summaryrefslogtreecommitdiff
path: root/rand/rand_isaac/src/isaac.rs
diff options
context:
space:
mode:
authorDaniel Mueller <deso@posteo.net>2020-04-04 14:39:19 -0700
committerDaniel Mueller <deso@posteo.net>2020-04-04 14:39:19 -0700
commitd0d9683df8398696147e7ee1fcffb2e4e957008c (patch)
tree4baa76712a76f4d072ee3936c07956580b230820 /rand/rand_isaac/src/isaac.rs
parent203e691f46d591a2cc8acdfd850fa9f5b0fb8a98 (diff)
downloadnitrocli-d0d9683df8398696147e7ee1fcffb2e4e957008c.tar.gz
nitrocli-d0d9683df8398696147e7ee1fcffb2e4e957008c.tar.bz2
Remove vendored dependencies
While it appears that by now we actually can get successful builds without Cargo insisting on Internet access by virtue of using the --frozen flag, maintaining vendored dependencies is somewhat of a pain point. This state will also get worse with upcoming changes that replace argparse in favor of structopt and pull in a slew of new dependencies by doing so. Then there is also the repository structure aspect, which is non-standard due to the way we vendor dependencies and a potential source of confusion. In order to fix these problems, this change removes all the vendored dependencies we have. Delete subrepo argparse/:argparse Delete subrepo base32/:base32 Delete subrepo cc/:cc Delete subrepo cfg-if/:cfg-if Delete subrepo getrandom/:getrandom Delete subrepo lazy-static/:lazy-static Delete subrepo libc/:libc Delete subrepo nitrokey-sys/:nitrokey-sys Delete subrepo nitrokey/:nitrokey Delete subrepo rand/:rand
Diffstat (limited to 'rand/rand_isaac/src/isaac.rs')
-rw-r--r--rand/rand_isaac/src/isaac.rs476
1 files changed, 0 insertions, 476 deletions
diff --git a/rand/rand_isaac/src/isaac.rs b/rand/rand_isaac/src/isaac.rs
deleted file mode 100644
index 2caf61a..0000000
--- a/rand/rand_isaac/src/isaac.rs
+++ /dev/null
@@ -1,476 +0,0 @@
-// Copyright 2018 Developers of the Rand project.
-// Copyright 2013-2018 The Rust Project Developers.
-//
-// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
-// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
-// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
-// option. This file may not be copied, modified, or distributed
-// except according to those terms.
-
-//! The ISAAC random number generator.
-
-use core::{fmt, slice};
-use core::num::Wrapping as w;
-#[cfg(feature="serde1")] use serde::{Serialize, Deserialize};
-use rand_core::{RngCore, SeedableRng, Error, le};
-use rand_core::block::{BlockRngCore, BlockRng};
-use crate::isaac_array::IsaacArray;
-
-#[allow(non_camel_case_types)]
-type w32 = w<u32>;
-
-const RAND_SIZE_LEN: usize = 8;
-const RAND_SIZE: usize = 1 << RAND_SIZE_LEN;
-
-/// A random number generator that uses the ISAAC algorithm.
-///
-/// ISAAC stands for "Indirection, Shift, Accumulate, Add, and Count" which are
-/// the principal bitwise operations employed. It is the most advanced of a
-/// series of array based random number generator designed by Robert Jenkins
-/// in 1996[^1][^2].
-///
-/// ISAAC is notably fast and produces excellent quality random numbers for
-/// non-cryptographic applications.
-///
-/// In spite of being designed with cryptographic security in mind, ISAAC hasn't
-/// been stringently cryptanalyzed and thus cryptographers do not not
-/// consensually trust it to be secure. When looking for a secure RNG, prefer
-/// `Hc128Rng` from the [`rand_hc`] crate instead, which, like ISAAC, is an
-/// array-based RNG and one of the stream-ciphers selected the by eSTREAM
-///
-/// In 2006 an improvement to ISAAC was suggested by Jean-Philippe Aumasson,
-/// named ISAAC+[^3]. But because the specification is not complete, because
-/// there is no good implementation, and because the suggested bias may not
-/// exist, it is not implemented here.
