summaryrefslogtreecommitdiff
path: root/rand/src/distributions/mod.rs
diff options
context:
space:
mode:
authorDaniel Mueller <deso@posteo.net>2020-01-02 08:32:06 -0800
committerDaniel Mueller <deso@posteo.net>2020-01-02 08:32:06 -0800
commitfd091b04316db9dc5fafadbd6bdbe60b127408a9 (patch)
treef202270f7ae5cedc513be03833a26148d9b5e219 /rand/src/distributions/mod.rs
parent8161cdb26f98e65b39c603ddf7a614cc87c77a1c (diff)
downloadnitrocli-fd091b04316db9dc5fafadbd6bdbe60b127408a9.tar.gz
nitrocli-fd091b04316db9dc5fafadbd6bdbe60b127408a9.tar.bz2
Update nitrokey crate to 0.4.0
This change finally updates the version of the nitrokey crate that we consume to 0.4.0. Along with that we update rand_core, one of its dependencies, to 0.5.1. Further more we add cfg-if in version 0.1.10 and getrandom in version 0.1.13, both of which are now new (non-development) dependencies. Import subrepo nitrokey/:nitrokey at e81057037e9b4f370b64c0a030a725bc6bdfb870 Import subrepo cfg-if/:cfg-if at 4484a6faf816ff8058088ad857b0c6bb2f4b02b2 Import subrepo getrandom/:getrandom at d661aa7e1b8cc80b47dabe3d2135b3b47d2858af Import subrepo rand/:rand at d877ed528248b52d947e0484364a4e1ae59ca502
Diffstat (limited to 'rand/src/distributions/mod.rs')
-rw-r--r--rand/src/distributions/mod.rs520
1 files changed, 140 insertions, 380 deletions
diff --git a/rand/src/distributions/mod.rs b/rand/src/distributions/mod.rs
index 5e879cb..02ece6f 100644
--- a/rand/src/distributions/mod.rs
+++ b/rand/src/distributions/mod.rs
@@ -7,12 +7,12 @@
// option. This file may not be copied, modified, or distributed
// except according to those terms.
-//! Generating random samples from probability distributions.
+//! Generating random samples from probability distributions
//!
//! This module is the home of the [`Distribution`] trait and several of its
//! implementations. It is the workhorse behind some of the convenient
-//! functionality of the [`Rng`] trait, including [`gen`], [`gen_range`] and
-//! of course [`sample`].
+//! functionality of the [`Rng`] trait, e.g. [`Rng::gen`], [`Rng::gen_range`] and
+//! of course [`Rng::sample`].
//!
//! Abstractly, a [probability distribution] describes the probability of
//! occurance of each value in its sample space.
@@ -40,8 +40,14 @@
//! possible to generate type `T` with [`Rng::gen()`], and by extension also
//! with the [`random()`] function.
//!
+//! ## Random characters
+//!
+//! [`Alphanumeric`] is a simple distribution to sample random letters and
+//! numbers of the `char` type; in contrast [`Standard`] may sample any valid
+//! `char`.
+//!
//!
-//! # Distribution to sample from a `Uniform` range
+//! # Uniform numeric ranges
//!
//! The [`Uniform`] distribution is more flexible than [`Standard`], but also
//! more specialised: it supports fewer target types, but allows the sample
@@ -56,158 +62,84 @@
//!
//! User types `T` may also implement `Distribution<T>` for [`Uniform`],
//! although this is less straightforward than for [`Standard`] (see the
-//! documentation in the [`uniform` module]. Doing so enables generation of
+//! documentation in the [`uniform`] module. Doing so enables generation of
//! values of type `T` with [`Rng::gen_range`].
//!
-//!
-//! # Other distributions
+//! ## Open and half-open ranges
//!
//! There are surprisingly many ways to uniformly generate random floats. A
//! range between 0 and 1 is standard, but the exact bounds (open vs closed)
//! and accuracy differ. In addition to the [`Standard`] distribution Rand offers
-//! [`Open01`] and [`OpenClosed01`]. See [Floating point implementation] for
-//! more details.
-//!
-//! [`Alphanumeric`] is a simple distribution to sample random letters and
-//! numbers of the `char` type; in contrast [`Standard`] may sample any valid
-//! `char`.
-//!
-//! [`WeightedIndex`] can be used to do weighted sampling from a set of items,
-//! such as from an array.
-//!
-//! # Non-uniform probability distributions
-//!
-//! Rand currently provides the following probability distributions:
-//!
-//! - Related to real-valued quantities that grow linearly
-//! (e.g. errors, offsets):
-//! - [`Normal`] distribution, and [`StandardNormal`] as a primitive
-//! - [`Cauchy`] distribution
-//! - Related to Bernoulli trials (yes/no events, with a given probability):
-//! - [`Binomial`] distribution
-//! - [`Bernoulli`] distribution, similar to [`Rng::gen_bool`].
-//! - Related to positive real-valued quantities that grow exponentially
-//! (e.g. prices, incomes, populations):
-//! - [`LogNormal`] distribution
-//! - Related to the occurrence of independent events at a given rate:
-//! - [`Pareto`] distribution
-//! - [`Poisson`] distribution
-//! - [`Exp`]onential distribution, and [`Exp1`] as a primitive
-//! - [`Weibull`] distribution
-//! - Gamma and derived distributions:
-//! - [`Gamma`] distribution
-//! - [`ChiSquared`] distribution
-//! - [`StudentT`] distribution
-//! - [`FisherF`] distribution
-//! - Triangular distribution:
-//! - [`Beta`] distribution
-//! - [`Triangular`] distribution
-//! - Multivariate probability distributions
-//! - [`Dirichlet`] distribution
-//! - [`UnitSphereSurface`] distribution
-//! - [`UnitCircle`] distribution
+//! [`Open01`] and [`OpenClosed01`]. See "Floating point implementation" section of
+//! [`Standard`] documentation for more details.
//!
-//! # Examples
+//! # Non-uniform sampling
//!
-//! Sampling from a distribution:
+//! Sampling a simple true/false outcome with a given probability has a name:
+//! the [`Bernoulli`] distribution (this is used by [`Rng::gen_bool`]).
//!
-//! ```
-//! use rand::{thread_rng, Rng};
-//! use rand::distributions::Exp;
+//! For weighted sampling from a sequence of discrete values, use the
+//! [`weighted`] module.
//!
-//! let exp = Exp::new(2.0);
-//! let v = thread_rng().sample(exp);
-//! println!("{} is from an Exp(2) distribution", v);
-//! ```
-//!
-//! Implementing the [`Standard`] distribution for a user type:
-//!
-//! ```
-//! # #![allow(dead_code)]
-//! use rand::Rng;
-//! use rand::distributions::{Distribution, Standard};
-//!
-//! struct MyF32 {
-//! x: f32,
-//! }
-//!
-//! impl Distribution<MyF32> for Standard {
-//! fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> MyF32 {
-//! MyF32 { x: rng.gen() }
-//! }
-//! }
-//! ```
+//! This crate no longer includes other non-uniform distributions; instead
+//! it is recommended that you use either [`rand_distr`] or [`statrs`].
//!
//!
//! [probability distribution]: https://en.wikipedia.org/wiki/Probability_distribution
-//! [`Distribution`]: trait.Distribution.html
-//! [`gen_range`]: ../trait.Rng.html#method.gen_range
-//! [`gen`]: ../trait.Rng.html#method.gen
-//! [`sample`]: ../trait.Rng.html#method.sample
-//! [`new_inclusive`]: struct.Uniform.html#method.new_inclusive
-//! [`random()`]: ../fn.random.html
-//! [`Rng::gen_bool`]: ../trait.Rng.html#method.gen_bool
-//! [`Rng::gen_range`]: ../trait.Rng.html#method.gen_range
-//! [`Rng::gen()`]: ../trait.Rng.html#method.gen
-//! [`Rng`]: ../trait.Rng.html
-//! [`uniform` module]: uniform/index.html
-//! [Floating point implementation]: struct.Standard.html#floating-point-implementation
-// distributions
-//! [`Alphanumeric`]: struct.Alphanumeric.html
-//! [`Bernoulli`]: struct.Bernoulli.html
-//! [`Beta`]: struct.Beta.html
-//! [`Binomial`]: struct.Binomial.html
-//! [`Cauchy`]: struct.Cauchy.html
-//! [`ChiSquared`]: struct.ChiSquared.html
