diff options
author | Daniel Mueller <deso@posteo.net> | 2020-04-04 14:39:19 -0700 |
---|---|---|
committer | Daniel Mueller <deso@posteo.net> | 2020-04-04 14:39:19 -0700 |
commit | d0d9683df8398696147e7ee1fcffb2e4e957008c (patch) | |
tree | 4baa76712a76f4d072ee3936c07956580b230820 /rand/src/seq | |
parent | 203e691f46d591a2cc8acdfd850fa9f5b0fb8a98 (diff) | |
download | nitrocli-d0d9683df8398696147e7ee1fcffb2e4e957008c.tar.gz nitrocli-d0d9683df8398696147e7ee1fcffb2e4e957008c.tar.bz2 |
Remove vendored dependencies
While it appears that by now we actually can get successful builds
without Cargo insisting on Internet access by virtue of using the
--frozen flag, maintaining vendored dependencies is somewhat of a pain
point. This state will also get worse with upcoming changes that replace
argparse in favor of structopt and pull in a slew of new dependencies by
doing so. Then there is also the repository structure aspect, which is
non-standard due to the way we vendor dependencies and a potential
source of confusion.
In order to fix these problems, this change removes all the vendored
dependencies we have.
Delete subrepo argparse/:argparse
Delete subrepo base32/:base32
Delete subrepo cc/:cc
Delete subrepo cfg-if/:cfg-if
Delete subrepo getrandom/:getrandom
Delete subrepo lazy-static/:lazy-static
Delete subrepo libc/:libc
Delete subrepo nitrokey-sys/:nitrokey-sys
Delete subrepo nitrokey/:nitrokey
Delete subrepo rand/:rand
Diffstat (limited to 'rand/src/seq')
-rw-r--r-- | rand/src/seq/index.rs | 409 | ||||
-rw-r--r-- | rand/src/seq/mod.rs | 791 |
2 files changed, 0 insertions, 1200 deletions
diff --git a/rand/src/seq/index.rs b/rand/src/seq/index.rs deleted file mode 100644 index 22a5733..0000000 --- a/rand/src/seq/index.rs +++ /dev/null @@ -1,409 +0,0 @@ -// Copyright 2018 Developers of the Rand project. -// -// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or -// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license -// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your -// option. This file may not be copied, modified, or distributed -// except according to those terms. - -//! Low-level API for sampling indices - -#[cfg(feature="alloc")] use core::slice; - -#[cfg(feature="std")] use std::vec; -#[cfg(all(feature="alloc", not(feature="std")))] use crate::alloc::vec::{self, Vec}; -// BTreeMap is not as fast in tests, but better than nothing. -#[cfg(feature="std")] use std::collections::{HashSet}; -#[cfg(all(feature="alloc", not(feature="std")))] use crate::alloc::collections::BTreeSet; - -#[cfg(feature="alloc")] use crate::distributions::{Distribution, Uniform, uniform::SampleUniform}; -use crate::Rng; - -/// A vector of indices. -/// -/// Multiple internal representations are possible. -#[derive(Clone, Debug)] -pub enum IndexVec { - #[doc(hidden)] U32(Vec<u32>), - #[doc(hidden)] USize(Vec<usize>), -} - -impl IndexVec { - /// Returns the number of indices - #[inline] - pub fn len(&self) -> usize { - match *self { - IndexVec::U32(ref v) => v.len(), - IndexVec::USize(ref v) => v.len(), - } - } - - /// Returns `true` if the length is 0. - #[inline] - pub fn is_empty(&self) -> bool { - match *self { - IndexVec::U32(ref v) => v.is_empty(), - IndexVec::USize(ref v) => v.is_empty(), - } - } - - /// Return the value at the given `index`. - /// - /// (Note: we cannot implement [`std::ops::Index`] because of lifetime - /// restrictions.) - #[inline] - pub fn index(&self, index: usize) -> usize { - match *self { - IndexVec::U32(ref v) => v[index] as usize, - IndexVec::USize(ref v) => v[index], - } - } - - /// Return result as a `Vec<usize>`. Conversion may or may not be trivial. - #[inline] - pub fn into_vec(self) -> Vec<usize> { - match self { - IndexVec::U32(v) => v.into_iter().map(|i| i as usize).collect(), - IndexVec::USize(v) => v, - } - } - - /// Iterate over the indices as a sequence of `usize` values - #[inline] - pub fn iter(&self) -> IndexVecIter<'_> { - match *self { - IndexVec::U32(ref v) => IndexVecIter::U32(v.iter()), - IndexVec::USize(ref v) => IndexVecIter::USize(v.iter()), - } - } - - /// Convert into an iterator over the indices as a sequence of `usize` values - #[inline] - pub fn into_iter(self) -> IndexVecIntoIter { - match self { - IndexVec::U32(v) => IndexVecIntoIter::U32(v.into_iter()), - IndexVec::USize(v) => IndexVecIntoIter::USize(v.into_iter()), - } - } -} - -impl PartialEq for IndexVec { - fn eq(&self, other: &IndexVec) -> bool { - use self::IndexVec::*; - match (self, other) { - (&U32(ref v1), &U32(ref v2)) => v1 == v2, - (&USize(ref v1), &USize(ref v2)) => v1 == v2, - (&U32(ref v1), &USize(ref v2)) => (v1.len() == v2.len()) - && (v1.iter().zip(v2.iter()).all(|(x, y)| *x as usize == *y)), - (&USize(ref v1), &U32(ref v2)) => (v1.len() == v2.len()) - && (v1.iter().zip(v2.iter()).all(|(x, y)| *x == *y as usize)), - } - } -} - -impl From<Vec<u32>> for IndexVec { - #[inline] - fn from(v: Vec<u32>) -> Self { - IndexVec::U32(v) - } -} - -impl From<Vec<usize>> for IndexVec { - #[inline] - fn from(v: Vec<usize>) -> Self { - IndexVec::USize(v) - } -} - -/// Return type of `IndexVec::iter`. -#[derive(Debug)] -pub enum IndexVecIter<'a> { - #[doc(hidden)] U32(slice::Iter<'a, u32>), - #[doc(hidden)] USize(slice::Iter<'a, usize>), -} - -impl<'a> Iterator for IndexVecIter<'a> { - type Item = usize; - #[inline] - fn next(&mut self) -> Option<usize> { - use self::IndexVecIter::*; - match *self { - U32(ref mut iter) => iter.next().map(|i| *i as usize), - USize(ref mut iter) => iter.next().cloned(), - } - } - - #[inline] - fn size_hint(&self) -> (usize, Option<usize>) { - match *self { - IndexVecIter::U32(ref v) => v.size_hint(), - IndexVecIter::USize(ref v) => v.size_hint(), - } - } -} - -impl<'a> ExactSizeIterator for IndexVecIter<'a> {} - -/// Return type of `IndexVec::into_iter`. -#[derive(Clone, Debug)] -pub enum IndexVecIntoIter { - #[doc(hidden)] U32(vec::IntoIter<u32>), - #[doc(hidden)] USize(vec::IntoIter<usize>), -} - -impl Iterator for IndexVecIntoIter { - type Item = usize; - - #[inline] - fn next(&mut self) -> Option<Self::Item> { - use self::IndexVecIntoIter::*; - match *self { - U32(ref mut v) => v.next().map(|i| i as usize), - USize(ref mut v) => v.next(), - } - } - - #[inline] - fn size_hint(&self) -> (usize, Option<usize>) { - use self::IndexVecIntoIter::*; - match *self { - U32(ref v) => v.size_hint(), - USize(ref v) => v.size_hint(), - } - } -} - -impl ExactSizeIterator for IndexVecIntoIter {} - - -/// Randomly sample exactly `amount` distinct indices from `0..length`, and -/// return them in random order (fully shuffled). -/// -/// This method is used internally by the slice sampling methods, but it can -/// sometimes be useful to have the indices themselves so this is provided as -/// an alternative. -/// -/// The implementation used is not specified; we automatically select the -/// fastest available algorithm for the `length` and `amount` parameters -/// (based on detailed profiling on an Intel Haswell CPU). Roughly speaking, -/// complexity is `O(amount)`, except that when `amount` is small, performance -/// is closer to `O(amount^2)`, and when `length` is close to `amount` then -/// `O(length)`. -/// -/// Note that performance is significantly better over `u32` indices than over -/// `u64` indices. Because of this we hide the underlying type behind an -/// abstraction, `IndexVec`. -/// -/// If an allocation-free `no_std` function is required, it is suggested -/// to adapt the internal `sample_floyd` implementation. -/// -/// Panics if `amount > length`. -pub fn sample<R>(rng: &mut R, length: usize, amount: usize) -> IndexVec -where R: Rng + ?Sized { - if amount > length { - panic!("`amount` of samples must be less than or equal to `length`"); - } - if length > (::core::u32::MAX as usize) { - // We never want to use inplace here, but could use floyd's alg - // Lazy version: always use the cache alg. - return sample_rejection(rng, length, amount); - } - let amount = amount as u32; - let length = length as u32; - - // Choice of algorithm here depends on both length and amount. See: - // https://github.com/rust-random/rand/pull/479 - // We do some calculations with f32. Accuracy is not very important. - - if amount < 163 { - const C: [[f32; 2]; 2] = [[1.6, 8.0/45.0], [10.0, 70.0/9.0]]; - let j = if length < 500_000 { 0 } else { 1 }; - let amount_fp = amount as f32; - let m4 = C[0][j] * amount_fp; - // Short-cut: when amount < 12, floyd's is always faster - if amount > 11 && (length as f32) < (C[1][j] + m4) * amount_fp { - sample_inplace(rng, length, amount) - } else { - sample_floyd(rng, length, amount) - } - } else { - const C: [f32; 2] = [270.0, 330.0/9.0]; - let j = if length < 500_000 { 0 } else { 1 }; - if (length as f32) < C[j] * (amount as f32) { - sample_inplace(rng, length, amount) - } else { - sample_rejection(rng, length, amount) - } - } -} - -/// Randomly sample exactly `amount` indices from `0..length`, using Floyd's -/// combination algorithm. -/// -/// The output values are fully shuffled. (Overhead is under 50%.) -/// -/// This implementation uses `O(amount)` memory and `O(amount^2)` time. -fn sample_floyd<R>(rng: &mut R, length: u32, amount: u32) -> IndexVec -where R: Rng + ?Sized { - // For small amount we use Floyd's fully-shuffled variant. For larger - // amounts this is slow due to Vec::insert performance, so we shuffle - // afterwards. Benchmarks show little overhead from extra logic. - let floyd_shuffle = amount < 50; - - debug_assert!(amount <= length); - let mut indices = Vec::with_capacity(amount as usize); - for j in length - amount .. length { - let t = rng.gen_range(0, j + 1); - if floyd_shuffle { - if let Some(pos) = indices.iter().position(|&x| x == t) { - indices.insert(pos, j); - continue; - } - } else if indices.contains(&t) { - indices.push(j); - continue; - } - indices.push(t); - } - if !floyd_shuffle { - // Reimplement SliceRandom::shuffle with smaller indices - for i in (1..amount).rev() { - // invariant: elements with index > i have been locked in place. - indices.swap(i as usize, rng.gen_range(0, i + 1) as usize); - } - } - IndexVec::from(indices) -} - -/// Randomly sample exactly `amount` indices from `0..length`, using an inplace -/// partial Fisher-Yates method. -/// Sample an amount of indices using an inplace partial fisher yates method. -/// -/// This allocates the entire `length` of indices and randomizes only the first `amount`. -/// It then truncates to `amount` and returns. -/// -/// This method is not appropriate for large `length` and potentially uses a lot -/// of memory; because of this we only implement for `u32` index (which improves -/// performance in all cases). -/// -/// Set-up is `O(length)` time and memory and shuffling is `O(amount)` time. -fn sample_inplace<R>(rng: &mut R, length: u32, amount: u32) -> IndexVec -where R: Rng + ?Sized { - debug_assert!(amount <= length); - let mut indices: Vec<u32> = Vec::with_capacity(length as usize); - indices.extend(0..length); - for i in 0..amount { - let j: u32 = rng.gen_range(i, length); - indices.swap(i as usize, j as usize); - } - indices.truncate(amount as usize); - debug_assert_eq!(indices.len(), amount as usize); - IndexVec::from(indices) -} - -trait UInt: Copy + PartialOrd + Ord + PartialEq + Eq + SampleUniform + core::hash::Hash { - fn zero() -> Self; - fn as_usize(self) -> usize; -} -impl UInt for u32 { - #[inline] fn zero() -> Self { 0 } - #[inline] fn as_usize(self) -> usize { self as usize } -} -impl UInt for usize { - #[inline] fn zero() -> Self { 0 } - #[inline] fn as_usize(self) -> usize { self } -} - -/// Randomly sample exactly `amount` indices from `0..length`, using rejection -/// sampling. -/// -/// Since `amount <<< length` there is a low chance of a random sample in -/// `0..length` being a duplicate. We test for duplicates and resample where -/// necessary. The algorithm is `O(amount)` time and memory. -/// -/// This function is generic over X primarily so that results are value-stable -/// over 32-bit and 64-bit platforms. -fn sample_rejection<X: UInt, R>(rng: &mut R, length: X, amount: X) -> IndexVec -where R: Rng + ?Sized, IndexVec: From<Vec<X>> { - debug_assert!(amount < length); - #[cfg(feature="std")] let mut cache = HashSet::with_capacity(amount.as_usize()); - #[cfg(not(feature="std"))] let mut cache = BTreeSet::new(); - let distr = Uniform::new(X::zero(), length); - let mut indices = Vec::with_capacity(amount.as_usize()); - for _ in 0..amount.as_usize() { - let mut pos = distr.sample(rng); - while !cache.insert(pos) { - pos = distr.sample(rng); - } - indices.push(pos); - } - - debug_assert_eq!(indices.len(), amount.as_usize()); - IndexVec::from(indices) -} - -#[cfg(test)] -mod test { - #[cfg(feature="std")] use std::vec; - #[cfg(all(feature="alloc", not(feature="std")))] use crate::alloc::vec; - use super::*; - - #[test] - fn test_sample_boundaries() { - let mut r = crate::test::rng(404); - - assert_eq!(sample_inplace(&mut r, 0, 0).len(), 0); - assert_eq!(sample_inplace(&mut r, 1, 0).len(), 0); - assert_eq!(sample_inplace(&mut r, 1, 1).into_vec(), vec![0]); - - assert_eq!(sample_rejection(&mut r, 1u32, 0).len(), 0); - - assert_eq!(sample_floyd(&mut r, 0, 0).len(), 0); - assert_eq!(sample_floyd(&mut r, 1, 0).len(), 0); - assert_eq!(sample_floyd(&mut r, 1, 1).into_vec(), vec![0]); - - // These algorithms should be fast with big numbers. Test average. - let sum: usize = sample_rejection(&mut r, 1 << 25, 10u32) - .into_iter().sum(); - assert!(1 << 25 < sum && sum < (1 << 25) * 25); - - let sum: usize = sample_floyd(&mut r, 1 << 25, 10) - .into_iter().sum(); - assert!(1 << 25 < sum && sum < (1 << 25) * 25); - } - - #[test] - #[cfg(not(miri))] // Miri is too slow - fn test_sample_alg() { - let seed_rng = crate::test::rng; - - // We can't test which algorithm is used directly, but Floyd's alg - // should produce different results from the others. (Also, `inplace` - // and `cached` currently use different sizes thus produce different results.) - - // A small length and relatively large amount should use inplace - let (length, amount): (usize, usize) = (100, 50); - let v1 = sample(&mut seed_rng(420), length, amount); - let v2 = sample_inplace(&mut seed_rng(420), length as u32, amount as u32); - assert!(v1.iter().all(|e| e < length)); - assert_eq!(v1, v2); - - // Test Floyd's alg does produce different results - let v3 = sample_floyd(&mut seed_rng(420), length as u32, amount as u32); - assert!(v1 != v3); - - // A large length and small amount should use Floyd - let (length, amount): (usize, usize) = (1<<20, 50); - let v1 = sample(&mut seed_rng(421), length, amount); - let v2 = sample_floyd(&mut seed_rng(421), length as u32, amount as u32); - assert!(v1.iter().all(|e| e < length)); - assert_eq!(v1, v2); - - // A large length and larger amount should use cache - let (length, amount): (usize, usize) = (1<<20, 600); - let v1 = sample(&mut seed_rng(422), length, amount); - let v2 = sample_rejection(&mut seed_rng(422), length as u32, amount as u32); - assert!(v1.iter().all(|e| e < length)); - assert_eq!(v1, v2); - } -} diff --git a/rand/src/seq/mod.rs b/rand/src/seq/mod.rs deleted file mode 100644 index cec9bb1..0000000 --- a/rand/src/seq/mod.rs +++ /dev/null @@ -1,791 +0,0 @@ -// Copyright 2018 Developers of the Rand project. -// -// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or -// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license -// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your -// option. This file may not be copied, modified, or distributed -// except according to those terms. - -//! Sequence-related functionality -//! -//! This module provides: -//! -//! * [`seq::SliceRandom`] slice sampling and mutation -//! * [`seq::IteratorRandom`] iterator sampling -//! * [`seq::index::sample`] low-level API to choose multiple indices from -//! `0..length` -//! -//! Also see: -//! -//! * [`distributions::weighted`] module which provides implementations of -//! weighted index sampling. -//! -//! In order to make results reproducible across 32-64 bit architectures, all -//! `usize` indices are sampled as a `u32` where possible (also providing a -//! small performance boost in some cases). - - -#[cfg(feature="alloc")] pub mod index; - -#[cfg(feature="alloc")] use core::ops::Index; - -#[cfg(all(feature="alloc", not(feature="std")))] use crate::alloc::vec::Vec; - -use crate::Rng; -#[cfg(feature="alloc")] use crate::distributions::WeightedError; -#[cfg(feature="alloc")] use crate::distributions::uniform::{SampleUniform, SampleBorrow}; - -/// Extension trait on slices, providing random mutation and sampling methods. -/// -/// This trait is implemented on all `[T]` slice types, providing several -/// methods for choosing and shuffling elements. You must `use` this trait: -/// -/// ``` -/// use rand::seq::SliceRandom; -/// -/// fn main() { -/// let mut rng = rand::thread_rng(); -/// let mut bytes = "Hello, random!".to_string().into_bytes(); -/// bytes.shuffle(&mut rng); -/// let str = String::from_utf8(bytes).unwrap(); -/// println!("{}", str); -/// } -/// ``` -/// Example output (non-deterministic): -/// ```none -/// l,nmroHado !le -/// ``` -pub trait SliceRandom { - /// The element type. - type Item; - - /// Returns a reference to one random element of the slice, or `None` if the - /// slice is empty. - /// - /// For slices, complexity is `O(1)`. - /// - /// # Example - /// - /// ``` - /// use rand::thread_rng; - /// use rand::seq::SliceRandom; - /// - /// let choices = [1, 2, 4, 8, 16, 32]; - /// let mut rng = thread_rng(); - /// println!("{:?}", choices.choose(&mut rng)); - /// assert_eq!(choices[..0].choose(&mut rng), None); - /// ``` - fn choose<R>(&self, rng: &mut R) -> Option<&Self::Item> - where R: Rng + ?Sized; - - /// Returns a mutable reference to one random element of the slice, or - /// `None` if the slice is empty. - /// - /// For slices, complexity is `O(1)`. - fn choose_mut<R>(&mut self, rng: &mut R) -> Option<&mut Self::Item> - where R: Rng + ?Sized; - - /// Chooses `amount` elements from the slice at random, without repetition, - /// and in random order. The returned iterator is appropriate both for - /// collection into a `Vec` and filling an existing buffer (see example). - /// - /// In case this API is not sufficiently flexible, use [`index::sample`]. - /// - /// For slices, complexity is the same as [`index::sample`]. - /// - /// # Example - /// ``` - /// use rand::seq::SliceRandom; - /// - /// let mut rng = &mut rand::thread_rng(); - /// let sample = "Hello, audience!".as_bytes(); - /// - /// // collect the results into a vector: - /// let v: Vec<u8> = sample.choose_multiple(&mut rng, 3).cloned().collect(); - /// - /// // store in a buffer: - /// let mut buf = [0u8; 5]; - /// for (b, slot) in sample.choose_multiple(&mut rng, buf.len()).zip(buf.iter_mut()) { - /// *slot = *b; - /// } - /// ``` - #[cfg(feature = "alloc")] - fn choose_multiple<R>(&self, rng: &mut R, amount: usize) -> SliceChooseIter<Self, Self::Item> - where R: Rng + ?Sized; - - /// Similar to [`choose`], but where the likelihood of each outcome may be - /// specified. - /// - /// The specified function `weight` maps each item `x` to a relative - /// likelihood `weight(x)`. The probability of each item being selected is - /// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`. - /// - /// For slices of length `n`, complexity is `O(n)`. - /// See also [`choose_weighted_mut`], [`distributions::weighted`]. - /// - /// # Example - /// - /// ``` - /// use rand::prelude::*; - /// - /// let choices = [('a', 2), ('b', 1), ('c', 1)]; - /// let mut rng = thread_rng(); - /// // 50% chance to print 'a', 25% chance to print 'b', 25% chance to print 'c' - /// println!("{:?}", choices.choose_weighted(&mut rng, |item| item.1).unwrap().0); - /// ``` - /// [`choose`]: SliceRandom::choose - /// [`choose_weighted_mut`]: SliceRandom::choose_weighted_mut - /// [`distributions::weighted`]: crate::distributions::weighted - #[cfg(feature = "alloc")] - fn choose_weighted<R, F, B, X>( - &self, rng: &mut R, weight: F, - ) -> Result<&Self::Item, WeightedError> - where - R: Rng + ?Sized, - F: Fn(&Self::Item) -> B, - B: SampleBorrow<X>, - X: SampleUniform - + for<'a> ::core::ops::AddAssign<&'a X> - + ::core::cmp::PartialOrd<X> - + Clone - + Default; - - /// Similar to [`choose_mut`], but where the likelihood of each outcome may - /// be specified. - /// - /// The specified function `weight` maps each item `x` to a relative - /// likelihood `weight(x)`. The probability of each item being selected is - /// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`. - /// - /// For slices of length `n`, complexity is `O(n)`. - /// See also [`choose_weighted`], [`distributions::weighted`]. - /// - /// [`choose_mut`]: SliceRandom::choose_mut - /// [`choose_weighted`]: SliceRandom::choose_weighted - /// [`distributions::weighted`]: crate::distributions::weighted - #[cfg(feature = "alloc")] - fn choose_weighted_mut<R, F, B, X>( - &mut self, rng: &mut R, weight: F, - ) -> Result<&mut Self::Item, WeightedError> - where - R: Rng + ?Sized, - F: Fn(&Self::Item) -> B, - B: SampleBorrow<X>, - X: SampleUniform - + for<'a> ::core::ops::AddAssign<&'a X> - + ::core::cmp::PartialOrd<X> - + Clone - + Default; - - /// Shuffle a mutable slice in place. - /// - /// For slices of length `n`, complexity is `O(n)`. - /// - /// # Example - /// - /// ``` - /// use rand::seq::SliceRandom; - /// use rand::thread_rng; - /// - /// let mut rng = thread_rng(); - /// let mut y = [1, 2, 3, 4, 5]; - /// println!("Unshuffled: {:?}", y); - /// y.shuffle(&mut rng); - /// println!("Shuffled: {:?}", y); - /// ``` - fn shuffle<R>(&mut self, rng: &mut R) - where R: Rng + ?Sized; - - /// Shuffle a slice in place, but exit early. - /// - /// Returns two mutable slices from the source slice. The first contains - /// `amount` elements randomly permuted. The second has the remaining - /// elements that are not fully shuffled. - /// - /// This is an efficient method to select `amount` elements at random from - /// the slice, provided the slice may be mutated. - /// - /// If you only need to choose elements randomly and `amount > self.len()/2` - /// then you may improve performance by taking - /// `amount = values.len() - amount` and using only the second slice. - /// - /// If `amount` is greater than the number of elements in the slice, this - /// will perform a full shuffle. - /// - /// For slices, complexity is `O(m)` where `m = amount`. - fn partial_shuffle<R>( - &mut self, rng: &mut R, amount: usize, - ) -> (&mut [Self::Item], &mut [Self::Item]) - where R: Rng + ?Sized; -} - -/// Extension trait on iterators, providing random sampling methods. -/// -/// This trait is implemented on all sized iterators, providing methods for -/// choosing one or more elements. You must `use` this trait: -/// -/// ``` -/// use rand::seq::IteratorRandom; -/// -/// fn main() { -/// let mut rng = rand::thread_rng(); -/// -/// let faces = "πππππ π’"; -/// println!("I am {}!", faces.chars().choose(&mut rng).unwrap()); -/// } -/// ``` -/// Example output (non-deterministic): -/// ```none -/// I am π! -/// ``` -pub trait IteratorRandom: Iterator + Sized { - /// Choose one element at random from the iterator. - /// - /// Returns `None` if and only if the iterator is empty. - /// - /// This method uses [`Iterator::size_hint`] for optimisation. With an - /// accurate hint and where [`Iterator::nth`] is a constant-time operation - /// this method can offer `O(1)` performance. Where no size hint is - /// available, complexity is `O(n)` where `n` is the iterator length. - /// Partial hints (where `lower > 0`) also improve performance. - /// - /// For slices, prefer [`SliceRandom::choose`] which guarantees `O(1)` - /// performance. - fn choose<R>(mut self, rng: &mut R) -> Option<Self::Item> - where R: Rng + ?Sized { - let (mut lower, mut upper) = self.size_hint(); - let mut consumed = 0; - let mut result = None; - - if upper == Some(lower) { - return if lower == 0 { None } else { self.nth(gen_index(rng, lower)) }; - } - - // Continue until the iterator is exhausted - loop { - if lower > 1 { - let ix = gen_index(rng, lower + consumed); - let skip = if ix < lower { - result = self.nth(ix); - lower - (ix + 1) - } else { - lower - }; - if upper == Some(lower) { - return result; - } - consumed += lower; - if skip > 0 { - self.nth(skip - 1); - } - } else { - let elem = self.next(); - if elem.is_none() { - return result; - } - consumed += 1; - let denom = consumed as f64; // accurate to 2^53 elements - if rng.gen_bool(1.0 / denom) { - result = elem; - } - } - - let hint = self.size_hint(); - lower = hint.0; - upper = hint.1; - } - } - - /// Collects values at random from the iterator into a supplied buffer - /// until that buffer is filled. - /// - /// Although the elements are selected randomly, the order of elements in - /// the buffer is neither stable nor fully random. If random ordering is - /// desired, shuffle the result. - /// - /// Returns the number of elements added to the buffer. This equals the length - /// of the buffer unless the iterator contains insufficient elements, in which - /// case this equals the number of elements available. - /// - /// Complexity is `O(n)` where `n` is the length of the iterator. - /// For slices, prefer [`SliceRandom::choose_multiple`]. - fn choose_multiple_fill<R>(mut self, rng: &mut R, buf: &mut [Self::Item]) -> usize - where R: Rng + ?Sized { - let amount = buf.len(); - let mut len = 0; - while len < amount { - if let Some(elem) = self.next() { - buf[len] = elem; - len += 1; - } else { - // Iterator exhausted; stop early - return len; - } - } - - // Continue, since the iterator was not exhausted - for (i, elem) in self.enumerate() { - let k = gen_index(rng, i + 1 + amount); - if let Some(slot) = buf.get_mut(k) { - *slot = elem; - } - } - len - } - - /// Collects `amount` values at random from the iterator into a vector. - /// - /// This is equivalent to `choose_multiple_fill` except for the result type. - /// - /// Although the elements are selected randomly, the order of elements in - /// the buffer is neither stable nor fully random. If random ordering is - /// desired, shuffle the result. - /// - /// The length of the returned vector equals `amount` unless the iterator - /// contains insufficient elements, in which case it equals the number of - /// elements available. - /// - /// Complexity is `O(n)` where `n` is the length of the iterator. - /// For slices, prefer [`SliceRandom::choose_multiple`]. - #[cfg(feature = "alloc")] - fn choose_multiple<R>(mut self, rng: &mut R, amount: usize) -> Vec<Self::Item> - where R: Rng + ?Sized { - let mut reservoir = Vec::with_capacity(amount); - reservoir.extend(self.by_ref().take(amount)); - - // Continue unless the iterator was exhausted - // - // note: this prevents iterators that "restart" from causing problems. - // If the iterator stops once, then so do we. - if reservoir.len() == amount { - for (i, elem) in self.enumerate() { - let k = gen_index(rng, i + 1 + amount); - if let Some(slot) = reservoir.get_mut(k) { - *slot = elem; - } - } - } else { - // Don't hang onto extra memory. There is a corner case where - // `amount` was much less than `self.len()`. - reservoir.shrink_to_fit(); - } - reservoir - } -} - - -impl<T> SliceRandom for [T] { - type Item = T; - - fn choose<R>(&self, rng: &mut R) -> Option<&Self::Item> - where R: Rng + ?Sized { - if self.is_empty() { - None - } else { - Some(&self[gen_index(rng, self.len())]) - } - } - - fn choose_mut<R>(&mut self, rng: &mut R) -> Option<&mut Self::Item> - where R: Rng + ?Sized { - if self.is_empty() { - None - } else { - let len = self.len(); - Some(&mut self[gen_index(rng, len)]) - } - } - - #[cfg(feature = "alloc")] - fn choose_multiple<R>(&self, rng: &mut R, amount: usize) -> SliceChooseIter<Self, Self::Item> - where R: Rng + ?Sized { - let amount = ::core::cmp::min(amount, self.len()); - SliceChooseIter { - slice: self, - _phantom: Default::default(), - indices: index::sample(rng, self.len(), amount).into_iter(), - } - } - - #[cfg(feature = "alloc")] - fn choose_weighted<R, F, B, X>( - &self, rng: &mut R, weight: F, - ) -> Result<&Self::Item, WeightedError> - where - R: Rng + ?Sized, - F: Fn(&Self::Item) -> B, - B: SampleBorrow<X>, - X: SampleUniform - + for<'a> ::core::ops::AddAssign<&'a X> - + ::core::cmp::PartialOrd<X> - + Clone - + Default, - { - use crate::distributions::{Distribution, WeightedIndex}; - let distr = WeightedIndex::new(self.iter().map(weight))?; - Ok(&self[distr.sample(rng)]) - } - - #[cfg(feature = "alloc")] - fn choose_weighted_mut<R, F, B, X>( - &mut self, rng: &mut R, weight: F, - ) -> Result<&mut Self::Item, WeightedError> - where - R: Rng + ?Sized, - F: Fn(&Self::Item) -> B, - B: SampleBorrow<X>, - X: SampleUniform - + for<'a> ::core::ops::AddAssign<&'a X> - + ::core::cmp::PartialOrd<X> - + Clone - + Default, - { - use crate::distributions::{Distribution, WeightedIndex}; - let distr = WeightedIndex::new(self.iter().map(weight))?; - Ok(&mut self[distr.sample(rng)]) - } - - fn shuffle<R>(&mut self, rng: &mut R) - where R: Rng + ?Sized { - for i in (1..self.len()).rev() { - // invariant: elements with index > i have been locked in place. - self.swap(i, gen_index(rng, i + 1)); - } - } - - fn partial_shuffle<R>( - &mut self, rng: &mut R, amount: usize, - ) -> (&mut [Self::Item], &mut [Self::Item]) - where R: Rng + ?Sized { - // This applies Durstenfeld's algorithm for the - // [FisherβYates shuffle](https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle#The_modern_algorithm) - // for an unbiased permutation, but exits early after choosing `amount` - // elements. - - let len = self.len(); - let end = if amount >= len { 0 } else { len - amount }; - - for i in (end..len).rev() { - // invariant: elements with index > i have been locked in place. - self.swap(i, gen_index(rng, i + 1)); - } - let r = self.split_at_mut(end); - (r.1, r.0) - } -} - -impl<I> IteratorRandom for I where I: Iterator + Sized {} - - -/// An iterator over multiple slice elements. -/// -/// This struct is created by -/// [`SliceRandom::choose_multiple`](trait.SliceRandom.html#tymethod.choose_multiple). -#[cfg(feature = "alloc")] -#[derive(Debug)] -pub struct SliceChooseIter<'a, S: ?Sized + 'a, T: 'a> { - slice: &'a S, - _phantom: ::core::marker::PhantomData<T>, - indices: index::IndexVecIntoIter, -} - -#[cfg(feature = "alloc")] -impl<'a, S: Index<usize, Output = T> + ?Sized + 'a, T: 'a> Iterator for SliceChooseIter<'a, S, T> { - type Item = &'a T; - - fn next(&mut self) -> Option<Self::Item> { - // TODO: investigate using SliceIndex::get_unchecked when stable - self.indices.next().map(|i| &self.slice[i as usize]) - } - - fn size_hint(&self) -> (usize, Option<usize>) { - (self.indices.len(), Some(self.indices.len())) - } -} - -#[cfg(feature = "alloc")] -impl<'a, S: Index<usize, Output = T> + ?Sized + 'a, T: 'a> ExactSizeIterator - for SliceChooseIter<'a, S, T> -{ - fn len(&self) -> usize { - self.indices.len() - } -} - - -// Sample a number uniformly between 0 and `ubound`. Uses 32-bit sampling where -// possible, primarily in order to produce the same output on 32-bit and 64-bit -// platforms. -#[inline] -fn gen_index<R: Rng + ?Sized>(rng: &mut R, ubound: usize) -> usize { - if ubound <= (core::u32::MAX as usize) { - rng.gen_range(0, ubound as u32) as usize - } else { - rng.gen_range(0, ubound) - } -} - - -#[cfg(test)] -mod test { - use super::*; - #[cfg(feature = "alloc")] use crate::Rng; - #[cfg(all(feature="alloc", not(feature="std")))] - use alloc::vec::Vec; - - #[test] - fn test_slice_choose() { - let mut r = crate::test::rng(107); - let chars = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n']; - let mut chosen = [0i32; 14]; - // The below all use a binomial distribution with n=1000, p=1/14. - // binocdf(40, 1000, 1/14) ~= 2e-5; 1-binocdf(106, ..) ~= 2e-5 - for _ in 0..1000 { - let picked = *chars.choose(&mut r).unwrap(); - chosen[(picked as usize) - ('a' as usize)] += 1; - } - for count in chosen.iter() { - assert!(40 < *count && *count < 106); - } - - chosen.iter_mut().for_each(|x| *x = 0); - for _ in 0..1000 { - *chosen.choose_mut(&mut r).unwrap() += 1; - } - for count in chosen.iter() { - assert!(40 < *count && *count < 106); - } - - let mut v: [isize; 0] = []; - assert_eq!(v.choose(&mut r), None); - assert_eq!(v.choose_mut(&mut r), None); - } - - #[derive(Clone)] - struct UnhintedIterator<I: Iterator + Clone> { - iter: I, - } - impl<I: Iterator + Clone> Iterator for UnhintedIterator<I> { - type Item = I::Item; - fn next(&mut self) -> Option<Self::Item> { - self.iter.next() - } - } - - #[derive(Clone)] - struct ChunkHintedIterator<I: ExactSizeIterator + Iterator + Clone> { - iter: I, - chunk_remaining: usize, - chunk_size: usize, - hint_total_size: bool, - } - impl<I: ExactSizeIterator + Iterator + Clone> Iterator for ChunkHintedIterator<I> { - type Item = I::Item; - fn next(&mut self) -> Option<Self::Item> { - if self.chunk_remaining == 0 { - self.chunk_remaining = ::core::cmp::min(self.chunk_size, - self.iter.len()); - } - self.chunk_remaining = self.chunk_remaining.saturating_sub(1); - - self.iter.next() - } - fn size_hint(&self) -> (usize, Option<usize>) { - (self.chunk_remaining, - if self.hint_total_size { Some(self.iter.len()) } else { None }) - } - } - - #[derive(Clone)] - struct WindowHintedIterator<I: ExactSizeIterator + Iterator + Clone> { - iter: I, - window_size: usize, - hint_total_size: bool, - } - impl<I: ExactSizeIterator + Iterator + Clone> Iterator for WindowHintedIterator<I> { - type Item = I::Item; - fn next(&mut self) -> Option<Self::Item> { - self.iter.next() - } - fn size_hint(&self) -> (usize, Option<usize>) { - (::core::cmp::min(self.iter.len(), self.window_size), - if self.hint_total_size { Some(self.iter.len()) } else { None }) - } - } - - #[test] - #[cfg(not(miri))] // Miri is too slow - fn test_iterator_choose() { - let r = &mut crate::test::rng(109); - fn test_iter<R: Rng + ?Sized, Iter: Iterator<Item=usize> + Clone>(r: &mut R, iter: Iter) { - let mut chosen = [0i32; 9]; - for _ in 0..1000 { - let picked = iter.clone().choose(r).unwrap(); - chosen[picked] += 1; - } - for count in chosen.iter() { - // Samples should follow Binomial(1000, 1/9) - // Octave: binopdf(x, 1000, 1/9) gives the prob of *count == x - // Note: have seen 153, which is unlikely but not impossible. - assert!(72 < *count && *count < 154, "count not close to 1000/9: {}", count); - } - } - - test_iter(r, 0..9); - test_iter(r, [0, 1, 2, 3, 4, 5, 6, 7, 8].iter().cloned()); - #[cfg(feature = "alloc")] - test_iter(r, (0..9).collect::<Vec<_>>().into_iter()); - test_iter(r, UnhintedIterator { iter: 0..9 }); - test_iter(r, ChunkHintedIterator { iter: 0..9, chunk_size: 4, chunk_remaining: 4, hint_total_size: false }); - test_iter(r, ChunkHintedIterator { iter: 0..9, chunk_size: 4, chunk_remaining: 4, hint_total_size: true }); - test_iter(r, WindowHintedIterator { iter: 0..9, window_size: 2, hint_total_size: false }); - test_iter(r, WindowHintedIterator { iter: 0..9, window_size: 2, hint_total_size: true }); - - assert_eq!((0..0).choose(r), None); - assert_eq!(UnhintedIterator{ iter: 0..0 }.choose(r), None); - } - - #[test] - #[cfg(not(miri))] // Miri is too slow - fn test_shuffle() { - let mut r = crate::test::rng(108); - let empty: &mut [isize] = &mut []; - empty.shuffle(&mut r); - let mut one = [1]; - one.shuffle(&mut r); - let b: &[_] = &[1]; - assert_eq!(one, b); - - let mut two = [1, 2]; - two.shuffle(&mut r); - assert!(two == [1, 2] || two == [2, 1]); - - fn move_last(slice: &mut [usize], pos: usize) { - // use slice[pos..].rotate_left(1); once we can use that - let last_val = slice[pos]; - for i in pos..slice.len() - 1 { - slice[i] = slice[i + 1]; - } - *slice.last_mut().unwrap() = last_val; - } - let mut counts = [0i32; 24]; - for _ in 0..10000 { - let mut arr: [usize; 4] = [0, 1, 2, 3]; - arr.shuffle(&mut r); - let mut permutation = 0usize; - let mut pos_value = counts.len(); - for i in 0..4 { - pos_value /= 4 - i; - let pos = arr.iter().position(|&x| x == i).unwrap(); - assert!(pos < (4 - i)); - permutation += pos * pos_value; - move_last(&mut arr, pos); - assert_eq!(arr[3], i); - } - for i in 0..4 { - assert_eq!(arr[i], i); - } - counts[permutation] += 1; - } - for count in counts.iter() { - // Binomial(10000, 1/24) with average 416.667 - // Octave: binocdf(n, 10000, 1/24) - // 99.9% chance samples lie within this range: - assert!(352 <= *count && *count <= 483, "count: {}", count); - } - } - - #[test] - fn test_partial_shuffle() { - let mut r = crate::test::rng(118); - - let mut empty: [u32; 0] = []; - let res = empty.partial_shuffle(&mut r, 10); - assert_eq!((res.0.len(), res.1.len()), (0, 0)); - - let mut v = [1, 2, 3, 4, 5]; - let res = v.partial_shuffle(&mut r, 2); - assert_eq!((res.0.len(), res.1.len()), (2, 3)); - assert!(res.0[0] != res.0[1]); - // First elements are only modified if selected, so at least one isn't modified: - assert!(res.1[0] == 1 || res.1[1] == 2 || res.1[2] == 3); - } - - #[test] - #[cfg(feature = "alloc")] - fn test_sample_iter() { - let min_val = 1; - let max_val = 100; - - let mut r = crate::test::rng(401); - let vals = (min_val..max_val).collect::<Vec<i32>>(); - let small_sample = vals.iter().choose_multiple(&mut r, 5); - let large_sample = vals.iter().choose_multiple(&mut r, vals.len() + 5); - - assert_eq!(small_sample.len(), 5); - assert_eq!(large_sample.len(), vals.len()); - // no randomization happens when amount >= len - assert_eq!(large_sample, vals.iter().collect::<Vec<_>>()); - - assert!(small_sample.iter().all(|e| { - **e >= min_val && **e <= max_val - })); - } - - #[test] - #[cfg(feature = "alloc")] - #[cfg(not(miri))] // Miri is too slow - fn test_weighted() { - let mut r = crate::test::rng(406); - const N_REPS: u32 = 3000; - let weights = [1u32, 2, 3, 0, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7]; - let total_weight = weights.iter().sum::<u32>() as f32; - - let verify = |result: [i32; 14]| { - for (i, count) in result.iter().enumerate() { - let exp = (weights[i] * N_REPS) as f32 / total_weight; - let mut err = (*count as f32 - exp).abs(); - if err != 0.0 { - err /= exp; - } - assert!(err <= 0.25); - } - }; - - // choose_weighted - fn get_weight<T>(item: &(u32, T)) -> u32 { - item.0 - } - let mut chosen = [0i32; 14]; - let mut items = [(0u32, 0usize); 14]; // (weight, index) - for (i, item) in items.iter_mut().enumerate() { - *item = (weights[i], i); - } - for _ in 0..N_REPS { - let item = items.choose_weighted(&mut r, get_weight).unwrap(); - chosen[item.1] += 1; - } - verify(chosen); - - // choose_weighted_mut - let mut items = [(0u32, 0i32); 14]; // (weight, count) - for (i, item) in items.iter_mut().enumerate() { - *item = (weights[i], 0); - } - for _ in 0..N_REPS { - items.choose_weighted_mut(&mut r, get_weight).unwrap().1 += 1; - } - for (ch, item) in chosen.iter_mut().zip(items.iter()) { - *ch = item.1; - } - verify(chosen); - - // Check error cases - let empty_slice = &mut [10][0..0]; - assert_eq!(empty_slice.choose_weighted(&mut r, |_| 1), Err(WeightedError::NoItem)); - assert_eq!(empty_slice.choose_weighted_mut(&mut r, |_| 1), Err(WeightedError::NoItem)); - assert_eq!(['x'].choose_weighted_mut(&mut r, |_| 0), Err(WeightedError::AllWeightsZero)); - assert_eq!([0, -1].choose_weighted_mut(&mut r, |x| *x), Err(WeightedError::InvalidWeight)); - assert_eq!([-1, 0].choose_weighted_mut(&mut r, |x| *x), Err(WeightedError::InvalidWeight)); - } -} |