-///
-/// ## Overview of the ISAAC algorithm:
-/// (in pseudo-code)
-///
-/// ```text
-/// Input: a, b, c, s[256] // state
-/// Output: r[256] // results
-///
-/// mix(a,i) = a ^ a << 13 if i = 0 mod 4
-/// a ^ a >> 6 if i = 1 mod 4
-/// a ^ a << 2 if i = 2 mod 4
-/// a ^ a >> 16 if i = 3 mod 4
-///
-/// c = c + 1
-/// b = b + c
-///
-/// for i in 0..256 {
-/// x = s_[i]
-/// a = f(a,i) + s[i+128 mod 256]
-/// y = a + b + s[x>>2 mod 256]
-/// s[i] = y
-/// b = x + s[y>>10 mod 256]
-/// r[i] = b
-/// }
-/// ```
-///
-/// Numbers are generated in blocks of 256. This means the function above only
-/// runs once every 256 times you ask for a next random number. In all other
-/// circumstances the last element of the results array is returned.
-///
-/// ISAAC therefore needs a lot of memory, relative to other non-crypto RNGs.
-/// 2 * 256 * 4 = 2 kb to hold the state and results.
-///
-/// This implementation uses [`BlockRng`] to implement the [`RngCore`] methods.
-///
-/// ## References
-/// [^1]: Bob Jenkins, [*ISAAC: A fast cryptographic random number generator*](
-/// http://burtleburtle.net/bob/rand/isaacafa.html)
-///
-/// [^2]: Bob Jenkins, [*ISAAC and RC4*](
-/// http://burtleburtle.net/bob/rand/isaac.html)
-///
-/// [^3]: Jean-Philippe Aumasson, [*On the pseudo-random generator ISAAC*](
-/// https://eprint.iacr.org/2006/438)
-///
-/// [`rand_hc`]: https://docs.rs/rand_hc
-#[derive(Clone, Debug)]
-#[cfg_attr(feature="serde1", derive(Serialize, Deserialize))]
-pub struct IsaacRng(BlockRng<IsaacCore>);
-
-impl RngCore for IsaacRng {
- #[inline]
- fn next_u32(&mut self) -> u32 {
- self.0.next_u32()
- }
-
- #[inline]
- fn next_u64(&mut self) -> u64 {
- self.0.next_u64()
- }
-
- #[inline]
- fn fill_bytes(&mut self, dest: &mut [u8]) {
- self.0.fill_bytes(dest)
- }
-
- #[inline]
- fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
- self.0.try_fill_bytes(dest)
- }
-}
-
-impl SeedableRng for IsaacRng {
- type Seed = <IsaacCore as SeedableRng>::Seed;
-
- #[inline]
- fn from_seed(seed: Self::Seed) -> Self {
- IsaacRng(BlockRng::<IsaacCore>::from_seed(seed))
- }
-
- /// Create an ISAAC random number generator using an `u64` as seed.
- /// If `seed == 0` this will produce the same stream of random numbers as
- /// the reference implementation when used unseeded.
- #[inline]
- fn seed_from_u64(seed: u64) -> Self {
- IsaacRng(BlockRng::<IsaacCore>::seed_from_u64(seed))
- }
-
- #[inline]
- fn from_rng<S: RngCore>(rng: S) -> Result<Self, Error> {
- BlockRng::<IsaacCore>::from_rng(rng).map(|rng| IsaacRng(rng))
- }
-}
-
-/// The core of [`IsaacRng`], used with [`BlockRng`].
-#[derive(Clone)]
-#[cfg_attr(feature="serde1", derive(Serialize, Deserialize))]
-pub struct IsaacCore {
- #[cfg_attr(feature="serde1",serde(with="super::isaac_array::isaac_array_serde"))]
- mem: [w32; RAND_SIZE],
- a: w32,
- b: w32,
- c: w32,
-}
-
-// Custom Debug implementation that does not expose the internal state
-impl fmt::Debug for IsaacCore {
- fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
- write!(f, "IsaacCore {{}}")
- }
-}
-
-impl BlockRngCore for IsaacCore {
- type Item = u32;
- type Results = IsaacArray<Self::Item>;
-
- /// Refills the output buffer, `results`. See also the pseudocode desciption
- /// of the algorithm in the `IsaacRng` documentation.
- ///
- /// Optimisations used (similar to the reference implementation):
- ///
- /// - The loop is unrolled 4 times, once for every constant of mix().
- /// - The contents of the main loop are moved to a function `rngstep`, to
- /// reduce code duplication.
- /// - We use local variables for a and b, which helps with optimisations.
- /// - We split the main loop in two, one that operates over 0..128 and one
- /// over 128..256. This way we can optimise out the addition and modulus
- /// from `s[i+128 mod 256]`.
- /// - We maintain one index `i` and add `m` or `m2` as base (m2 for the
- /// `s[i+128 mod 256]`), relying on the optimizer to turn it into pointer
- /// arithmetic.
- /// - We fill `results` backwards. The reference implementation reads values
- /// from `results` in reverse. We read them in the normal direction, to
- /// make `fill_bytes` a memcopy. To maintain compatibility we fill in
- /// reverse.
- fn generate(&mut self, results: &mut IsaacArray<Self::Item>) {
- self.c += w(1);
- // abbreviations
- let mut a = self.a;
- let mut b = self.b + self.c;
- const MIDPOINT: usize = RAND_SIZE / 2;
-
- #[inline]
- fn ind(mem:&[w32; RAND_SIZE], v: w32, amount: usize) -> w32 {
- let index = (v >> amount).0 as usize % RAND_SIZE;
- mem[index]
- }
-
- #[inline]
- fn rngstep(mem: &mut [w32; RAND_SIZE],
- results: &mut [u32; RAND_SIZE],
- mix: w32,
- a: &mut w32,
- b: &mut w32,
- base: usize,
- m: usize,
- m2: usize) {
- let x = mem[base + m];
- *a = mix + mem[base + m2];
- let y = *a + *b + ind(&mem, x, 2);
- mem[base + m] = y;
- *b = x + ind(&mem, y, 2 + RAND_SIZE_LEN);
- results[RAND_SIZE - 1 - base - m] = (*b).0;
- }
-
- let mut m = 0;
- let mut m2 = MIDPOINT;
- for i in (0..MIDPOINT/4).map(|i| i * 4) {
- rngstep(&mut self.mem, results, a ^ (a << 13), &mut a, &mut b, i + 0, m, m2);
- rngstep(&mut self.mem, results, a ^ (a >> 6 ), &mut a, &mut b, i + 1, m, m2);
- rngstep(&mut self.mem, results, a ^ (a << 2 ), &mut a, &mut b, i + 2, m, m2);
- rngstep(&mut self.mem, results, a ^ (a >> 16), &mut a, &mut b, i + 3, m, m2);
- }
-
- m = MIDPOINT;
- m2 = 0;
- for i in (0..MIDPOINT/4).map(|i| i * 4) {
- rngstep(&mut self.mem, results, a ^ (a << 13), &mut a, &mut b, i + 0, m, m2);
- rngstep(&mut self.mem, results, a ^ (a >> 6 ), &mut a, &mut b, i + 1, m, m2);
- rngstep(&mut self.mem, results, a ^ (a << 2 ), &mut a, &mut b, i + 2, m, m2);
- rngstep(&mut self.mem, results, a ^ (a >> 16), &mut a, &mut b, i + 3, m, m2);
- }
-
- self.a = a;
- self.b = b;
- }
-}
-
-impl IsaacCore {
- /// Create a new ISAAC random number generator.
- ///
- /// The author Bob Jenkins describes how to best initialize ISAAC here:
- /// <https://rt.cpan.org/Public/Bug/Display.html?id=64324>
- /// The answer is included here just in case:
- ///
- /// "No, you don't need a full 8192 bits of seed data. Normal key sizes will
- /// do fine, and they should have their expected strength (eg a 40-bit key
- /// will take as much time to brute force as 40-bit keys usually will). You
- /// could fill the remainder with 0, but set the last array element to the
- /// length of the key provided (to distinguish keys that differ only by
- /// different amounts of 0 padding). You do still need to call `randinit()`
- /// to make sure the initial state isn't uniform-looking."
- /// "After publishing ISAAC, I wanted to limit the key to half the size of
- /// `r[]`, and repeat it twice. That would have made it hard to provide a
- /// key that sets the whole internal state to anything convenient. But I'd
- /// already published it."
- ///
- /// And his answer to the question "For my code, would repeating the key
- /// over and over to fill 256 integers be a better solution than
- /// zero-filling, or would they essentially be the same?":
- /// "If the seed is under 32 bytes, they're essentially the same, otherwise
- /// repeating the seed would be stronger. randinit() takes a chunk of 32
- /// bytes, mixes it, and combines that with the next 32 bytes, et cetera.
- /// Then loops over all the elements the same way a second time."
- #[inline]
- fn init(mut mem: [w32; RAND_SIZE], rounds: u32) -> Self {
- fn mix(a: &mut w32, b: &mut w32, c: &mut w32, d: &mut w32,
- e: &mut w32, f: &mut w32, g: &mut w32, h: &mut w32) {
- *a ^= *b << 11; *d += *a; *b += *c;
- *b ^= *c >> 2; *e += *b; *c += *d;
- *c ^= *d << 8; *f += *c; *d += *e;
- *d ^= *e >> 16; *g += *d; *e += *f;
- *e ^= *f << 10; *h += *e; *f += *g;
- *f ^= *g >> 4; *a += *f; *g += *h;
- *g ^= *h << 8; *b += *g; *h += *a;
- *h ^= *a >> 9; *c += *h; *a += *b;
- }
-
- // These numbers are the result of initializing a...h with the
- // fractional part of the golden ratio in binary (0x9e3779b9)
- // and applying mix() 4 times.
- let mut a = w(0x1367df5a);
- let mut b = w(0x95d90059);
- let mut c = w(0xc3163e4b);
- let mut d = w(0x0f421ad8);
- let mut e = w(0xd92a4a78);
- let mut f = w(0xa51a3c49);
- let mut g = w(0xc4efea1b);
- let mut h = w(0x30609119);
-
- // Normally this should do two passes, to make all of the seed effect
- // all of `mem`
- for _ in 0..rounds {
- for i in (0..RAND_SIZE/8).map(|i| i * 8) {
- a += mem[i ]; b += mem[i+1];
- c += mem[i+2]; d += mem[i+3];
- e += mem[i+4]; f += mem[i+5];
- g += mem[i+6]; h += mem[i+7];
- mix(&mut a, &mut b, &mut c, &mut d,
- &mut e, &mut f, &mut g, &mut h);
- mem[i ] = a; mem[i+1] = b;
- mem[i+2] = c; mem[i+3] = d;
- mem[i+4] = e; mem[i+5] = f;
- mem[i+6] = g; mem[i+7] = h;
- }
- }
-
- Self { mem, a: w(0), b: w(0), c: w(0) }
- }
-}
-
-impl SeedableRng for IsaacCore {
- type Seed = [u8; 32];
-
- fn from_seed(seed: Self::Seed) -> Self {
- let mut seed_u32 = [0u32; 8];
- le::read_u32_into(&seed, &mut seed_u32);
- // Convert the seed to `Wrapping<u32>` and zero-extend to `RAND_SIZE`.
- let mut seed_extended = [w(0); RAND_SIZE];
- for (x, y) in seed_extended.iter_mut().zip(seed_u32.iter()) {
- *x = w(*y);
- }
- Self::init(seed_extended, 2)
- }
-
- /// Create an ISAAC random number generator using an `u64` as seed.
- /// If `seed == 0` this will produce the same stream of random numbers as
- /// the reference implementation when used unseeded.
- fn seed_from_u64(seed: u64) -> Self {
- let mut key = [w(0); RAND_SIZE];
- key[0] = w(seed as u32);
- key[1] = w((seed >> 32) as u32);
- // Initialize with only one pass.
- // A second pass does not improve the quality here, because all of the
- // seed was already available in the first round.
- // Not doing the second pass has the small advantage that if
- // `seed == 0` this method produces exactly the same state as the
- // reference implementation when used unseeded.
- Self::init(key, 1)
- }
-
- fn from_rng<R: RngCore>(mut rng: R) -> Result<Self, Error> {
- // Custom `from_rng` implementation that fills a seed with the same size
- // as the entire state.
- let mut seed = [w(0u32); RAND_SIZE];
- unsafe {
- let ptr = seed.as_mut_ptr() as *mut u8;
-
- let slice = slice::from_raw_parts_mut(ptr, RAND_SIZE * 4);
- rng.try_fill_bytes(slice)?;
- }
- for i in seed.iter_mut() {
- *i = w(i.0.to_le());
- }
-
- Ok(Self::init(seed, 2))
- }
-}
-
-#[cfg(test)]
-mod test {
- use rand_core::{RngCore, SeedableRng};
- use super::IsaacRng;
-
- #[test]
- fn test_isaac_construction() {
- // Test that various construction techniques produce a working RNG.
- let seed = [1,0,0,0, 23,0,0,0, 200,1,0,0, 210,30,0,0,
- 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0];
- let mut rng1 = IsaacRng::from_seed(seed);
- assert_eq!(rng1.next_u32(), 2869442790);
-
- let mut rng2 = IsaacRng::from_rng(rng1).unwrap();
- assert_eq!(rng2.next_u32(), 3094074039);
- }
-
- #[test]
- fn test_isaac_true_values_32() {
- let seed = [1,0,0,0, 23,0,0,0, 200,1,0,0, 210,30,0,0,
- 57,48,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0];
- let mut rng1 = IsaacRng::from_seed(seed);
- let mut results = [0u32; 10];
- for i in results.iter_mut() { *i = rng1.next_u32(); }
- let expected = [
- 2558573138, 873787463, 263499565, 2103644246, 3595684709,
- 4203127393, 264982119, 2765226902, 2737944514, 3900253796];
- assert_eq!(results, expected);
-
- let seed = [57,48,0,0, 50,9,1,0, 49,212,0,0, 148,38,0,0,
- 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0];
- let mut rng2 = IsaacRng::from_seed(seed);
- // skip forward to the 10000th number
- for _ in 0..10000 { rng2.next_u32(); }
-
- for i in results.iter_mut() { *i = rng2.next_u32(); }
- let expected = [
- 3676831399, 3183332890, 2834741178, 3854698763, 2717568474,
- 1576568959, 3507990155, 179069555, 141456972, 2478885421];
- assert_eq!(results, expected);
- }
-
- #[test]
- fn test_isaac_true_values_64() {
- // As above, using little-endian versions of above values
- let seed = [1,0,0,0, 23,0,0,0, 200,1,0,0, 210,30,0,0,
- 57,48,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0];
- let mut rng = IsaacRng::from_seed(seed);
- let mut results = [0u64; 5];
- for i in results.iter_mut() { *i = rng.next_u64(); }
- let expected = [
- 3752888579798383186, 9035083239252078381,18052294697452424037,
- 11876559110374379111, 16751462502657800130];
- assert_eq!(results, expected);
- }
-
- #[test]
- fn test_isaac_true_bytes() {
- let seed = [1,0,0,0, 23,0,0,0, 200,1,0,0, 210,30,0,0,
- 57,48,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0];
- let mut rng = IsaacRng::from_seed(seed);
- let mut results = [0u8; 32];
- rng.fill_bytes(&mut results);
- // Same as first values in test_isaac_true_values as bytes in LE order
- let expected = [82, 186, 128, 152, 71, 240, 20, 52,
- 45, 175, 180, 15, 86, 16, 99, 125,
- 101, 203, 81, 214, 97, 162, 134, 250,
- 103, 78, 203, 15, 150, 3, 210, 164];
- assert_eq!(results, expected);
- }
-
- #[test]
- fn test_isaac_new_uninitialized() {
- // Compare the results from initializing `IsaacRng` with
- // `seed_from_u64(0)`, to make sure it is the same as the reference
- // implementation when used uninitialized.
- // Note: We only test the first 16 integers, not the full 256 of the
- // first block.
- let mut rng = IsaacRng::seed_from_u64(0);
- let mut results = [0u32; 16];
- for i in results.iter_mut() { *i = rng.next_u32(); }
- let expected: [u32; 16] = [
- 0x71D71FD2, 0xB54ADAE7, 0xD4788559, 0xC36129FA,
- 0x21DC1EA9, 0x3CB879CA, 0xD83B237F, 0xFA3CE5BD,
- 0x8D048509, 0xD82E9489, 0xDB452848, 0xCA20E846,
- 0x500F972E, 0x0EEFF940, 0x00D6B993, 0xBC12C17F];
- assert_eq!(results, expected);
- }
-
- #[test]
- fn test_isaac_clone() {
- let seed = [1,0,0,0, 23,0,0,0, 200,1,0,0, 210,30,0,0,
- 57,48,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0];
- let mut rng1 = IsaacRng::from_seed(seed);
- let mut rng2 = rng1.clone();
- for _ in 0..16 {
- assert_eq!(rng1.next_u32(), rng2.next_u32());
- }
- }
-
- #[test]
- #[cfg(feature="serde1")]
- fn test_isaac_serde() {
- use bincode;
- use std::io::{BufWriter, BufReader};
-
- let seed = [1,0,0,0, 23,0,0,0, 200,1,0,0, 210,30,0,0,
- 57,48,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0];
- let mut rng = IsaacRng::from_seed(seed);
-
- let buf: Vec<u8> = Vec::new();
- let mut buf = BufWriter::new(buf);
- bincode::serialize_into(&mut buf, &rng).expect("Could not serialize");
-
- let buf = buf.into_inner().unwrap();
- let mut read = BufReader::new(&buf[..]);
- let mut deserialized: IsaacRng = bincode::deserialize_from(&mut read).expect("Could not deserialize");
-
- for _ in 0..300 { // more than the 256 buffered results
- assert_eq!(rng.next_u32(), deserialized.next_u32());
- }
- }
-}