// commands.rs // ************************************************************************* // * Copyright (C) 2018-2020 Daniel Mueller (deso@posteo.net) * // * * // * This program is free software: you can redistribute it and/or modify * // * it under the terms of the GNU General Public License as published by * // * the Free Software Foundation, either version 3 of the License, or * // * (at your option) any later version. * // * * // * This program is distributed in the hope that it will be useful, * // * but WITHOUT ANY WARRANTY; without even the implied warranty of * // * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * // * GNU General Public License for more details. * // * * // * You should have received a copy of the GNU General Public License * // * along with this program. If not, see . * // ************************************************************************* use std::fmt; use std::mem; use std::result; use std::thread; use std::time; use std::u8; use libc::sync; use nitrokey::ConfigureOtp; use nitrokey::Device; use nitrokey::GenerateOtp; use nitrokey::GetPasswordSafe; use crate::arg_defs; use crate::args; use crate::error; use crate::error::Error; use crate::pinentry; use crate::Result; /// Create an `error::Error` with an error message of the format `msg: err`. fn get_error(msg: &'static str, err: nitrokey::Error) -> Error { Error::NitrokeyError(Some(msg), err) } /// Set `libnitrokey`'s log level based on the execution context's verbosity. fn set_log_level(ctx: &mut args::ExecCtx<'_>) { let log_lvl = match ctx.verbosity { // The error log level is what libnitrokey uses by default. As such, // there is no harm in us setting that as well when the user did not // ask for higher verbosity. 0 => nitrokey::LogLevel::Error, 1 => nitrokey::LogLevel::Warning, 2 => nitrokey::LogLevel::Info, 3 => nitrokey::LogLevel::DebugL1, 4 => nitrokey::LogLevel::Debug, _ => nitrokey::LogLevel::DebugL2, }; nitrokey::set_log_level(log_lvl); } /// Connect to any Nitrokey device and do something with it. fn with_device(ctx: &mut args::ExecCtx<'_>, op: F) -> Result<()> where F: FnOnce(&mut args::ExecCtx<'_>, nitrokey::DeviceWrapper<'_>) -> Result<()>, { let mut manager = nitrokey::take()?; set_log_level(ctx); let device = match ctx.model { Some(model) => manager.connect_model(model.into()).map_err(|_| { let error = format!("Nitrokey {} device not found", model.as_user_facing_str()); Error::Error(error) })?, None => manager .connect() .map_err(|_| Error::from("Nitrokey device not found"))?, }; op(ctx, device) } /// Connect to a Nitrokey Storage device and do something with it. fn with_storage_device(ctx: &mut args::ExecCtx<'_>, op: F) -> Result<()> where F: FnOnce(&mut args::ExecCtx<'_>, nitrokey::Storage<'_>) -> Result<()>, { let mut manager = nitrokey::take()?; set_log_level(ctx); if let Some(model) = ctx.model { if model != arg_defs::DeviceModel::Storage { return Err(Error::from( "This command is only available on the Nitrokey Storage", )); } } let device = manager .connect_storage() .map_err(|_| Error::from("Nitrokey Storage device not found"))?; op(ctx, device) } /// Connect to any Nitrokey device, retrieve a password safe handle, and /// do something with it. fn with_password_safe(ctx: &mut args::ExecCtx<'_>, mut op: F) -> Result<()> where F: FnMut(&mut args::ExecCtx<'_>, nitrokey::PasswordSafe<'_, '_>) -> Result<()>, { with_device(ctx, |ctx, mut device| { let pin_entry = pinentry::PinEntry::from(arg_defs::PinType::User, &device)?; try_with_pin_and_data( ctx, &pin_entry, "Could not access the password safe", (), move |ctx, _, pin| { let pws = device .get_password_safe(pin) .map_err(|err| ((), Error::from(err)))?; op(ctx, pws).map_err(|err| ((), err)) }, ) })?; Ok(()) } /// Authenticate the given device using the given PIN type and operation. /// /// If an error occurs, the error message `msg` is used. fn authenticate<'mgr, D, A, F>( ctx: &mut args::ExecCtx<'_>, device: D, pin_type: arg_defs::PinType, msg: &'static str, op: F, ) -> Result where D: Device<'mgr>, F: FnMut(&mut args::ExecCtx<'_>, D, &str) -> result::Result, { let pin_entry = pinentry::PinEntry::from(pin_type, &device)?; try_with_pin_and_data(ctx, &pin_entry, msg, device, op) } /// Authenticate the given device with the user PIN. fn authenticate_user<'mgr, T>( ctx: &mut args::ExecCtx<'_>, device: T, ) -> Result> where T: Device<'mgr>, { authenticate( ctx, device, arg_defs::PinType::User, "Could not authenticate as user", |_ctx, device, pin| device.authenticate_user(pin), ) } /// Authenticate the given device with the admin PIN. fn authenticate_admin<'mgr, T>( ctx: &mut args::ExecCtx<'_>, device: T, ) -> Result> where T: Device<'mgr>, { authenticate( ctx, device, arg_defs::PinType::Admin, "Could not authenticate as admin", |_ctx, device, pin| device.authenticate_admin(pin), ) } /// Return a string representation of the given volume status. fn get_volume_status(status: &nitrokey::VolumeStatus) -> &'static str { if status.active { if status.read_only { "read-only" } else { "active" } } else { "inactive" } } /// Try to execute the given function with a pin queried using pinentry. /// /// This function will query the pin of the given type from the user /// using pinentry. It will then execute the given function. If this /// function returns a result, the result will be passed on. If it /// returns a `CommandError::WrongPassword`, the user will be asked /// again to enter the pin. Otherwise, this function returns an error /// containing the given error message. The user will have at most /// three tries to get the pin right. /// /// The data argument can be used to pass on data between the tries. At /// the first try, this function will call `op` with `data`. At the /// second or third try, it will call `op` with the data returned by the /// previous call to `op`. fn try_with_pin_and_data_with_pinentry( ctx: &mut args::ExecCtx<'_>, pin_entry: &pinentry::PinEntry, msg: &'static str, data: D, mut op: F, ) -> Result where F: FnMut(&mut args::ExecCtx<'_>, D, &str) -> result::Result, E: error::TryInto, { let mut data = data; let mut retry = 3; let mut error_msg = None; loop { let pin = pinentry::inquire(ctx, pin_entry, pinentry::Mode::Query, error_msg)?; match op(ctx, data, &pin) { Ok(result) => return Ok(result), Err((new_data, err)) => match err.try_into() { Ok(err) => match err { nitrokey::Error::CommandError(nitrokey::CommandError::WrongPassword) => { pinentry::clear(pin_entry)?; retry -= 1; if retry > 0 { error_msg = Some("Wrong password, please reenter"); data = new_data; continue; } return Err(get_error(msg, err)); } err => return Err(get_error(msg, err)), }, Err(err) => return Err(err), }, }; } } /// Try to execute the given function with a PIN. fn try_with_pin_and_data( ctx: &mut args::ExecCtx<'_>, pin_entry: &pinentry::PinEntry, msg: &'static str, data: D, mut op: F, ) -> Result where F: FnMut(&mut args::ExecCtx<'_>, D, &str) -> result::Result, E: Into + error::TryInto, { let pin = match pin_entry.pin_type() { // Ideally we would not clone here, but that would require us to // restrict op to work with an immutable ExecCtx, which is not // possible given that some clients print data. arg_defs::PinType::Admin => ctx.admin_pin.clone(), arg_defs::PinType::User => ctx.user_pin.clone(), }; if let Some(pin) = pin { let pin = pin.to_str().ok_or_else(|| { Error::Error(format!( "{}: Failed to read PIN due to invalid Unicode data", msg )) })?; op(ctx, data, &pin).map_err(|(_, err)| err.into()) } else { try_with_pin_and_data_with_pinentry(ctx, pin_entry, msg, data, op) } } /// Try to execute the given function with a pin queried using pinentry. /// /// This function behaves exactly as `try_with_pin_and_data`, but /// it refrains from passing any data to it. fn try_with_pin( ctx: &mut args::ExecCtx<'_>, pin_entry: &pinentry::PinEntry, msg: &'static str, mut op: F, ) -> Result<()> where F: FnMut(&str) -> result::Result<(), E>, E: Into + error::TryInto, { try_with_pin_and_data(ctx, pin_entry, msg, (), |_ctx, data, pin| { op(pin).map_err(|err| (data, err)) }) } /// Pretty print the status of a Nitrokey Storage. fn print_storage_status( ctx: &mut args::ExecCtx<'_>, status: &nitrokey::StorageStatus, ) -> Result<()> { println!( ctx, r#" Storage: SD card ID: {id:#x} firmware: {fw} storage keys: {sk} volumes: unencrypted: {vu} encrypted: {ve} hidden: {vh}"#, id = status.serial_number_sd_card, fw = if status.firmware_locked { "locked" } else { "unlocked" }, sk = if status.stick_initialized { "created" } else { "not created" }, vu = get_volume_status(&status.unencrypted_volume), ve = get_volume_status(&status.encrypted_volume), vh = get_volume_status(&status.hidden_volume), )?; Ok(()) } /// Query and pretty print the status that is common to all Nitrokey devices. fn print_status( ctx: &mut args::ExecCtx<'_>, model: &'static str, device: &nitrokey::DeviceWrapper<'_>, ) -> Result<()> { let serial_number = device .get_serial_number() .map_err(|err| get_error("Could not query the serial number", err))?; println!( ctx, r#"Status: model: {model} serial number: {id} firmware version: {fwv} user retry count: {urc} admin retry count: {arc}"#, model = model, id = serial_number, fwv = device.get_firmware_version()?, urc = device.get_user_retry_count()?, arc = device.get_admin_retry_count()?, )?; if let nitrokey::DeviceWrapper::Storage(device) = device { let status = device .get_storage_status() .map_err(|err| get_error("Getting Storage status failed", err))?; print_storage_status(ctx, &status) } else { Ok(()) } } /// Inquire the status of the nitrokey. pub fn status(ctx: &mut args::ExecCtx<'_>) -> Result<()> { with_device(ctx, |ctx, device| { let model = match device { nitrokey::DeviceWrapper::Pro(_) => "Pro", nitrokey::DeviceWrapper::Storage(_) => "Storage", }; print_status(ctx, model, &device) }) } /// List the attached Nitrokey devices. pub fn list(ctx: &mut args::ExecCtx<'_>, no_connect: bool) -> Result<()> { set_log_level(ctx); let device_infos = nitrokey::list_devices()?; if device_infos.is_empty() { println!(ctx, "No Nitrokey device connected")?; } else { println!(ctx, "device path\tmodel\tserial number")?; let mut manager = nitrokey::take()?; for device_info in device_infos { let model = device_info .model .map(|m| m.to_string()) .unwrap_or_else(|| "unknown".into()); let serial_number = match device_info.serial_number { Some(serial_number) => serial_number.to_string(), None => { // Storage devices do not have the serial number present in // the device information. We have to connect to them to // retrieve the information. if no_connect { "N/A".to_string() } else { let device = manager.connect_path(device_info.path.clone())?; device.get_serial_number()?.to_string() } } }; println!(ctx, "{}\t{}\t{}", device_info.path, model, serial_number)?; } } Ok(()) } /// Perform a factory reset. pub fn reset(ctx: &mut args::ExecCtx<'_>) -> