuck(delta) { count_stuck += 1; }
-
- // Test whether we have an increasing timer.
- if !(time2 > time) { time_backwards += 1; }
-
- // Count the number of times the counter increases in steps of 100ns
- // or greater.
- if (delta % 100) == 0 { count_mod += 1; }
-
- // Ensure that we have a varying delta timer which is necessary for
- // the calculation of entropy -- perform this check only after the
- // first loop is executed as we need to prime the old_delta value
- delta_sum += (delta - old_delta).abs() as u64;
- old_delta = delta;
- }
-
- // Do a single read from `self.mem` to make sure the Memory Access noise
- // source is not optimised out.
- black_box(ec.mem[0]);
-
- // We allow the time to run backwards for up to three times.
- // This can happen if the clock is being adjusted by NTP operations.
- // If such an operation just happens to interfere with our test, it
- // should not fail. The value of 3 should cover the NTP case being
- // performed during our test run.
- if time_backwards > 3 {
- return Err(TimerError::NotMonotonic);
- }
-
- // Test that the available amount of entropy per round does not get to
- // low. We expect 1 bit of entropy per round as a reasonable minimum
- // (although less is possible, it means the collector loop has to run
- // much more often).
- // `assert!(delta_average >= log2(1))`
- // `assert!(delta_sum / TESTLOOPCOUNT >= 1)`
- // `assert!(delta_sum >= TESTLOOPCOUNT)`
- if delta_sum < TESTLOOPCOUNT {
- return Err(TimerError::TinyVariantions);
- }
-
- // Ensure that we have variations in the time stamp below 100 for at
- // least 10% of all checks -- on some platforms, the counter increments
- // in multiples of 100, but not always
- if count_mod > (TESTLOOPCOUNT * 9 / 10) {
- return Err(TimerError::CoarseTimer);
- }
-
- // If we have more than 90% stuck results, then this Jitter RNG is
- // likely to not work well.
- if count_stuck > (TESTLOOPCOUNT * 9 / 10) {
- return Err(TimerError::TooManyStuck);
- }
-
- // Estimate the number of `measure_jitter` rounds necessary for 64 bits
- // of entropy.
- //
- // We don't try very hard to come up with a good estimate of the
- // available bits of entropy per round here for two reasons:
- // 1. Simple estimates of the available bits (like Shannon entropy) are
- // too optimistic.
- // 2. Unless we want to waste a lot of time during intialization, there
- // only a small number of samples are available.
- //
- // Therefore we use a very simple and conservative estimate:
- // `let bits_of_entropy = log2(delta_average) / 2`.
- //
- // The number of rounds `measure_jitter` should run to collect 64 bits
- // of entropy is `64 / bits_of_entropy`.
- let delta_average = delta_sum / TESTLOOPCOUNT;
-
- if delta_average >= 16 {
- let log2 = 64 - delta_average.leading_zeros();
- // Do something similar to roundup(64/(log2/2)):
- Ok( ((64u32 * 2 + log2 - 1) / log2) as u8)
- } else {
- // For values < 16 the rounding error becomes too large, use a
- // lookup table.
- // Values 0 and 1 are invalid, and filtered out by the
- // `delta_sum < TESTLOOPCOUNT` test above.
- let log2_lookup = [0, 0, 128, 81, 64, 56, 50, 46,
- 43, 41, 39, 38, 36, 35, 34, 33];
- Ok(log2_lookup[delta_average as usize])
- }
- }
-
- /// Statistical test: return the timer delta of one normal run of the
- /// `JitterRng` entropy collector.
- ///
- /// Setting `var_rounds` to `true` will execute the memory access and the
- /// CPU jitter noice sources a variable amount of times (just like a real
- /// `JitterRng` round).
- ///
- /// Setting `var_rounds` to `false` will execute the noice sources the
- /// minimal number of times. This can be used to measure the minimum amount
- /// of entropy one round of the entropy collector can collect in the worst
- /// case.
- ///
- /// See [Quality testing](struct.JitterRng.html#quality-testing) on how to
- /// use `timer_stats` to test the quality of `JitterRng`.
- pub fn timer_stats(&mut self, var_rounds: bool) -> i64 {
- let mut mem = [0; MEMORY_SIZE];
-
- let time = (self.timer)();
- self.memaccess(&mut mem, var_rounds);
- self.lfsr_time(time, var_rounds);
- let time2 = (self.timer)();
- time2.wrapping_sub(time) as i64
- }
-}
-
-#[cfg(feature="std")]
-mod platform {
- #[cfg(not(any(target_os = "macos", target_os = "ios",
- target_os = "windows",
- target_arch = "wasm32")))]
- pub fn get_nstime() -> u64 {
- use std::time::{SystemTime, UNIX_EPOCH};
-
- let dur = SystemTime::now().duration_since(UNIX_EPOCH).unwrap();
- // The correct way to calculate the current time is
- // `dur.as_secs() * 1_000_000_000 + dur.subsec_nanos() as u64`
- // But this is faster, and the difference in terms of entropy is
- // negligible (log2(10^9) == 29.9).
- dur.as_secs() << 30 | dur.subsec_nanos() as u64
- }
-
- #[cfg(any(target_os = "macos", target_os = "ios"))]
- pub fn get_nstime() -> u64 {
- extern crate libc;
- // On Mac OS and iOS std::time::SystemTime only has 1000ns resolution.
- // We use `mach_absolute_time` instead. This provides a CPU dependent
- // unit, to get real nanoseconds the result should by multiplied by
- // numer/denom from `mach_timebase_info`.
- // But we are not interested in the exact nanoseconds, just entropy. So
- // we use the raw result.
- unsafe { libc::mach_absolute_time() }
- }
-
- #[cfg(target_os = "windows")]
- pub fn get_nstime() -> u64 {
- extern crate winapi;
- unsafe {
- let mut t = super::mem::zeroed();
- winapi::um::profileapi::QueryPerformanceCounter(&mut t);
- *t.QuadPart() as u64
- }
- }
-}
-
-// A function that is opaque to the optimizer to assist in avoiding dead-code
-// elimination. Taken from `bencher`.
-fn black_box<T>(dummy: T) -> T {
- unsafe {
- let ret = ptr::read_volatile(&dummy);
- mem::forget(dummy);
- ret
- }
-}
-
-impl RngCore for JitterRng {
- fn next_u32(&mut self) -> u32 {
- // We want to use both parts of the generated entropy
- if self.data_half_used {
- self.data_half_used = false;
- (self.data >> 32) as u32
- } else {
- self.data = self.next_u64();
- self.data_half_used = true;
- self.data as u32
- }
- }
-
- fn next_u64(&mut self) -> u64 {
- self.data_half_used = false;
- self.gen_entropy()
- }
-
- fn fill_bytes(&mut self, dest: &mut [u8]) {
- // Fill using `next_u32`. This is faster for filling small slices (four
- // bytes or less), while the overhead is negligible.
- //
- // This is done especially for wrappers that implement `next_u32`
- // themselves via `fill_bytes`.
- impls::fill_bytes_via_next(self, dest)
- }
-
- fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
- Ok(self.fill_bytes(dest))
- }
-}
-
-impl CryptoRng for JitterRng {}
-
-#[cfg(test)]
-mod test_jitter_init {
- use super::JitterRng;
-
- #[cfg(all(feature="std", not(target_arch = "wasm32")))]
- #[test]
- fn test_jitter_init() {
- use RngCore;
- // Because this is a debug build, measurements here are not representive
- // of the final release build.
- // Don't fail this test if initializing `JitterRng` fails because of a
- // bad timer (the timer from the standard library may not have enough
- // accuracy on all platforms).
- match JitterRng::new() {
- Ok(ref mut rng) => {
- // false positives are possible, but extremely unlikely
- assert!(rng.next_u32() | rng.next_u32() != 0);
- },
- Err(_) => {},
- }
- }
-
- #[test]
- fn test_jitter_bad_timer() {
- fn bad_timer() -> u64 { 0 }
- let mut rng = JitterRng::new_with_timer(bad_timer);
- assert!(rng.test_timer().is_err());
- }
-}
diff --git a/rand/src/rngs/mock.rs b/rand/src/rngs/mock.rs
index 3c9a994..b4081da 100644
--- a/rand/src/rngs/mock.rs
+++ b/rand/src/rngs/mock.rs
@@ -39,21 +39,26 @@ impl StepRng {
}
impl RngCore for StepRng {
+ #[inline]
fn next_u32(&mut self) -> u32 {
self.next_u64() as u32
}
+ #[inline]
fn next_u64(&mut self) -> u64 {
let result = self.v;
self.v = self.v.wrapping_add(self.a);
result
}
+ #[inline]
fn fill_bytes(&mut self, dest: &mut [u8]) {
impls::fill_bytes_via_next(self, dest);
}
+ #[inline]
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
- Ok(self.fill_bytes(dest))
+ self.fill_bytes(dest);
+ Ok(())
}
}
diff --git a/rand/src/rngs/mod.rs b/rand/src/rngs/mod.rs
index 847fc94..abf3243 100644
--- a/rand/src/rngs/mod.rs
+++ b/rand/src/rngs/mod.rs
@@ -6,177 +6,114 @@
// option. This file may not be copied, modified, or distributed
// except according to those terms.
-//! Random number generators and adapters for common usage:
-//!
-//! - [`ThreadRng`], a fast, secure, auto-seeded thread-local generator
-//! - [`StdRng`] and [`SmallRng`], algorithms to cover typical usage
-//! - [`EntropyRng`], [`OsRng`] and [`JitterRng`] as entropy sources
-//! - [`mock::StepRng`] as a simple counter for tests
-//! - [`adapter::ReadRng`] to read from a file/stream
-//! - [`adapter::ReseedingRng`] to reseed a PRNG on clone / process fork etc.
-//!
-//! # Background β€” Random number generators (RNGs)
-//!
-//! Computers are inherently deterministic, so to get *random* numbers one
-//! either has to use a hardware generator or collect bits of *entropy* from
-//! various sources (e.g. event timestamps, or jitter). This is a relatively
-//! slow and complicated operation.
-//!
-//! Generally the operating system will collect some entropy, remove bias, and
-//! use that to seed its own PRNG; [`OsRng`] provides an interface to this.
-//! [`JitterRng`] is an entropy collector included with Rand that measures
-//! jitter in the CPU execution time, and jitter in memory access time.
-//! [`EntropyRng`] is a wrapper that uses the best entropy source that is
-//! available.
-//!
-//! ## Pseudo-random number generators
-//!
-//! What is commonly used instead of "true" random number renerators, are
-//! *pseudo-random number generators* (PRNGs), deterministic algorithms that
-//! produce an infinite stream of pseudo-random numbers from a small random
-//! seed. PRNGs are faster, and have better provable properties. The numbers
-//! produced can be statistically of very high quality and can be impossible to
-//! predict. (They can also have obvious correlations and be trivial to predict;
-//! quality varies.)
-//!
-//! There are two different types of PRNGs: those developed for simulations
-//! and statistics, and those developed for use in cryptography; the latter are
-//! called Cryptographically Secure PRNGs (CSPRNG or CPRNG). Both types can
-//! have good statistical quality but the latter also have to be impossible to
-//! predict, even after seeing many previous output values. Rand provides a good
-//! default algorithm from each class:
-//!
-//! - [`SmallRng`] is a PRNG chosen for low memory usage, high performance and
-//! good statistical quality.
-//! - [`StdRng`] is a CSPRNG chosen for good performance and trust of security
-//! (based on reviews, maturity and usage). The current algorithm is HC-128,
-//! which is one of the recommendations by ECRYPT's eSTREAM project.
-//!
-//! The above PRNGs do not cover all use-cases; more algorithms can be found in
-//! the [`prng` module], as well as in several other crates. For example, you
-//! may wish a CSPRNG with significantly lower memory usage than [`StdRng`]
-//! while being less concerned about performance, in which case [`ChaChaRng`]
-//! is a good choice.
-//!
-//! One complexity is that the internal state of a PRNG must change with every
-//! generated number. For APIs this generally means a mutable reference to the
-//! state of the PRNG has to be passed around.
-//!
-//! A solution is [`ThreadRng`]. This is a thread-local implementation of
-//! [`StdRng`] with automatic seeding on first use. It is the best choice if you
-//! "just" want a convenient, secure, fast random number source. Use via the
-//! [`thread_rng`] function, which gets a reference to the current thread's
-//! local instance.
-//!
-//! ## Seeding
-//!
-//! As mentioned above, PRNGs require a random seed in order to produce random
-//! output. This is especially important for CSPRNGs, which are still
-//! deterministic algorithms, thus can only be secure if their seed value is
-//! also secure. To seed a PRNG, use one of:
-//!
-//! - [`FromEntropy::from_entropy`]; this is the most convenient way to seed
-//! with fresh, secure random data.
-//! - [`SeedableRng::from_rng`]; this allows seeding from another PRNG or
-//! from an entropy source such as [`EntropyRng`].
-//! - [`SeedableRng::from_seed`]; this is mostly useful if you wish to be able
-//! to reproduce the output sequence by using a fixed seed. (Don't use
-//! [`StdRng`] or [`SmallRng`] in this case since different algorithms may be
-//! used by future versions of Rand; use an algorithm from the
-//! [`prng` module].)
-//!
-//! ## Conclusion
-//!
-//! - [`thread_rng`] is what you often want to use.
-//! - If you want more control, flexibility, or better performance, use
-//! [`StdRng`], [`SmallRng`] or an algorithm from the [`prng` module].
-//! - Use [`FromEntropy::from_entropy`] to seed new PRNGs.
-//! - If you need reproducibility, use [`SeedableRng::from_seed`] combined with
-//! a named PRNG.
-//!
-//! More information and notes on cryptographic security can be found
-//! in the [`prng` module].
-//!
-//! ## Examples
-//!
-//! Examples of seeding PRNGs:
-//!
-//! ```
-//! use rand::prelude::*;
-//! # use rand::Error;
-//!
-//! // StdRng seeded securely by the OS or local entropy collector:
-//! let mut rng = StdRng::from_entropy();
-//! # let v: u32 = rng.gen();
-//!
-//! // SmallRng seeded from thread_rng:
-//! # fn try_inner() -> Result<(), Error> {
-//! let mut rng = SmallRng::from_rng(thread_rng())?;
-//! # let v: u32 = rng.gen();
-//! # Ok(())
-//! # }
-//! # try_inner().unwrap();
-//!
-//! // SmallRng seeded by a constant, for deterministic results:
-//! let seed = [1,2,3,4, 5,6,7,8, 9,10,11,12, 13,14,15,16]; // byte array
-//! let mut rng = SmallRng::from_seed(seed);
-//! # let v: u32 = rng.gen();
-//! ```
-//!
-//!
-//! # Implementing custom RNGs
-//!
-//! If you want to implement custom RNG, see the [`rand_core`] crate. The RNG
-//! will have to implement the [`RngCore`] trait, where the [`Rng`] trait is
-//! build on top of.
-//!
-//! If the RNG needs seeding, also implement the [`SeedableRng`] trait.
-//!
-//! [`CryptoRng`] is a marker trait cryptographically secure PRNGs can
-//! implement.
-//!
-//!
-// This module:
-//! [`ThreadRng`]: struct.ThreadRng.html
-//! [`StdRng`]: struct.StdRng.html
-//! [`SmallRng`]: struct.SmallRng.html
-//! [`EntropyRng`]: struct.EntropyRng.html
-//! [`OsRng`]: struct.OsRng.html
-//! [`JitterRng`]: struct.JitterRng.html
-// Other traits and functions:
-//! [`rand_core`]: https://crates.io/crates/rand_core
-//! [`prng` module]: ../prng/index.html
-//! [`CryptoRng`]: ../trait.CryptoRng.html
-//! [`FromEntropy`]: ../trait.FromEntropy.html
-//! [`FromEntropy::from_entropy`]: ../trait.FromEntropy.html#tymethod.from_entropy
-//! [`RngCore`]: ../trait.RngCore.html
-//! [`Rng`]: ../trait.Rng.html
-//! [`SeedableRng`]: ../trait.SeedableRng.html
-//! [`SeedableRng::from_rng`]: ../trait.SeedableRng.html#tymethod.from_rng
-//! [`SeedableRng::from_seed`]: ../trait.SeedableRng.html#tymethod.from_seed
-//! [`thread_rng`]: ../fn.thread_rng.html
-//! [`mock::StepRng`]: mock/struct.StepRng.html
-//! [`adapter::ReadRng`]: adapter/struct.ReadRng.html
-//! [`adapter::ReseedingRng`]: adapter/struct.ReseedingRng.html
-//! [`ChaChaRng`]: ../../rand_chacha/struct.ChaChaRng.html
+//! Random number generators and adapters
+//!
+//! ## Background: Random number generators (RNGs)
+//!
+//! Computers cannot produce random numbers from nowhere. We classify
+//! random number generators as follows:
+//!
+//! - "True" random number generators (TRNGs) use hard-to-predict data sources
+//! (e.g. the high-resolution parts of event timings and sensor jitter) to
+//! harvest random bit-sequences, apply algorithms to remove bias and
+//! estimate available entropy, then combine these bits into a byte-sequence
+//! or an entropy pool. This job is usually done by the operating system or
+//! a hardware generator (HRNG).
+//! - "Pseudo"-random number generators (PRNGs) use algorithms to transform a
+//! seed into a sequence of pseudo-random numbers. These generators can be
+//! fast and produce well-distributed unpredictable random numbers (or not).
+//! They are usually deterministic: given algorithm and seed, the output
+//! sequence can be reproduced. They have finite period and eventually loop;
+//! with many algorithms this period is fixed and can be proven sufficiently
+//! long, while others are chaotic and the period depends on the seed.
+//! - "Cryptographically secure" pseudo-random number generators (CSPRNGs)
+//! are the sub-set of PRNGs which are secure. Security of the generator
+//! relies both on hiding the internal state and using a strong algorithm.
+//!
+//! ## Traits and functionality
+//!
+//! All RNGs implement the [`RngCore`] trait, as a consequence of which the
+//! [`Rng`] extension trait is automatically implemented. Secure RNGs may
+//! additionally implement the [`CryptoRng`] trait.
+//!
+//! All PRNGs require a seed to produce their random number sequence. The
+//! [`SeedableRng`] trait provides three ways of constructing PRNGs:
+//!
+//! - `from_seed` accepts a type specific to the PRNG
+//! - `from_rng` allows a PRNG to be seeded from any other RNG
+//! - `seed_from_u64` allows any PRNG to be seeded from a `u64` insecurely
+//! - `from_entropy` securely seeds a PRNG from fresh entropy
+//!
+//! Use the [`rand_core`] crate when implementing your own RNGs.
+//!
+//! ## Our generators
+//!
+//! This crate provides several random number generators:
+//!
+//! - [`OsRng`] is an interface to the operating system's random number
+//! source. Typically the operating system uses a CSPRNG with entropy
+//! provided by a TRNG and some type of on-going re-seeding.
+//! - [`ThreadRng`], provided by the [`thread_rng`] function, is a handle to a
+//! thread-local CSPRNG with periodic seeding from [`OsRng`]. Because this
+//! is local, it is typically much faster than [`OsRng`]. It should be
+//! secure, though the paranoid may prefer [`OsRng`].
+//! - [`StdRng`] is a CSPRNG chosen for good performance and trust of security
+//! (based on reviews, maturity and usage). The current algorithm is ChaCha20,
+//! which is well established and rigorously analysed.
+//! [`StdRng`] provides the algorithm used by [`ThreadRng`] but without
+//! periodic reseeding.
+//! - [`SmallRng`] is an **insecure** PRNG designed to be fast, simple, require
+//! little memory, and have good output quality.
+//!
+//! The algorithms selected for [`StdRng`] and [`SmallRng`] may change in any
+//! release and may be platform-dependent, therefore they should be considered
+//! **not reproducible**.
+//!
+//! ## Additional generators
+//!
+//! **TRNGs**: The [`rdrand`] crate provides an interface to the RDRAND and
+//! RDSEED instructions available in modern Intel and AMD CPUs.
+//! The [`rand_jitter`] crate provides a user-space implementation of
+//! entropy harvesting from CPU timer jitter, but is very slow and has
+//! [security issues](https://github.com/rust-random/rand/issues/699).
+//!
+//! **PRNGs**: Several companion crates are available, providing individual or
+//! families of PRNG algorithms. These provide the implementations behind
+//! [`StdRng`] and [`SmallRng`] but can also be used directly, indeed *should*
+//! be used directly when **reproducibility** matters.
+//! Some suggestions are: [`rand_chacha`], [`rand_pcg`], [`rand_xoshiro`].
+//! A full list can be found by searching for crates with the [`rng` tag].
+//!
+//! [`SmallRng`]: rngs::SmallRng
+//! [`StdRng`]: rngs::StdRng
+//! [`OsRng`]: rngs::OsRng
+//! [`ThreadRng`]: rngs::ThreadRng
+//! [`mock::StepRng`]: rngs::mock::StepRng
+//! [`adapter::ReadRng`]: rngs::adapter::ReadRng
+//! [`adapter::ReseedingRng`]: rngs::adapter::ReseedingRng
+//! [`rdrand`]: https://crates.io/crates/rdrand
+//! [`rand_jitter`]: https://crates.io/crates/rand_jitter
+//! [`rand_chacha`]: https://crates.io/crates/rand_chacha
+//! [`rand_pcg`]: https://crates.io/crates/rand_pcg
+//! [`rand_xoshiro`]: https://crates.io/crates/rand_xoshiro
+//! [`rng` tag]: https://crates.io/keywords/rng
pub mod adapter;
#[cfg(feature="std")] mod entropy;
-mod jitter;
pub mod mock; // Public so we don't export `StepRng` directly, making it a bit
// more clear it is intended for testing.
+#[cfg(feature="small_rng")]
mod small;
mod std;
#[cfg(feature="std")] pub(crate) mod thread;
-
-pub use self::jitter::{JitterRng, TimerError};
+#[allow(deprecated)]
#[cfg(feature="std")] pub use self::entropy::EntropyRng;
+#[cfg(feature="small_rng")]
pub use self::small::SmallRng;
pub use self::std::StdRng;
#[cfg(feature="std")] pub use self::thread::ThreadRng;
-#[cfg(feature="rand_os")]
-pub use rand_os::OsRng;
+#[cfg(feature="getrandom")] pub use rand_core::OsRng;
diff --git a/rand/src/rngs/small.rs b/rand/src/rngs/small.rs
index b652c8c..6571363 100644
--- a/rand/src/rngs/small.rs
+++ b/rand/src/rngs/small.rs
@@ -8,35 +8,42 @@
//! A small fast RNG
-use {RngCore, SeedableRng, Error};
+use rand_core::{RngCore, SeedableRng, Error};
-#[cfg(all(all(rustc_1_26, not(target_os = "emscripten")), target_pointer_width = "64"))]
-type Rng = ::rand_pcg::Pcg64Mcg;
-#[cfg(not(all(all(rustc_1_26, not(target_os = "emscripten")), target_pointer_width = "64")))]
-type Rng = ::rand_pcg::Pcg32;
+#[cfg(all(not(target_os = "emscripten"), target_pointer_width = "64"))]
+type Rng = rand_pcg::Pcg64Mcg;
+#[cfg(not(all(not(target_os = "emscripten"), target_pointer_width = "64")))]
+type Rng = rand_pcg::Pcg32;
-/// An RNG recommended when small state, cheap initialization and good
-/// performance are required. The PRNG algorithm in `SmallRng` is chosen to be
-/// efficient on the current platform, **without consideration for cryptography
-/// or security**. The size of its state is much smaller than for [`StdRng`].
+/// A small-state, fast non-crypto PRNG
///
-/// Reproducibility of output from this generator is however not required, thus
-/// future library versions may use a different internal generator with
-/// different output. Further, this generator may not be portable and can
-/// produce different output depending on the architecture. If you require
-/// reproducible output, use a named RNG. Refer to the documentation on the
-/// [`prng` module](../prng/index.html).
+/// `SmallRng` may be a good choice when a PRNG with small state, cheap
+/// initialization, good statistical quality and good performance are required.
+/// It is **not** a good choice when security against prediction or
+/// reproducibility are important.
///
-/// The current algorithm is [`Pcg64Mcg`] on 64-bit platforms with Rust version
-/// 1.26 and later, or [`Pcg32`] otherwise.
+/// This PRNG is **feature-gated**: to use, you must enable the crate feature
+/// `small_rng`.
+///
+/// The algorithm is deterministic but should not be considered reproducible
+/// due to dependence on platform and possible replacement in future
+/// library versions. For a reproducible generator, use a named PRNG from an
+/// external crate, e.g. [rand_pcg] or [rand_chacha].
+/// Refer also to [The Book](https://rust-random.github.io/book/guide-rngs.html).
+///
+/// The PRNG algorithm in `SmallRng` is chosen to be
+/// efficient on the current platform, without consideration for cryptography
+/// or security. The size of its state is much smaller than [`StdRng`].
+/// The current algorithm is [`Pcg64Mcg`](rand_pcg::Pcg64Mcg) on 64-bit
+/// platforms and [`Pcg32`](rand_pcg::Pcg32) on 32-bit platforms. Both are
+/// implemented by the [rand_pcg] crate.
///
/// # Examples
///
-/// Initializing `SmallRng` with a random seed can be done using [`FromEntropy`]:
+/// Initializing `SmallRng` with a random seed can be done using [`SeedableRng::from_entropy`]:
///
/// ```
-/// # use rand::Rng;
-/// use rand::FromEntropy;
+/// use rand::{Rng, SeedableRng};
/// use rand::rngs::SmallRng;
///
/// // Create small, cheap to initialize and fast RNG with a random seed.
@@ -64,11 +71,10 @@ type Rng = ::rand_pcg::Pcg32;
/// .collect();
/// ```
///
-/// [`FromEntropy`]: ../trait.FromEntropy.html
-/// [`StdRng`]: struct.StdRng.html
-/// [`thread_rng`]: ../fn.thread_rng.html
-/// [`Pcg64Mcg`]: ../../rand_pcg/type.Pcg64Mcg.html
-/// [`Pcg32`]: ../../rand_pcg/type.Pcg32.html
+/// [`StdRng`]: crate::rngs::StdRng
+/// [`thread_rng`]: crate::thread_rng
+/// [rand_chacha]: https://crates.io/crates/rand_chacha
+/// [rand_pcg]: https://crates.io/crates/rand_pcg
#[derive(Clone, Debug)]
pub struct SmallRng(Rng);
@@ -83,10 +89,12 @@ impl RngCore for SmallRng {
self.0.next_u64()
}
+ #[inline(always)]
fn fill_bytes(&mut self, dest: &mut [u8]) {
self.0.fill_bytes(dest);
}
+ #[inline(always)]
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
self.0.try_fill_bytes(dest)
}
@@ -95,10 +103,12 @@ impl RngCore for SmallRng {
impl SeedableRng for SmallRng {
type Seed = <Rng as SeedableRng>::Seed;
+ #[inline(always)]
fn from_seed(seed: Self::Seed) -> Self {
SmallRng(Rng::from_seed(seed))
}
+ #[inline(always)]
fn from_rng<R: RngCore>(rng: R) -> Result<Self, Error> {
Rng::from_rng(rng).map(SmallRng)
}
diff --git a/rand/src/rngs/std.rs b/rand/src/rngs/std.rs
index ce1658b..22e08ae 100644
--- a/rand/src/rngs/std.rs
+++ b/rand/src/rngs/std.rs
@@ -8,25 +8,30 @@
//! The standard RNG
-use {RngCore, CryptoRng, Error, SeedableRng};
-use rand_hc::Hc128Rng;
+use crate::{RngCore, CryptoRng, Error, SeedableRng};
+
+#[cfg(target_os = "emscripten")] pub(crate) use rand_hc::Hc128Core as Core;
+#[cfg(not(target_os = "emscripten"))] pub(crate) use rand_chacha::ChaCha20Core as Core;
+#[cfg(target_os = "emscripten")] use rand_hc::Hc128Rng as Rng;
+#[cfg(not(target_os = "emscripten"))] use rand_chacha::ChaCha20Rng as Rng;
/// The standard RNG. The PRNG algorithm in `StdRng` is chosen to be efficient
/// on the current platform, to be statistically strong and unpredictable
/// (meaning a cryptographically secure PRNG).
///
-/// The current algorithm used on all platforms is [HC-128].
+/// The current algorithm used is the ChaCha block cipher with either 20 or 12
+/// rounds (see the `stdrng_*` feature flags, documented in the README).
+/// This may change as new evidence of cipher security and performance
+/// becomes available.
///
-/// Reproducibility of output from this generator is however not required, thus
-/// future library versions may use a different internal generator with
-/// different output. Further, this generator may not be portable and can
-/// produce different output depending on the architecture. If you require
-/// reproducible output, use a named RNG, for example [`ChaChaRng`].
+/// The algorithm is deterministic but should not be considered reproducible
+/// due to dependence on configuration and possible replacement in future
+/// library versions. For a secure reproducible generator, we recommend use of
+/// the [rand_chacha] crate directly.
///
-/// [HC-128]: ../../rand_hc/struct.Hc128Rng.html
-/// [`ChaChaRng`]: ../../rand_chacha/struct.ChaChaRng.html
+/// [rand_chacha]: https://crates.io/crates/rand_chacha
#[derive(Clone, Debug)]
-pub struct StdRng(Hc128Rng);
+pub struct StdRng(Rng);
impl RngCore for StdRng {
#[inline(always)]
@@ -39,24 +44,28 @@ impl RngCore for StdRng {
self.0.next_u64()
}
+ #[inline(always)]
fn fill_bytes(&mut self, dest: &mut [u8]) {
self.0.fill_bytes(dest);
}
+ #[inline(always)]
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
self.0.try_fill_bytes(dest)
}
}
impl SeedableRng for StdRng {
- type Seed = <Hc128Rng as SeedableRng>::Seed;
+ type Seed = <Rng as SeedableRng>::Seed;
+ #[inline(always)]
fn from_seed(seed: Self::Seed) -> Self {
- StdRng(Hc128Rng::from_seed(seed))
+ StdRng(Rng::from_seed(seed))
}
+ #[inline(always)]
fn from_rng<R: RngCore>(rng: R) -> Result<Self, Error> {
- Hc128Rng::from_rng(rng).map(StdRng)
+ Rng::from_rng(rng).map(StdRng)
}
}
@@ -65,17 +74,27 @@ impl CryptoRng for StdRng {}
#[cfg(test)]
mod test {
- use {RngCore, SeedableRng};
- use rngs::StdRng;
+ use crate::{RngCore, SeedableRng};
+ use crate::rngs::StdRng;
#[test]
fn test_stdrng_construction() {
+ // Test value-stability of StdRng. This is expected to break any time
+ // the algorithm is changed.
let seed = [1,0,0,0, 23,0,0,0, 200,1,0,0, 210,30,0,0,
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0];
- let mut rng1 = StdRng::from_seed(seed);
- assert_eq!(rng1.next_u64(), 15759097995037006553);
- let mut rng2 = StdRng::from_rng(rng1).unwrap();
- assert_eq!(rng2.next_u64(), 6766915756997287454);
+ #[cfg(any(feature="stdrng_strong", not(feature="stdrng_fast")))]
+ let target = [3950704604716924505, 5573172343717151650];
+ #[cfg(all(not(feature="stdrng_strong"), feature="stdrng_fast"))]
+ let target = [10719222850664546238, 14064965282130556830];
+
+ let mut rng0 = StdRng::from_seed(seed);
+ let x0 = rng0.next_u64();
+
+ let mut rng1 = StdRng::from_rng(rng0).unwrap();
+ let x1 = rng1.next_u64();
+
+ assert_eq!([x0, x1], target);
}
}
diff --git a/rand/src/rngs/thread.rs b/rand/src/rngs/thread.rs
index 7977d85..2006f41 100644
--- a/rand/src/rngs/thread.rs
+++ b/rand/src/rngs/thread.rs
@@ -9,11 +9,12 @@
//! Thread-local random number generator
use std::cell::UnsafeCell;
+use std::ptr::NonNull;
-use {RngCore, CryptoRng, SeedableRng, Error};
-use rngs::adapter::ReseedingRng;
-use rngs::EntropyRng;
-use rand_hc::Hc128Core;
+use crate::{RngCore, CryptoRng, SeedableRng, Error};
+use crate::rngs::adapter::ReseedingRng;
+use crate::rngs::OsRng;
+use super::std::Core;
// Rationale for using `UnsafeCell` in `ThreadRng`:
//
@@ -28,61 +29,43 @@ use rand_hc::Hc128Core;
// completely under our control. We just have to ensure none of them use
// `ThreadRng` internally, which is nonsensical anyway. We should also never run
// `ThreadRng` in destructors of its implementation, which is also nonsensical.
-//
-// The additional `Rc` is not strictly neccesary, and could be removed. For now
-// it ensures `ThreadRng` stays `!Send` and `!Sync`, and implements `Clone`.
-// Number of generated bytes after which to reseed `TreadRng`.
-//
-// The time it takes to reseed HC-128 is roughly equivalent to generating 7 KiB.
-// We pick a treshold here that is large enough to not reduce the average
-// performance too much, but also small enough to not make reseeding something
-// that basically never happens.
-const THREAD_RNG_RESEED_THRESHOLD: u64 = 32*1024*1024; // 32 MiB
+// Number of generated bytes after which to reseed `ThreadRng`.
+// According to benchmarks, reseeding has a noticable impact with thresholds
+// of 32 kB and less. We choose 64 kB to avoid significant overhead.
+const THREAD_RNG_RESEED_THRESHOLD: u64 = 1024 * 64;
/// The type returned by [`thread_rng`], essentially just a reference to the
/// PRNG in thread-local memory.
///
-/// `ThreadRng` uses [`ReseedingRng`] wrapping the same PRNG as [`StdRng`],
-/// which is reseeded after generating 32 MiB of random data. A single instance
-/// is cached per thread and the returned `ThreadRng` is a reference to this
-/// instance β€” hence `ThreadRng` is neither `Send` nor `Sync` but is safe to use
-/// within a single thread. This RNG is seeded and reseeded via [`EntropyRng`]
-/// as required.
+/// `ThreadRng` uses the same PRNG as [`StdRng`] for security and performance.
+/// As hinted by the name, the generator is thread-local. `ThreadRng` is a
+/// handle to this generator and thus supports `Copy`, but not `Send` or `Sync`.
///
-/// Note that the reseeding is done as an extra precaution against entropy
-/// leaks and is in theory unnecessary β€” to predict `ThreadRng`'s output, an
-/// attacker would have to either determine most of the RNG's seed or internal
-/// state, or crack the algorithm used.
+/// Unlike `StdRng`, `ThreadRng` uses the [`ReseedingRng`] wrapper to reseed
+/// the PRNG from fresh entropy every 64 kiB of random data.
+/// [`OsRng`] is used to provide seed data.
///
-/// Like [`StdRng`], `ThreadRng` is a cryptographically secure PRNG. The current
-/// algorithm used is [HC-128], which is an array-based PRNG that trades memory
-/// usage for better performance. This makes it similar to ISAAC, the algorithm
-/// used in `ThreadRng` before rand 0.5.
+/// Note that the reseeding is done as an extra precaution against side-channel
+/// attacks and mis-use (e.g. if somehow weak entropy were supplied initially).
+/// The PRNG algorithms used are assumed to be secure.
///
-/// Cloning this handle just produces a new reference to the same thread-local
-/// generator.
-///
-/// [`thread_rng`]: ../fn.thread_rng.html
-/// [`ReseedingRng`]: adapter/struct.ReseedingRng.html
-/// [`StdRng`]: struct.StdRng.html
-/// [`EntropyRng`]: struct.EntropyRng.html
-/// [HC-128]: ../../rand_hc/struct.Hc128Rng.html
-#[derive(Clone, Debug)]
+/// [`ReseedingRng`]: crate::rngs::adapter::ReseedingRng
+/// [`StdRng`]: crate::rngs::StdRng
+#[derive(Copy, Clone, Debug)]
pub struct ThreadRng {
- // use of raw pointer implies type is neither Send nor Sync
- rng: *mut ReseedingRng<Hc128Core, EntropyRng>,
+ // inner raw pointer implies type is neither Send nor Sync
+ rng: NonNull<ReseedingRng<Core, OsRng>>,
}
thread_local!(
- static THREAD_RNG_KEY: UnsafeCell<ReseedingRng<Hc128Core, EntropyRng>> = {
- let mut entropy_source = EntropyRng::new();
- let r = Hc128Core::from_rng(&mut entropy_source).unwrap_or_else(|err|
+ static THREAD_RNG_KEY: UnsafeCell<ReseedingRng<Core, OsRng>> = {
+ let r = Core::from_rng(OsRng).unwrap_or_else(|err|
panic!("could not initialize thread_rng: {}", err));
let rng = ReseedingRng::new(r,
THREAD_RNG_RESEED_THRESHOLD,
- entropy_source);
+ OsRng);
UnsafeCell::new(rng)
}
);
@@ -91,38 +74,38 @@ thread_local!(
/// seeded by the system. Intended to be used in method chaining style,
/// e.g. `thread_rng().gen::<i32>()`, or cached locally, e.g.
/// `let mut rng = thread_rng();`. Invoked by the `Default` trait, making
-/// `ThreadRng::default()` equivelent.
+/// `ThreadRng::default()` equivalent.
///
/// For more information see [`ThreadRng`].
-///
-/// [`ThreadRng`]: rngs/struct.ThreadRng.html
pub fn thread_rng() -> ThreadRng {
- ThreadRng { rng: THREAD_RNG_KEY.with(|t| t.get()) }
+ let raw = THREAD_RNG_KEY.with(|t| t.get());
+ let nn = NonNull::new(raw).unwrap();
+ ThreadRng { rng: nn }
}
impl Default for ThreadRng {
fn default() -> ThreadRng {
- ::prelude::thread_rng()
+ crate::prelude::thread_rng()
}
}
impl RngCore for ThreadRng {
#[inline(always)]
fn next_u32(&mut self) -> u32 {
- unsafe { (*self.rng).next_u32() }
+ unsafe { self.rng.as_mut().next_u32() }
}
#[inline(always)]
fn next_u64(&mut self) -> u64 {
- unsafe { (*self.rng).next_u64() }
+ unsafe { self.rng.as_mut().next_u64() }
}
fn fill_bytes(&mut self, dest: &mut [u8]) {
- unsafe { (*self.rng).fill_bytes(dest) }
+ unsafe { self.rng.as_mut().fill_bytes(dest) }
}
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
- unsafe { (*self.rng).try_fill_bytes(dest) }
+ unsafe { self.rng.as_mut().try_fill_bytes(dest) }
}
}
@@ -133,8 +116,8 @@ impl CryptoRng for ThreadRng {}
mod test {
#[test]
fn test_thread_rng() {
- use Rng;
- let mut r = ::thread_rng();
+ use crate::Rng;
+ let mut r = crate::thread_rng();
r.gen::<i32>();
assert_eq!(r.gen_range(0, 1), 0);
}
diff --git a/rand/src/seq/index.rs b/rand/src/seq/index.rs
index 3d4df3a..22a5733 100644
--- a/rand/src/seq/index.rs
+++ b/rand/src/seq/index.rs
@@ -6,18 +6,18 @@
// option. This file may not be copied, modified, or distributed
// except according to those terms.
-//! Index sampling
+//! Low-level API for sampling indices
#[cfg(feature="alloc")] use core::slice;
#[cfg(feature="std")] use std::vec;
-#[cfg(all(feature="alloc", not(feature="std")))] use alloc::vec::{self, Vec};
+#[cfg(all(feature="alloc", not(feature="std")))] use crate::alloc::vec::{self, Vec};
// BTreeMap is not as fast in tests, but better than nothing.
#[cfg(feature="std")] use std::collections::{HashSet};
-#[cfg(all(feature="alloc", not(feature="std")))] use alloc::collections::BTreeSet;
+#[cfg(all(feature="alloc", not(feature="std")))] use crate::alloc::collections::BTreeSet;
-#[cfg(feature="alloc")] use distributions::{Distribution, Uniform};
-use Rng;
+#[cfg(feature="alloc")] use crate::distributions::{Distribution, Uniform, uniform::SampleUniform};
+use crate::Rng;
/// A vector of indices.
///
@@ -30,25 +30,37 @@ pub enum IndexVec {
impl IndexVec {
/// Returns the number of indices
+ #[inline]
pub fn len(&self) -> usize {
- match self {
- &IndexVec::U32(ref v) => v.len(),
- &IndexVec::USize(ref v) => v.len(),
+ match *self {
+ IndexVec::U32(ref v) => v.len(),
+ IndexVec::USize(ref v) => v.len(),
+ }
+ }
+
+ /// Returns `true` if the length is 0.
+ #[inline]
+ pub fn is_empty(&self) -> bool {
+ match *self {
+ IndexVec::U32(ref v) => v.is_empty(),
+ IndexVec::USize(ref v) => v.is_empty(),
}
}
/// Return the value at the given `index`.
///
- /// (Note: we cannot implement `std::ops::Index` because of lifetime
+ /// (Note: we cannot implement [`std::ops::Index`] because of lifetime
/// restrictions.)
+ #[inline]
pub fn index(&self, index: usize) -> usize {
- match self {
- &IndexVec::U32(ref v) => v[index] as usize,
- &IndexVec::USize(ref v) => v[index],
+ match *self {
+ IndexVec::U32(ref v) => v[index] as usize,
+ IndexVec::USize(ref v) => v[index],
}
}
/// Return result as a `Vec<usize>`. Conversion may or may not be trivial.
+ #[inline]
pub fn into_vec(self) -> Vec<usize> {
match self {
IndexVec::U32(v) => v.into_iter().map(|i| i as usize).collect(),
@@ -57,14 +69,16 @@ impl IndexVec {
}
/// Iterate over the indices as a sequence of `usize` values
- pub fn iter<'a>(&'a self) -> IndexVecIter<'a> {
- match self {
- &IndexVec::U32(ref v) => IndexVecIter::U32(v.iter()),
- &IndexVec::USize(ref v) => IndexVecIter::USize(v.iter()),
+ #[inline]
+ pub fn iter(&self) -> IndexVecIter<'_> {
+ match *self {
+ IndexVec::U32(ref v) => IndexVecIter::U32(v.iter()),
+ IndexVec::USize(ref v) => IndexVecIter::USize(v.iter()),
}
}
/// Convert into an iterator over the indices as a sequence of `usize` values
+ #[inline]
pub fn into_iter(self) -> IndexVecIntoIter {
match self {
IndexVec::U32(v) => IndexVecIntoIter::U32(v.into_iter()),
@@ -88,12 +102,14 @@ impl PartialEq for IndexVec {
}
impl From<Vec<u32>> for IndexVec {
+ #[inline]
fn from(v: Vec<u32>) -> Self {
IndexVec::U32(v)
}
}
impl From<Vec<usize>> for IndexVec {
+ #[inline]
fn from(v: Vec<usize>) -> Self {
IndexVec::USize(v)
}
@@ -108,18 +124,20 @@ pub enum IndexVecIter<'a> {
impl<'a> Iterator for IndexVecIter<'a> {
type Item = usize;
+ #[inline]
fn next(&mut self) -> Option<usize> {
use self::IndexVecIter::*;
- match self {
- &mut U32(ref mut iter) => iter.next().map(|i| *i as usize),
- &mut USize(ref mut iter) => iter.next().cloned(),
+ match *self {
+ U32(ref mut iter) => iter.next().map(|i| *i as usize),
+ USize(ref mut iter) => iter.next().cloned(),
}
}
+ #[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
- match self {
- &IndexVecIter::U32(ref v) => v.size_hint(),
- &IndexVecIter::USize(ref v) => v.size_hint(),
+ match *self {
+ IndexVecIter::U32(ref v) => v.size_hint(),
+ IndexVecIter::USize(ref v) => v.size_hint(),
}
}
}
@@ -136,19 +154,21 @@ pub enum IndexVecIntoIter {
impl Iterator for IndexVecIntoIter {
type Item = usize;
+ #[inline]
fn next(&mut self) -> Option<Self::Item> {
use self::IndexVecIntoIter::*;
- match self {
- &mut U32(ref mut v) => v.next().map(|i| i as usize),
- &mut USize(ref mut v) => v.next(),
+ match *self {
+ U32(ref mut v) => v.next().map(|i| i as usize),
+ USize(ref mut v) => v.next(),
}
}
+ #[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
use self::IndexVecIntoIter::*;
- match self {
- &U32(ref v) => v.size_hint(),
- &USize(ref v) => v.size_hint(),
+ match *self {
+ U32(ref v) => v.size_hint(),
+ USize(ref v) => v.size_hint(),
}
}
}
@@ -173,14 +193,13 @@ impl ExactSizeIterator for IndexVecIntoIter {}
/// Note that performance is significantly better over `u32` indices than over
/// `u64` indices. Because of this we hide the underlying type behind an
/// abstraction, `IndexVec`.
-///
+///
/// If an allocation-free `no_std` function is required, it is suggested
/// to adapt the internal `sample_floyd` implementation.
///
/// Panics if `amount > length`.
pub fn sample<R>(rng: &mut R, length: usize, amount: usize) -> IndexVec
- where R: Rng + ?Sized,
-{
+where R: Rng + ?Sized {
if amount > length {
panic!("`amount` of samples must be less than or equal to `length`");
}
@@ -213,9 +232,7 @@ pub fn sample<R>(rng: &mut R, length: usize, amount: usize) -> IndexVec
if (length as f32) < C[j] * (amount as f32) {
sample_inplace(rng, length, amount)
} else {
- // note: could have a specific u32 impl, but I'm lazy and
- // generics don't have usable conversions
- sample_rejection(rng, length as usize, amount as usize)
+ sample_rejection(rng, length, amount)
}
}
}
@@ -227,8 +244,7 @@ pub fn sample<R>(rng: &mut R, length: usize, amount: usize) -> IndexVec
///
/// This implementation uses `O(amount)` memory and `O(amount^2)` time.
fn sample_floyd<R>(rng: &mut R, length: u32, amount: u32) -> IndexVec
- where R: Rng + ?Sized,
-{
+where R: Rng + ?Sized {
// For small amount we use Floyd's fully-shuffled variant. For larger
// amounts this is slow due to Vec::insert performance, so we shuffle
// afterwards. Benchmarks show little overhead from extra logic.
@@ -243,11 +259,9 @@ fn sample_floyd<R>(rng: &mut R, length: u32, amount: u32) -> IndexVec
indices.insert(pos, j);
continue;
}
- } else {
- if indices.contains(&t) {
- indices.push(j);
- continue;
- }
+ } else if indices.contains(&t) {
+ indices.push(j);
+ continue;
}
indices.push(t);
}
@@ -274,8 +288,7 @@ fn sample_floyd<R>(rng: &mut R, length: u32, amount: u32) -> IndexVec
///
/// Set-up is `O(length)` time and memory and shuffling is `O(amount)` time.
fn sample_inplace<R>(rng: &mut R, length: u32, amount: u32) -> IndexVec
- where R: Rng + ?Sized,
-{
+where R: Rng + ?Sized {
debug_assert!(amount <= length);
let mut indices: Vec<u32> = Vec::with_capacity(length as usize);
indices.extend(0..length);
@@ -288,21 +301,36 @@ fn sample_inplace<R>(rng: &mut R, length: u32, amount: u32) -> IndexVec
IndexVec::from(indices)
}
+trait UInt: Copy + PartialOrd + Ord + PartialEq + Eq + SampleUniform + core::hash::Hash {
+ fn zero() -> Self;
+ fn as_usize(self) -> usize;
+}
+impl UInt for u32 {
+ #[inline] fn zero() -> Self { 0 }
+ #[inline] fn as_usize(self) -> usize { self as usize }
+}
+impl UInt for usize {
+ #[inline] fn zero() -> Self { 0 }
+ #[inline] fn as_usize(self) -> usize { self }
+}
+
/// Randomly sample exactly `amount` indices from `0..length`, using rejection
/// sampling.
-///
+///
/// Since `amount <<< length` there is a low chance of a random sample in
/// `0..length` being a duplicate. We test for duplicates and resample where
/// necessary. The algorithm is `O(amount)` time and memory.
-fn sample_rejection<R>(rng: &mut R, length: usize, amount: usize) -> IndexVec
- where R: Rng + ?Sized,
-{
+///
+/// This function is generic over X primarily so that results are value-stable
+/// over 32-bit and 64-bit platforms.
+fn sample_rejection<X: UInt, R>(rng: &mut R, length: X, amount: X) -> IndexVec
+where R: Rng + ?Sized, IndexVec: From<Vec<X>> {
debug_assert!(amount < length);
- #[cfg(feature="std")] let mut cache = HashSet::with_capacity(amount);
+ #[cfg(feature="std")] let mut cache = HashSet::with_capacity(amount.as_usize());
#[cfg(not(feature="std"))] let mut cache = BTreeSet::new();
- let distr = Uniform::new(0, length);
- let mut indices = Vec::with_capacity(amount);
- for _ in 0..amount {
+ let distr = Uniform::new(X::zero(), length);
+ let mut indices = Vec::with_capacity(amount.as_usize());
+ for _ in 0..amount.as_usize() {
let mut pos = distr.sample(rng);
while !cache.insert(pos) {
pos = distr.sample(rng);
@@ -310,30 +338,32 @@ fn sample_rejection<R>(rng: &mut R, length: usize, amount: usize) -> IndexVec
indices.push(pos);
}
- debug_assert_eq!(indices.len(), amount);
+ debug_assert_eq!(indices.len(), amount.as_usize());
IndexVec::from(indices)
}
#[cfg(test)]
mod test {
+ #[cfg(feature="std")] use std::vec;
+ #[cfg(all(feature="alloc", not(feature="std")))] use crate::alloc::vec;
use super::*;
#[test]
fn test_sample_boundaries() {
- let mut r = ::test::rng(404);
+ let mut r = crate::test::rng(404);
assert_eq!(sample_inplace(&mut r, 0, 0).len(), 0);
assert_eq!(sample_inplace(&mut r, 1, 0).len(), 0);
assert_eq!(sample_inplace(&mut r, 1, 1).into_vec(), vec![0]);
- assert_eq!(sample_rejection(&mut r, 1, 0).len(), 0);
+ assert_eq!(sample_rejection(&mut r, 1u32, 0).len(), 0);
assert_eq!(sample_floyd(&mut r, 0, 0).len(), 0);
assert_eq!(sample_floyd(&mut r, 1, 0).len(), 0);
assert_eq!(sample_floyd(&mut r, 1, 1).into_vec(), vec![0]);
// These algorithms should be fast with big numbers. Test average.
- let sum: usize = sample_rejection(&mut r, 1 << 25, 10)
+ let sum: usize = sample_rejection(&mut r, 1 << 25, 10u32)
.into_iter().sum();
assert!(1 << 25 < sum && sum < (1 << 25) * 25);
@@ -343,8 +373,9 @@ mod test {
}
#[test]
+ #[cfg(not(miri))] // Miri is too slow
fn test_sample_alg() {
- let seed_rng = ::test::rng;
+ let seed_rng = crate::test::rng;
// We can't test which algorithm is used directly, but Floyd's alg
// should produce different results from the others. (Also, `inplace`
@@ -371,7 +402,7 @@ mod test {
// A large length and larger amount should use cache
let (length, amount): (usize, usize) = (1<<20, 600);
let v1 = sample(&mut seed_rng(422), length, amount);
- let v2 = sample_rejection(&mut seed_rng(422), length, amount);
+ let v2 = sample_rejection(&mut seed_rng(422), length as u32, amount as u32);
assert!(v1.iter().all(|e| e < length));
assert_eq!(v1, v2);
}
diff --git a/rand/src/seq/mod.rs b/rand/src/seq/mod.rs
index 9959602..cec9bb1 100644
--- a/rand/src/seq/mod.rs
+++ b/rand/src/seq/mod.rs
@@ -6,25 +6,55 @@
// option. This file may not be copied, modified, or distributed
// except according to those terms.
-//! Functions for randomly accessing and sampling sequences.
+//! Sequence-related functionality
//!
-//! TODO: module doc
+//! This module provides:
+//!
+//! * [`seq::SliceRandom`] slice sampling and mutation
+//! * [`seq::IteratorRandom`] iterator sampling
+//! * [`seq::index::sample`] low-level API to choose multiple indices from
+//! `0..length`
+//!
+//! Also see:
+//!
+//! * [`distributions::weighted`] module which provides implementations of
+//! weighted index sampling.
+//!
+//! In order to make results reproducible across 32-64 bit architectures, all
+//! `usize` indices are sampled as a `u32` where possible (also providing a
+//! small performance boost in some cases).
#[cfg(feature="alloc")] pub mod index;
#[cfg(feature="alloc")] use core::ops::Index;
-#[cfg(all(feature="alloc", not(feature="std")))] use alloc::vec::Vec;
+#[cfg(all(feature="alloc", not(feature="std")))] use crate::alloc::vec::Vec;
-use Rng;
-#[cfg(feature="alloc")] use distributions::WeightedError;
-#[cfg(feature="alloc")] use distributions::uniform::{SampleUniform, SampleBorrow};
+use crate::Rng;
+#[cfg(feature="alloc")] use crate::distributions::WeightedError;
+#[cfg(feature="alloc")] use crate::distributions::uniform::{SampleUniform, SampleBorrow};
/// Extension trait on slices, providing random mutation and sampling methods.
///
-/// An implementation is provided for slices. This may also be implementable for
-/// other types.
+/// This trait is implemented on all `[T]` slice types, providing several
+/// methods for choosing and shuffling elements. You must `use` this trait:
+///
+/// ```
+/// use rand::seq::SliceRandom;
+///
+/// fn main() {
+/// let mut rng = rand::thread_rng();
+/// let mut bytes = "Hello, random!".to_string().into_bytes();
+/// bytes.shuffle(&mut rng);
+/// let str = String::from_utf8(bytes).unwrap();
+/// println!("{}", str);
+/// }
+/// ```
+/// Example output (non-deterministic):
+/// ```none
+/// l,nmroHado !le
+/// ```
pub trait SliceRandom {
/// The element type.
type Item;
@@ -32,7 +62,7 @@ pub trait SliceRandom {
/// Returns a reference to one random element of the slice, or `None` if the
/// slice is empty.
///
- /// Depending on the implementation, complexity is expected to be `O(1)`.
+ /// For slices, complexity is `O(1)`.
///
/// # Example
///
@@ -46,33 +76,33 @@ pub trait SliceRandom {
/// assert_eq!(choices[..0].choose(&mut rng), None);
/// ```
fn choose<R>(&self, rng: &mut R) -> Option<&Self::Item>
- where R: Rng + ?Sized;
+ where R: Rng + ?Sized;
/// Returns a mutable reference to one random element of the slice, or
/// `None` if the slice is empty.
- ///
- /// Depending on the implementation, complexity is expected to be `O(1)`.
+ ///
+ /// For slices, complexity is `O(1)`.
fn choose_mut<R>(&mut self, rng: &mut R) -> Option<&mut Self::Item>
- where R: Rng + ?Sized;
+ where R: Rng + ?Sized;
- /// Produces an iterator that chooses `amount` elements from the slice at
- /// random without repeating any, and returns them in random order.
- ///
- /// In case this API is not sufficiently flexible, use `index::sample` then
- /// apply the indices to the slice.
- ///
- /// Complexity is expected to be the same as `index::sample`.
- ///
+ /// Chooses `amount` elements from the slice at random, without repetition,
+ /// and in random order. The returned iterator is appropriate both for
+ /// collection into a `Vec` and filling an existing buffer (see example).
+ ///
+ /// In case this API is not sufficiently flexible, use [`index::sample`].
+ ///
+ /// For slices, complexity is the same as [`index::sample`].
+ ///
/// # Example
/// ```
/// use rand::seq::SliceRandom;
- ///
+ ///
/// let mut rng = &mut rand::thread_rng();
/// let sample = "Hello, audience!".as_bytes();
- ///
+ ///
/// // collect the results into a vector:
/// let v: Vec<u8> = sample.choose_multiple(&mut rng, 3).cloned().collect();
- ///
+ ///
/// // store in a buffer:
/// let mut buf = [0u8; 5];
/// for (b, slot) in sample.choose_multiple(&mut rng, buf.len()).zip(buf.iter_mut()) {
@@ -81,13 +111,18 @@ pub trait SliceRandom {
/// ```
#[cfg(feature = "alloc")]
fn choose_multiple<R>(&self, rng: &mut R, amount: usize) -> SliceChooseIter<Self, Self::Item>
- where R: Rng + ?Sized;
+ where R: Rng + ?Sized;
- /// Similar to [`choose`], where the likelihood of each outcome may be
- /// specified. The specified function `weight` maps items `x` to a relative
+ /// Similar to [`choose`], but where the likelihood of each outcome may be
+ /// specified.
+ ///
+ /// The specified function `weight` maps each item `x` to a relative
/// likelihood `weight(x)`. The probability of each item being selected is
/// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`.
///
+ /// For slices of length `n`, complexity is `O(n)`.
+ /// See also [`choose_weighted_mut`], [`distributions::weighted`].
+ ///
/// # Example
///
/// ```
@@ -98,47 +133,59 @@ pub trait SliceRandom {
/// // 50% chance to print 'a', 25% chance to print 'b', 25% chance to print 'c'
/// println!("{:?}", choices.choose_weighted(&mut rng, |item| item.1).unwrap().0);
/// ```
- /// [`choose`]: trait.SliceRandom.html#method.choose
+ /// [`choose`]: SliceRandom::choose
+ /// [`choose_weighted_mut`]: SliceRandom::choose_weighted_mut
+ /// [`distributions::weighted`]: crate::distributions::weighted
#[cfg(feature = "alloc")]
- fn choose_weighted<R, F, B, X>(&self, rng: &mut R, weight: F) -> Result<&Self::Item, WeightedError>
- where R: Rng + ?Sized,
- F: Fn(&Self::Item) -> B,
- B: SampleBorrow<X>,
- X: SampleUniform +
- for<'a> ::core::ops::AddAssign<&'a X> +
- ::core::cmp::PartialOrd<X> +
- Clone +
- Default;
-
- /// Similar to [`choose_mut`], where the likelihood of each outcome may be
- /// specified. The specified function `weight` maps items `x` to a relative
+ fn choose_weighted<R, F, B, X>(
+ &self, rng: &mut R, weight: F,
+ ) -> Result<&Self::Item, WeightedError>
+ where
+ R: Rng + ?Sized,
+ F: Fn(&Self::Item) -> B,
+ B: SampleBorrow<X>,
+ X: SampleUniform
+ + for<'a> ::core::ops::AddAssign<&'a X>
+ + ::core::cmp::PartialOrd<X>
+ + Clone
+ + Default;
+
+ /// Similar to [`choose_mut`], but where the likelihood of each outcome may
+ /// be specified.
+ ///
+ /// The specified function `weight` maps each item `x` to a relative
/// likelihood `weight(x)`. The probability of each item being selected is
/// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`.
///
- /// See also [`choose_weighted`].
+ /// For slices of length `n`, complexity is `O(n)`.
+ /// See also [`choose_weighted`], [`distributions::weighted`].
///
- /// [`choose_mut`]: trait.SliceRandom.html#method.choose_mut
- /// [`choose_weighted`]: trait.SliceRandom.html#method.choose_weighted
+ /// [`choose_mut`]: SliceRandom::choose_mut
+ /// [`choose_weighted`]: SliceRandom::choose_weighted
+ /// [`distributions::weighted`]: crate::distributions::weighted
#[cfg(feature = "alloc")]
- fn choose_weighted_mut<R, F, B, X>(&mut self, rng: &mut R, weight: F) -> Result<&mut Self::Item, WeightedError>
- where R: Rng + ?Sized,
- F: Fn(&Self::Item) -> B,
- B: SampleBorrow<X>,
- X: SampleUniform +
- for<'a> ::core::ops::AddAssign<&'a X> +
- ::core::cmp::PartialOrd<X> +
- Clone +
- Default;
+ fn choose_weighted_mut<R, F, B, X>(
+ &mut self, rng: &mut R, weight: F,
+ ) -> Result<&mut Self::Item, WeightedError>
+ where
+ R: Rng + ?Sized,
+ F: Fn(&Self::Item) -> B,
+ B: SampleBorrow<X>,
+ X: SampleUniform
+ + for<'a> ::core::ops::AddAssign<&'a X>
+ + ::core::cmp::PartialOrd<X>
+ + Clone
+ + Default;
/// Shuffle a mutable slice in place.
- ///
- /// Depending on the implementation, complexity is expected to be `O(1)`.
+ ///
+ /// For slices of length `n`, complexity is `O(n)`.
///
/// # Example
///
/// ```
- /// use rand::thread_rng;
/// use rand::seq::SliceRandom;
+ /// use rand::thread_rng;
///
/// let mut rng = thread_rng();
/// let mut y = [1, 2, 3, 4, 5];
@@ -146,7 +193,8 @@ pub trait SliceRandom {
/// y.shuffle(&mut rng);
/// println!("Shuffled: {:?}", y);
/// ```
- fn shuffle<R>(&mut self, rng: &mut R) where R: Rng + ?Sized;
+ fn shuffle<R>(&mut self, rng: &mut R)
+ where R: Rng + ?Sized;
/// Shuffle a slice in place, but exit early.
///
@@ -164,47 +212,65 @@ pub trait SliceRandom {
/// If `amount` is greater than the number of elements in the slice, this
/// will perform a full shuffle.
///
- /// Complexity is expected to be `O(m)` where `m = amount`.
- fn partial_shuffle<R>(&mut self, rng: &mut R, amount: usize)
- -> (&mut [Self::Item], &mut [Self::Item]) where R: Rng + ?Sized;
+ /// For slices, complexity is `O(m)` where `m = amount`.
+ fn partial_shuffle<R>(
+ &mut self, rng: &mut R, amount: usize,
+ ) -> (&mut [Self::Item], &mut [Self::Item])
+ where R: Rng + ?Sized;
}
/// Extension trait on iterators, providing random sampling methods.
+///
+/// This trait is implemented on all sized iterators, providing methods for
+/// choosing one or more elements. You must `use` this trait:
+///
+/// ```
+/// use rand::seq::IteratorRandom;
+///
+/// fn main() {
+/// let mut rng = rand::thread_rng();
+///
+/// let faces = "πŸ˜€πŸ˜ŽπŸ˜πŸ˜•πŸ˜ πŸ˜’";
+/// println!("I am {}!", faces.chars().choose(&mut rng).unwrap());
+/// }
+/// ```
+/// Example output (non-deterministic):
+/// ```none
+/// I am πŸ˜€!
+/// ```
pub trait IteratorRandom: Iterator + Sized {
- /// Choose one element at random from the iterator. If you have a slice,
- /// it's significantly faster to call the [`choose`] or [`choose_mut`]
- /// functions using the slice instead.
- ///
- /// Returns `None` if and only if the iterator is empty.
+ /// Choose one element at random from the iterator.
///
- /// Complexity is `O(n)`, where `n` is the length of the iterator.
- /// This likely consumes multiple random numbers, but the exact number
- /// is unspecified.
+ /// Returns `None` if and only if the iterator is empty.
///
- /// [`choose`]: trait.SliceRandom.html#method.choose
- /// [`choose_mut`]: trait.SliceRandom.html#method.choose_mut
+ /// This method uses [`Iterator::size_hint`] for optimisation. With an
+ /// accurate hint and where [`Iterator::nth`] is a constant-time operation
+ /// this method can offer `O(1)` performance. Where no size hint is
+ /// available, complexity is `O(n)` where `n` is the iterator length.
+ /// Partial hints (where `lower > 0`) also improve performance.
+ ///
+ /// For slices, prefer [`SliceRandom::choose`] which guarantees `O(1)`
+ /// performance.
fn choose<R>(mut self, rng: &mut R) -> Option<Self::Item>
- where R: Rng + ?Sized
- {
+ where R: Rng + ?Sized {
let (mut lower, mut upper) = self.size_hint();
let mut consumed = 0;
let mut result = None;
if upper == Some(lower) {
- return if lower == 0 { None } else { self.nth(rng.gen_range(0, lower)) };
+ return if lower == 0 { None } else { self.nth(gen_index(rng, lower)) };
}
// Continue until the iterator is exhausted
loop {
if lower > 1 {
- let ix = rng.gen_range(0, lower + consumed);
- let skip;
- if ix < lower {
+ let ix = gen_index(rng, lower + consumed);
+ let skip = if ix < lower {
result = self.nth(ix);
- skip = lower - (ix + 1);
+ lower - (ix + 1)
} else {
- skip = lower;
- }
+ lower
+ };
if upper == Some(lower) {
return result;
}
@@ -230,21 +296,21 @@ pub trait IteratorRandom: Iterator + Sized {
}
}
- /// Collects `amount` values at random from the iterator into a supplied
- /// buffer.
- ///
+ /// Collects values at random from the iterator into a supplied buffer
+ /// until that buffer is filled.
+ ///
/// Although the elements are selected randomly, the order of elements in
/// the buffer is neither stable nor fully random. If random ordering is
/// desired, shuffle the result.
- ///
- /// Returns the number of elements added to the buffer. This equals `amount`
- /// unless the iterator contains insufficient elements, in which case this
- /// equals the number of elements available.
- ///
+ ///
+ /// Returns the number of elements added to the buffer. This equals the length
+ /// of the buffer unless the iterator contains insufficient elements, in which
+ /// case this equals the number of elements available.
+ ///
/// Complexity is `O(n)` where `n` is the length of the iterator.
- fn choose_multiple_fill<R>(mut self, rng: &mut R, buf: &mut [Self::Item])
- -> usize where R: Rng + ?Sized
- {
+ /// For slices, prefer [`SliceRandom::choose_multiple`].
+ fn choose_multiple_fill<R>(mut self, rng: &mut R, buf: &mut [Self::Item]) -> usize
+ where R: Rng + ?Sized {
let amount = buf.len();
let mut len = 0;
while len < amount {
@@ -259,7 +325,7 @@ pub trait IteratorRandom: Iterator + Sized {
// Continue, since the iterator was not exhausted
for (i, elem) in self.enumerate() {
- let k = rng.gen_range(0, i + 1 + amount);
+ let k = gen_index(rng, i + 1 + amount);
if let Some(slot) = buf.get_mut(k) {
*slot = elem;
}
@@ -274,16 +340,16 @@ pub trait IteratorRandom: Iterator + Sized {
/// Although the elements are selected randomly, the order of elements in
/// the buffer is neither stable nor fully random. If random ordering is
/// desired, shuffle the result.
- ///
+ ///
/// The length of the returned vector equals `amount` unless the iterator
/// contains insufficient elements, in which case it equals the number of
/// elements available.
- ///
+ ///
/// Complexity is `O(n)` where `n` is the length of the iterator.
+ /// For slices, prefer [`SliceRandom::choose_multiple`].
#[cfg(feature = "alloc")]
fn choose_multiple<R>(mut self, rng: &mut R, amount: usize) -> Vec<Self::Item>
- where R: Rng + ?Sized
- {
+ where R: Rng + ?Sized {
let mut reservoir = Vec::with_capacity(amount);
reservoir.extend(self.by_ref().take(amount));
@@ -293,7 +359,7 @@ pub trait IteratorRandom: Iterator + Sized {
// If the iterator stops once, then so do we.
if reservoir.len() == amount {
for (i, elem) in self.enumerate() {
- let k = rng.gen_range(0, i + 1 + amount);
+ let k = gen_index(rng, i + 1 + amount);
if let Some(slot) = reservoir.get_mut(k) {
*slot = elem;
}
@@ -312,31 +378,27 @@ impl<T> SliceRandom for [T] {
type Item = T;
fn choose<R>(&self, rng: &mut R) -> Option<&Self::Item>
- where R: Rng + ?Sized
- {
+ where R: Rng + ?Sized {
if self.is_empty() {
None
} else {
- Some(&self[rng.gen_range(0, self.len())])
+ Some(&self[gen_index(rng, self.len())])
}
}
fn choose_mut<R>(&mut self, rng: &mut R) -> Option<&mut Self::Item>
- where R: Rng + ?Sized
- {
+ where R: Rng + ?Sized {
if self.is_empty() {
None
} else {
let len = self.len();
- Some(&mut self[rng.gen_range(0, len)])
+ Some(&mut self[gen_index(rng, len)])
}
}
#[cfg(feature = "alloc")]
- fn choose_multiple<R>(&self, rng: &mut R, amount: usize)
- -> SliceChooseIter<Self, Self::Item>
- where R: Rng + ?Sized
- {
+ fn choose_multiple<R>(&self, rng: &mut R, amount: usize) -> SliceChooseIter<Self, Self::Item>
+ where R: Rng + ?Sized {
let amount = ::core::cmp::min(amount, self.len());
SliceChooseIter {
slice: self,
@@ -346,57 +408,66 @@ impl<T> SliceRandom for [T] {
}
#[cfg(feature = "alloc")]
- fn choose_weighted<R, F, B, X>(&self, rng: &mut R, weight: F) -> Result<&Self::Item, WeightedError>
- where R: Rng + ?Sized,
- F: Fn(&Self::Item) -> B,
- B: SampleBorrow<X>,
- X: SampleUniform +
- for<'a> ::core::ops::AddAssign<&'a X> +
- ::core::cmp::PartialOrd<X> +
- Clone +
- Default {
- use distributions::{Distribution, WeightedIndex};
+ fn choose_weighted<R, F, B, X>(
+ &self, rng: &mut R, weight: F,
+ ) -> Result<&Self::Item, WeightedError>
+ where
+ R: Rng + ?Sized,
+ F: Fn(&Self::Item) -> B,
+ B: SampleBorrow<X>,
+ X: SampleUniform
+ + for<'a> ::core::ops::AddAssign<&'a X>
+ + ::core::cmp::PartialOrd<X>
+ + Clone
+ + Default,
+ {
+ use crate::distributions::{Distribution, WeightedIndex};
let distr = WeightedIndex::new(self.iter().map(weight))?;
Ok(&self[distr.sample(rng)])
}
#[cfg(feature = "alloc")]
- fn choose_weighted_mut<R, F, B, X>(&mut self, rng: &mut R, weight: F) -> Result<&mut Self::Item, WeightedError>
- where R: Rng + ?Sized,
- F: Fn(&Self::Item) -> B,
- B: SampleBorrow<X>,
- X: SampleUniform +
- for<'a> ::core::ops::AddAssign<&'a X> +
- ::core::cmp::PartialOrd<X> +
- Clone +
- Default {
- use distributions::{Distribution, WeightedIndex};
+ fn choose_weighted_mut<R, F, B, X>(
+ &mut self, rng: &mut R, weight: F,
+ ) -> Result<&mut Self::Item, WeightedError>
+ where
+ R: Rng + ?Sized,
+ F: Fn(&Self::Item) -> B,
+ B: SampleBorrow<X>,
+ X: SampleUniform
+ + for<'a> ::core::ops::AddAssign<&'a X>
+ + ::core::cmp::PartialOrd<X>
+ + Clone
+ + Default,
+ {
+ use crate::distributions::{Distribution, WeightedIndex};
let distr = WeightedIndex::new(self.iter().map(weight))?;
Ok(&mut self[distr.sample(rng)])
}
- fn shuffle<R>(&mut self, rng: &mut R) where R: Rng + ?Sized
- {
+ fn shuffle<R>(&mut self, rng: &mut R)
+ where R: Rng + ?Sized {
for i in (1..self.len()).rev() {
// invariant: elements with index > i have been locked in place.
- self.swap(i, rng.gen_range(0, i + 1));
+ self.swap(i, gen_index(rng, i + 1));
}
}
- fn partial_shuffle<R>(&mut self, rng: &mut R, amount: usize)
- -> (&mut [Self::Item], &mut [Self::Item]) where R: Rng + ?Sized
- {
+ fn partial_shuffle<R>(
+ &mut self, rng: &mut R, amount: usize,
+ ) -> (&mut [Self::Item], &mut [Self::Item])
+ where R: Rng + ?Sized {
// This applies Durstenfeld's algorithm for the
// [Fisher–Yates shuffle](https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle#The_modern_algorithm)
// for an unbiased permutation, but exits early after choosing `amount`
// elements.
-
+
let len = self.len();
let end = if amount >= len { 0 } else { len - amount };
-
+
for i in (end..len).rev() {
// invariant: elements with index > i have been locked in place.
- self.swap(i, rng.gen_range(0, i + 1));
+ self.swap(i, gen_index(rng, i + 1));
}
let r = self.split_at_mut(end);
(r.1, r.0)
@@ -406,8 +477,10 @@ impl<T> SliceRandom for [T] {
impl<I> IteratorRandom for I where I: Iterator + Sized {}
-/// Iterator over multiple choices, as returned by [`SliceRandom::choose_multiple](
-/// trait.SliceRandom.html#method.choose_multiple).
+/// An iterator over multiple slice elements.
+///
+/// This struct is created by
+/// [`SliceRandom::choose_multiple`](trait.SliceRandom.html#tymethod.choose_multiple).
#[cfg(feature = "alloc")]
#[derive(Debug)]
pub struct SliceChooseIter<'a, S: ?Sized + 'a, T: 'a> {
@@ -424,7 +497,7 @@ impl<'a, S: Index<usize, Output = T> + ?Sized + 'a, T: 'a> Iterator for SliceCho
// TODO: investigate using SliceIndex::get_unchecked when stable
self.indices.next().map(|i| &self.slice[i as usize])
}
-
+
fn size_hint(&self) -> (usize, Option<usize>) {
(self.indices.len(), Some(self.indices.len()))
}
@@ -440,94 +513,39 @@ impl<'a, S: Index<usize, Output = T> + ?Sized + 'a, T: 'a> ExactSizeIterator
}
-/// Randomly sample `amount` elements from a finite iterator.
-///
-/// Deprecated: use [`IteratorRandom::choose_multiple`] instead.
-///
-/// [`IteratorRandom::choose_multiple`]: trait.IteratorRandom.html#method.choose_multiple
-#[cfg(feature = "alloc")]
-#[deprecated(since="0.6.0", note="use IteratorRandom::choose_multiple instead")]
-pub fn sample_iter<T, I, R>(rng: &mut R, iterable: I, amount: usize) -> Result<Vec<T>, Vec<T>>
- where I: IntoIterator<Item=T>,
- R: Rng + ?Sized,
-{
- use seq::IteratorRandom;
- let iter = iterable.into_iter();
- let result = iter.choose_multiple(rng, amount);
- if result.len() == amount {
- Ok(result)
+// Sample a number uniformly between 0 and `ubound`. Uses 32-bit sampling where
+// possible, primarily in order to produce the same output on 32-bit and 64-bit
+// platforms.
+#[inline]
+fn gen_index<R: Rng + ?Sized>(rng: &mut R, ubound: usize) -> usize {
+ if ubound <= (core::u32::MAX as usize) {
+ rng.gen_range(0, ubound as u32) as usize
} else {
- Err(result)
+ rng.gen_range(0, ubound)
}
}
-/// Randomly sample exactly `amount` values from `slice`.
-///
-/// The values are non-repeating and in random order.
-///
-/// This implementation uses `O(amount)` time and memory.
-///
-/// Panics if `amount > slice.len()`
-///
-/// Deprecated: use [`SliceRandom::choose_multiple`] instead.
-///
-/// [`SliceRandom::choose_multiple`]: trait.SliceRandom.html#method.choose_multiple
-#[cfg(feature = "alloc")]
-#[deprecated(since="0.6.0", note="use SliceRandom::choose_multiple instead")]
-pub fn sample_slice<R, T>(rng: &mut R, slice: &[T], amount: usize) -> Vec<T>
- where R: Rng + ?Sized,
- T: Clone
-{
- let indices = index::sample(rng, slice.len(), amount).into_iter();
-
- let mut out = Vec::with_capacity(amount);
- out.extend(indices.map(|i| slice[i].clone()));
- out
-}
-
-/// Randomly sample exactly `amount` references from `slice`.
-///
-/// The references are non-repeating and in random order.
-///
-/// This implementation uses `O(amount)` time and memory.
-///
-/// Panics if `amount > slice.len()`
-///
-/// Deprecated: use [`SliceRandom::choose_multiple`] instead.
-///
-/// [`SliceRandom::choose_multiple`]: trait.SliceRandom.html#method.choose_multiple
-#[cfg(feature = "alloc")]
-#[deprecated(since="0.6.0", note="use SliceRandom::choose_multiple instead")]
-pub fn sample_slice_ref<'a, R, T>(rng: &mut R, slice: &'a [T], amount: usize) -> Vec<&'a T>
- where R: Rng + ?Sized
-{
- let indices = index::sample(rng, slice.len(), amount).into_iter();
-
- let mut out = Vec::with_capacity(amount);
- out.extend(indices.map(|i| &slice[i]));
- out
-}
#[cfg(test)]
mod test {
use super::*;
- #[cfg(feature = "alloc")] use {Rng, SeedableRng};
- #[cfg(feature = "alloc")] use rngs::SmallRng;
+ #[cfg(feature = "alloc")] use crate::Rng;
#[cfg(all(feature="alloc", not(feature="std")))]
use alloc::vec::Vec;
#[test]
fn test_slice_choose() {
- let mut r = ::test::rng(107);
+ let mut r = crate::test::rng(107);
let chars = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n'];
let mut chosen = [0i32; 14];
+ // The below all use a binomial distribution with n=1000, p=1/14.
+ // binocdf(40, 1000, 1/14) ~= 2e-5; 1-binocdf(106, ..) ~= 2e-5
for _ in 0..1000 {
let picked = *chars.choose(&mut r).unwrap();
chosen[(picked as usize) - ('a' as usize)] += 1;
}
for count in chosen.iter() {
- let err = *count - (1000 / (chars.len() as i32));
- assert!(-20 <= err && err <= 20);
+ assert!(40 < *count && *count < 106);
}
chosen.iter_mut().for_each(|x| *x = 0);
@@ -535,8 +553,7 @@ mod test {
*chosen.choose_mut(&mut r).unwrap() += 1;
}
for count in chosen.iter() {
- let err = *count - (1000 / (chosen.len() as i32));
- assert!(-20 <= err && err <= 20);
+ assert!(40 < *count && *count < 106);
}
let mut v: [isize; 0] = [];
@@ -597,8 +614,9 @@ mod test {
}
#[test]
+ #[cfg(not(miri))] // Miri is too slow
fn test_iterator_choose() {
- let r = &mut ::test::rng(109);
+ let r = &mut crate::test::rng(109);
fn test_iter<R: Rng + ?Sized, Iter: Iterator<Item=usize> + Clone>(r: &mut R, iter: Iter) {
let mut chosen = [0i32; 9];
for _ in 0..1000 {
@@ -628,8 +646,9 @@ mod test {
}
#[test]
+ #[cfg(not(miri))] // Miri is too slow
fn test_shuffle() {
- let mut r = ::test::rng(108);
+ let mut r = crate::test::rng(108);
let empty: &mut [isize] = &mut [];
empty.shuffle(&mut r);
let mut one = [1];
@@ -669,14 +688,16 @@ mod test {
counts[permutation] += 1;
}
for count in counts.iter() {
- let err = *count - 10000i32 / 24;
- assert!(-50 <= err && err <= 50);
+ // Binomial(10000, 1/24) with average 416.667
+ // Octave: binocdf(n, 10000, 1/24)
+ // 99.9% chance samples lie within this range:
+ assert!(352 <= *count && *count <= 483, "count: {}", count);
}
}
#[test]
fn test_partial_shuffle() {
- let mut r = ::test::rng(118);
+ let mut r = crate::test::rng(118);
let mut empty: [u32; 0] = [];
let res = empty.partial_shuffle(&mut r, 10);
@@ -696,7 +717,7 @@ mod test {
let min_val = 1;
let max_val = 100;
- let mut r = ::test::rng(401);
+ let mut r = crate::test::rng(401);
let vals = (min_val..max_val).collect::<Vec<i32>>();
let small_sample = vals.iter().choose_multiple(&mut r, 5);
let large_sample = vals.iter().choose_multiple(&mut r, vals.len() + 5);
@@ -713,75 +734,9 @@ mod test {
#[test]
#[cfg(feature = "alloc")]
- #[allow(deprecated)]
- fn test_sample_slice_boundaries() {
- let empty: &[u8] = &[];
-
- let mut r = ::test::rng(402);
-
- // sample 0 items
- assert_eq!(&sample_slice(&mut r, empty, 0)[..], [0u8; 0]);
- assert_eq!(&sample_slice(&mut r, &[42, 2, 42], 0)[..], [0u8; 0]);
-
- // sample 1 item
- assert_eq!(&sample_slice(&mut r, &[42], 1)[..], [42]);
- let v = sample_slice(&mut r, &[1, 42], 1)[0];
- assert!(v == 1 || v == 42);
-
- // sample "all" the items
- let v = sample_slice(&mut r, &[42, 133], 2);
- assert!(&v[..] == [42, 133] || v[..] == [133, 42]);
-
- // Make sure lucky 777's aren't lucky
- let slice = &[42, 777];
- let mut num_42 = 0;
- let total = 1000;
- for _ in 0..total {
- let v = sample_slice(&mut r, slice, 1);
- assert_eq!(v.len(), 1);
- let v = v[0];
- assert!(v == 42 || v == 777);
- if v == 42 {
- num_42 += 1;
- }
- }
- let ratio_42 = num_42 as f64 / 1000 as f64;
- assert!(0.4 <= ratio_42 || ratio_42 <= 0.6, "{}", ratio_42);
- }
-
- #[test]
- #[cfg(feature = "alloc")]
- #[allow(deprecated)]
- fn test_sample_slice() {
- let seeded_rng = SmallRng::from_seed;
-
- let mut r = ::test::rng(403);
-
- for n in 1..20 {
- let length = 5*n - 4; // 1, 6, ...
- let amount = r.gen_range(0, length);
- let mut seed = [0u8; 16];
- r.fill(&mut seed);
-
- // assert the basics work
- let regular = index::sample(&mut seeded_rng(seed), length, amount);
- assert_eq!(regular.len(), amount);
- assert!(regular.iter().all(|e| e < length));
-
- // also test that sampling the slice works
- let vec: Vec<u32> = (0..(length as u32)).collect();
- let result = sample_slice(&mut seeded_rng(seed), &vec, amount);
- assert_eq!(result, regular.iter().map(|i| i as u32).collect::<Vec<_>>());
-
- let result = sample_slice_ref(&mut seeded_rng(seed), &vec, amount);
- assert!(result.iter().zip(regular.iter()).all(|(i,j)| **i == j as u32));
- }
- }
-
- #[test]
- #[cfg(feature = "alloc")]
+ #[cfg(not(miri))] // Miri is too slow
fn test_weighted() {
- let mut r = ::test::rng(406);
+ let mut r = crate::test::rng(406);
const N_REPS: u32 = 3000;
let weights = [1u32, 2, 3, 0, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7];
let total_weight = weights.iter().sum::<u32>() as f32;
@@ -830,7 +785,7 @@ mod test {
assert_eq!(empty_slice.choose_weighted(&mut r, |_| 1), Err(WeightedError::NoItem));
assert_eq!(empty_slice.choose_weighted_mut(&mut r, |_| 1), Err(WeightedError::NoItem));
assert_eq!(['x'].choose_weighted_mut(&mut r, |_| 0), Err(WeightedError::AllWeightsZero));
- assert_eq!([0, -1].choose_weighted_mut(&mut r, |x| *x), Err(WeightedError::NegativeWeight));
- assert_eq!([-1, 0].choose_weighted_mut(&mut r, |x| *x), Err(WeightedError::NegativeWeight));
+ assert_eq!([0, -1].choose_weighted_mut(&mut r, |x| *x), Err(WeightedError::InvalidWeight));
+ assert_eq!([-1, 0].choose_weighted_mut(&mut r, |x| *x), Err(WeightedError::InvalidWeight));
}
}