-//! [`Dirichlet`]: struct.Dirichlet.html
-//! [`Exp`]: struct.Exp.html
-//! [`Exp1`]: struct.Exp1.html
-//! [`FisherF`]: struct.FisherF.html
-//! [`Gamma`]: struct.Gamma.html
-//! [`LogNormal`]: struct.LogNormal.html
-//! [`Normal`]: struct.Normal.html
-//! [`Open01`]: struct.Open01.html
-//! [`OpenClosed01`]: struct.OpenClosed01.html
-//! [`Pareto`]: struct.Pareto.html
-//! [`Poisson`]: struct.Poisson.html
-//! [`Standard`]: struct.Standard.html
-//! [`StandardNormal`]: struct.StandardNormal.html
-//! [`StudentT`]: struct.StudentT.html
-//! [`Triangular`]: struct.Triangular.html
-//! [`Uniform`]: struct.Uniform.html
-//! [`Uniform::new`]: struct.Uniform.html#method.new
-//! [`Uniform::new_inclusive`]: struct.Uniform.html#method.new_inclusive
-//! [`UnitSphereSurface`]: struct.UnitSphereSurface.html
-//! [`UnitCircle`]: struct.UnitCircle.html
-//! [`Weibull`]: struct.Weibull.html
-//! [`WeightedIndex`]: struct.WeightedIndex.html
+//! [`rand_distr`]: https://crates.io/crates/rand_distr
+//! [`statrs`]: https://crates.io/crates/statrs
+
+//! [`Alphanumeric`]: distributions::Alphanumeric
+//! [`Bernoulli`]: distributions::Bernoulli
+//! [`Open01`]: distributions::Open01
+//! [`OpenClosed01`]: distributions::OpenClosed01
+//! [`Standard`]: distributions::Standard
+//! [`Uniform`]: distributions::Uniform
+//! [`Uniform::new`]: distributions::Uniform::new
+//! [`Uniform::new_inclusive`]: distributions::Uniform::new_inclusive
+//! [`weighted`]: distributions::weighted
+//! [`rand_distr`]: https://crates.io/crates/rand_distr
+//! [`statrs`]: https://crates.io/crates/statrs
-#[cfg(any(rustc_1_26, features="nightly"))]
use core::iter;
-use Rng;
+use crate::Rng;
pub use self::other::Alphanumeric;
#[doc(inline)] pub use self::uniform::Uniform;
pub use self::float::{OpenClosed01, Open01};
-pub use self::bernoulli::Bernoulli;
+pub use self::bernoulli::{Bernoulli, BernoulliError};
#[cfg(feature="alloc")] pub use self::weighted::{WeightedIndex, WeightedError};
+
+// The following are all deprecated after being moved to rand_distr
+#[allow(deprecated)]
#[cfg(feature="std")] pub use self::unit_sphere::UnitSphereSurface;
+#[allow(deprecated)]
#[cfg(feature="std")] pub use self::unit_circle::UnitCircle;
+#[allow(deprecated)]
#[cfg(feature="std")] pub use self::gamma::{Gamma, ChiSquared, FisherF,
StudentT, Beta};
+#[allow(deprecated)]
#[cfg(feature="std")] pub use self::normal::{Normal, LogNormal, StandardNormal};
+#[allow(deprecated)]
#[cfg(feature="std")] pub use self::exponential::{Exp, Exp1};
+#[allow(deprecated)]
#[cfg(feature="std")] pub use self::pareto::Pareto;
+#[allow(deprecated)]
#[cfg(feature="std")] pub use self::poisson::Poisson;
+#[allow(deprecated)]
#[cfg(feature="std")] pub use self::binomial::Binomial;
+#[allow(deprecated)]
#[cfg(feature="std")] pub use self::cauchy::Cauchy;
+#[allow(deprecated)]
#[cfg(feature="std")] pub use self::dirichlet::Dirichlet;
+#[allow(deprecated)]
#[cfg(feature="std")] pub use self::triangular::Triangular;
+#[allow(deprecated)]
#[cfg(feature="std")] pub use self::weibull::Weibull;
pub mod uniform;
mod bernoulli;
-#[cfg(feature="alloc")] mod weighted;
+#[cfg(feature="alloc")] pub mod weighted;
#[cfg(feature="std")] mod unit_sphere;
#[cfg(feature="std")] mod unit_circle;
#[cfg(feature="std")] mod gamma;
@@ -222,6 +154,9 @@ mod bernoulli;
#[cfg(feature="std")] mod weibull;
mod float;
+#[doc(hidden)] pub mod hidden_export {
+ pub use super::float::IntoFloat; // used by rand_distr
+}
mod integer;
mod other;
mod utils;
@@ -238,8 +173,7 @@ mod utils;
/// advantage of not needing to consider thread safety, and for most
/// distributions efficient state-less sampling algorithms are available.
///
-/// [`Rng`]: ../trait.Rng.html
-/// [`sample_iter`]: trait.Distribution.html#method.sample_iter
+/// [`sample_iter`]: Distribution::method.sample_iter
pub trait Distribution<T> {
/// Generate a random value of `T`, using `rng` as the source of randomness.
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> T;
@@ -247,33 +181,39 @@ pub trait Distribution<T> {
/// Create an iterator that generates random values of `T`, using `rng` as
/// the source of randomness.
///
+ /// Note that this function takes `self` by value. This works since
+ /// `Distribution<T>` is impl'd for `&D` where `D: Distribution<T>`,
+ /// however borrowing is not automatic hence `distr.sample_iter(...)` may
+ /// need to be replaced with `(&distr).sample_iter(...)` to borrow or
+ /// `(&*distr).sample_iter(...)` to reborrow an existing reference.
+ ///
/// # Example
///
/// ```
/// use rand::thread_rng;
/// use rand::distributions::{Distribution, Alphanumeric, Uniform, Standard};
///
- /// let mut rng = thread_rng();
+ /// let rng = thread_rng();
///
/// // Vec of 16 x f32:
- /// let v: Vec<f32> = Standard.sample_iter(&mut rng).take(16).collect();
+ /// let v: Vec<f32> = Standard.sample_iter(rng).take(16).collect();
///
/// // String:
- /// let s: String = Alphanumeric.sample_iter(&mut rng).take(7).collect();
+ /// let s: String = Alphanumeric.sample_iter(rng).take(7).collect();
///
/// // Dice-rolling:
/// let die_range = Uniform::new_inclusive(1, 6);
- /// let mut roll_die = die_range.sample_iter(&mut rng);
+ /// let mut roll_die = die_range.sample_iter(rng);
/// while roll_die.next().unwrap() != 6 {
/// println!("Not a 6; rolling again!");
/// }
/// ```
- fn sample_iter<'a, R>(&'a self, rng: &'a mut R) -> DistIter<'a, Self, R, T>
- where Self: Sized, R: Rng
+ fn sample_iter<R>(self, rng: R) -> DistIter<Self, R, T>
+ where R: Rng, Self: Sized
{
DistIter {
distr: self,
- rng: rng,
+ rng,
phantom: ::core::marker::PhantomData,
}
}
@@ -292,23 +232,25 @@ impl<'a, T, D: Distribution<T>> Distribution<T> for &'a D {
/// This `struct` is created by the [`sample_iter`] method on [`Distribution`].
/// See its documentation for more.
///
-/// [`Distribution`]: trait.Distribution.html
-/// [`sample_iter`]: trait.Distribution.html#method.sample_iter
+/// [`sample_iter`]: Distribution::sample_iter
#[derive(Debug)]
-pub struct DistIter<'a, D: 'a, R: 'a, T> {
- distr: &'a D,
- rng: &'a mut R,
+pub struct DistIter<D, R, T> {
+ distr: D,
+ rng: R,
phantom: ::core::marker::PhantomData<T>,
}
-impl<'a, D, R, T> Iterator for DistIter<'a, D, R, T>
- where D: Distribution<T>, R: Rng + 'a
+impl<D, R, T> Iterator for DistIter<D, R, T>
+ where D: Distribution<T>, R: Rng
{
type Item = T;
#[inline(always)]
fn next(&mut self) -> Option<T> {
- Some(self.distr.sample(self.rng))
+ // Here, self.rng may be a reference, but we must take &mut anyway.
+ // Even if sample could take an R: Rng by value, we would need to do this
+ // since Rng is not copyable and we cannot enforce that this is "reborrowable".
+ Some(self.distr.sample(&mut self.rng))
}
fn size_hint(&self) -> (usize, Option<usize>) {
@@ -316,20 +258,19 @@ impl<'a, D, R, T> Iterator for DistIter<'a, D, R, T>
}
}
-#[cfg(rustc_1_26)]
-impl<'a, D, R, T> iter::FusedIterator for DistIter<'a, D, R, T>
- where D: Distribution<T>, R: Rng + 'a {}
+impl<D, R, T> iter::FusedIterator for DistIter<D, R, T>
+ where D: Distribution<T>, R: Rng {}
#[cfg(features = "nightly")]
-impl<'a, D, R, T> iter::TrustedLen for DistIter<'a, D, R, T>
- where D: Distribution<T>, R: Rng + 'a {}
+impl<D, R, T> iter::TrustedLen for DistIter<D, R, T>
+ where D: Distribution<T>, R: Rng {}
/// A generic random value distribution, implemented for many primitive types.
/// Usually generates values with a numerically uniform distribution, and with a
/// range appropriate to the type.
///
-/// ## Built-in Implementations
+/// ## Provided implementations
///
/// Assuming the provided `Rng` is well-behaved, these implementations
/// generate values with the following ranges and distributions:
@@ -346,20 +287,42 @@ impl<'a, D, R, T> iter::TrustedLen for DistIter<'a, D, R, T>
/// * Wrapping integers (`Wrapping<T>`), besides the type identical to their
/// normal integer variants.
///
-/// The following aggregate types also implement the distribution `Standard` as
-/// long as their component types implement it:
+/// The `Standard` distribution also supports generation of the following
+/// compound types where all component types are supported:
///
-/// * Tuples and arrays: Each element of the tuple or array is generated
-/// independently, using the `Standard` distribution recursively.
-/// * `Option<T>` where `Standard` is implemented for `T`: Returns `None` with
-/// probability 0.5; otherwise generates a random `x: T` and returns `Some(x)`.
+/// * Tuples (up to 12 elements): each element is generated sequentially.
+/// * Arrays (up to 32 elements): each element is generated sequentially;
+/// see also [`Rng::fill`] which supports arbitrary array length for integer
+/// types and tends to be faster for `u32` and smaller types.
+/// * `Option<T>` first generates a `bool`, and if true generates and returns
+/// `Some(value)` where `value: T`, otherwise returning `None`.
///
-/// # Example
+/// ## Custom implementations
+///
+/// The [`Standard`] distribution may be implemented for user types as follows:
+///
+/// ```
+/// # #![allow(dead_code)]
+/// use rand::Rng;
+/// use rand::distributions::{Distribution, Standard};
+///
+/// struct MyF32 {
+/// x: f32,
+/// }
+///
+/// impl Distribution<MyF32> for Standard {
+/// fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> MyF32 {
+/// MyF32 { x: rng.gen() }
+/// }
+/// }
+/// ```
+///
+/// ## Example usage
/// ```
/// use rand::prelude::*;
/// use rand::distributions::Standard;
///
-/// let val: f32 = SmallRng::from_entropy().sample(Standard);
+/// let val: f32 = StdRng::from_entropy().sample(Standard);
/// println!("f32 from [0, 1): {}", val);
/// ```
///
@@ -379,243 +342,40 @@ impl<'a, D, R, T> iter::TrustedLen for DistIter<'a, D, R, T>
/// faster on some architectures (on modern Intel CPUs all methods have
/// approximately equal performance).
///
-/// [`Open01`]: struct.Open01.html
-/// [`OpenClosed01`]: struct.OpenClosed01.html
-/// [`Uniform`]: uniform/struct.Uniform.html
+/// [`Uniform`]: uniform::Uniform
#[derive(Clone, Copy, Debug)]
pub struct Standard;
-/// A value with a particular weight for use with `WeightedChoice`.
-#[deprecated(since="0.6.0", note="use WeightedIndex instead")]
-#[allow(deprecated)]
-#[derive(Copy, Clone, Debug)]
-pub struct Weighted<T> {
- /// The numerical weight of this item
- pub weight: u32,
- /// The actual item which is being weighted
- pub item: T,
-}
-
-/// A distribution that selects from a finite collection of weighted items.
-///
-/// Deprecated: use [`WeightedIndex`] instead.
-///
-/// [`WeightedIndex`]: struct.WeightedIndex.html
-#[deprecated(since="0.6.0", note="use WeightedIndex instead")]
-#[allow(deprecated)]
-#[derive(Debug)]
-pub struct WeightedChoice<'a, T:'a> {
- items: &'a mut [Weighted<T>],
- weight_range: Uniform<u32>,
-}
-
-#[deprecated(since="0.6.0", note="use WeightedIndex instead")]
-#[allow(deprecated)]
-impl<'a, T: Clone> WeightedChoice<'a, T> {
- /// Create a new `WeightedChoice`.
- ///
- /// Panics if:
- ///
- /// - `items` is empty
- /// - the total weight is 0
- /// - the total weight is larger than a `u32` can contain.
- pub fn new(items: &'a mut [Weighted<T>]) -> WeightedChoice<'a, T> {
- // strictly speaking, this is subsumed by the total weight == 0 case
- assert!(!items.is_empty(), "WeightedChoice::new called with no items");
-
- let mut running_total: u32 = 0;
-
- // we convert the list from individual weights to cumulative
- // weights so we can binary search. This *could* drop elements
- // with weight == 0 as an optimisation.
- for item in items.iter_mut() {
- running_total = match running_total.checked_add(item.weight) {
- Some(n) => n,
- None => panic!("WeightedChoice::new called with a total weight \
- larger than a u32 can contain")
- };
-
- item.weight = running_total;
- }
- assert!(running_total != 0, "WeightedChoice::new called with a total weight of 0");
-
- WeightedChoice {
- items,
- // we're likely to be generating numbers in this range
- // relatively often, so might as well cache it
- weight_range: Uniform::new(0, running_total)
- }
- }
-}
-
-#[deprecated(since="0.6.0", note="use WeightedIndex instead")]
-#[allow(deprecated)]
-impl<'a, T: Clone> Distribution<T> for WeightedChoice<'a, T> {
- fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> T {
- // we want to find the first element that has cumulative
- // weight > sample_weight, which we do by binary since the
- // cumulative weights of self.items are sorted.
-
- // choose a weight in [0, total_weight)
- let sample_weight = self.weight_range.sample(rng);
-
- // short circuit when it's the first item
- if sample_weight < self.items[0].weight {
- return self.items[0].item.clone();
- }
-
- let mut idx = 0;
- let mut modifier = self.items.len();
-
- // now we know that every possibility has an element to the
- // left, so we can just search for the last element that has
- // cumulative weight <= sample_weight, then the next one will
- // be "it". (Note that this greatest element will never be the
- // last element of the vector, since sample_weight is chosen
- // in [0, total_weight) and the cumulative weight of the last
- // one is exactly the total weight.)
- while modifier > 1 {
- let i = idx + modifier / 2;
- if self.items[i].weight <= sample_weight {
- // we're small, so look to the right, but allow this
- // exact element still.
- idx = i;
- // we need the `/ 2` to round up otherwise we'll drop
- // the trailing elements when `modifier` is odd.
- modifier += 1;
- } else {
- // otherwise we're too big, so go left. (i.e. do
- // nothing)
- }
- modifier /= 2;
- }
- self.items[idx + 1].item.clone()
- }
-}
-
-#[cfg(test)]
+#[cfg(all(test, feature = "std"))]
mod tests {
- use rngs::mock::StepRng;
- #[allow(deprecated)]
- use super::{WeightedChoice, Weighted, Distribution};
+ use crate::Rng;
+ use super::{Distribution, Uniform};
#[test]
- #[allow(deprecated)]
- fn test_weighted_choice() {
- // this makes assumptions about the internal implementation of
- // WeightedChoice. It may fail when the implementation in
- // `distributions::uniform::UniformInt` changes.
-
- macro_rules! t {
- ($items:expr, $expected:expr) => {{
- let mut items = $items;
- let mut total_weight = 0;
- for item in &items { total_weight += item.weight; }
-
- let wc = WeightedChoice::new(&mut items);
- let expected = $expected;
-
- // Use extremely large steps between the random numbers, because
- // we test with small ranges and `UniformInt` is designed to prefer
- // the most significant bits.
- let mut rng = StepRng::new(0, !0 / (total_weight as u64));
-
- for &val in expected.iter() {
- assert_eq!(wc.sample(&mut rng), val)
- }
- }}
- }
-
- t!([Weighted { weight: 1, item: 10}], [10]);
-
- // skip some
- t!([Weighted { weight: 0, item: 20},
- Weighted { weight: 2, item: 21},
- Weighted { weight: 0, item: 22},
- Weighted { weight: 1, item: 23}],
- [21, 21, 23]);
-
- // different weights
- t!([Weighted { weight: 4, item: 30},
- Weighted { weight: 3, item: 31}],
- [30, 31, 30, 31, 30, 31, 30]);
-
- // check that we're binary searching
- // correctly with some vectors of odd
- // length.
- t!([Weighted { weight: 1, item: 40},
- Weighted { weight: 1, item: 41},
- Weighted { weight: 1, item: 42},
- Weighted { weight: 1, item: 43},
- Weighted { weight: 1, item: 44}],
- [40, 41, 42, 43, 44]);
- t!([Weighted { weight: 1, item: 50},
- Weighted { weight: 1, item: 51},
- Weighted { weight: 1, item: 52},
- Weighted { weight: 1, item: 53},
- Weighted { weight: 1, item: 54},
- Weighted { weight: 1, item: 55},
- Weighted { weight: 1, item: 56}],
- [50, 54, 51, 55, 52, 56, 53]);
- }
-
- #[test]
- #[allow(deprecated)]
- fn test_weighted_clone_initialization() {
- let initial : Weighted<u32> = Weighted {weight: 1, item: 1};
- let clone = initial.clone();
- assert_eq!(initial.weight, clone.weight);
- assert_eq!(initial.item, clone.item);
- }
-
- #[test] #[should_panic]
- #[allow(deprecated)]
- fn test_weighted_clone_change_weight() {
- let initial : Weighted<u32> = Weighted {weight: 1, item: 1};
- let mut clone = initial.clone();
- clone.weight = 5;
- assert_eq!(initial.weight, clone.weight);
- }
-
- #[test] #[should_panic]
- #[allow(deprecated)]
- fn test_weighted_clone_change_item() {
- let initial : Weighted<u32> = Weighted {weight: 1, item: 1};
- let mut clone = initial.clone();
- clone.item = 5;
- assert_eq!(initial.item, clone.item);
-
- }
-
- #[test] #[should_panic]
- #[allow(deprecated)]
- fn test_weighted_choice_no_items() {
- WeightedChoice::<isize>::new(&mut []);
- }
- #[test] #[should_panic]
- #[allow(deprecated)]
- fn test_weighted_choice_zero_weight() {
- WeightedChoice::new(&mut [Weighted { weight: 0, item: 0},
- Weighted { weight: 0, item: 1}]);
- }
- #[test] #[should_panic]
- #[allow(deprecated)]
- fn test_weighted_choice_weight_overflows() {
- let x = ::core::u32::MAX / 2; // x + x + 2 is the overflow
- WeightedChoice::new(&mut [Weighted { weight: x, item: 0 },
- Weighted { weight: 1, item: 1 },
- Weighted { weight: x, item: 2 },
- Weighted { weight: 1, item: 3 }]);
- }
-
- #[cfg(feature="std")]
- #[test]
fn test_distributions_iter() {
- use distributions::Normal;
- let mut rng = ::test::rng(210);
- let distr = Normal::new(10.0, 10.0);
- let results: Vec<_> = distr.sample_iter(&mut rng).take(100).collect();
+ use crate::distributions::Open01;
+ let mut rng = crate::test::rng(210);
+ let distr = Open01;
+ let results: Vec<f32> = distr.sample_iter(&mut rng).take(100).collect();
println!("{:?}", results);
}
+
+ #[test]
+ fn test_make_an_iter() {
+ fn ten_dice_rolls_other_than_five<'a, R: Rng>(rng: &'a mut R) -> impl Iterator<Item = i32> + 'a {
+ Uniform::new_inclusive(1, 6)
+ .sample_iter(rng)
+ .filter(|x| *x != 5)
+ .take(10)
+ }
+
+ let mut rng = crate::test::rng(211);
+ let mut count = 0;
+ for val in ten_dice_rolls_other_than_five(&mut rng) {
+ assert!(val >= 1 && val <= 6 && val != 5);
+ count += 1;
+ }
+ assert_eq!(count, 10);
+ }
}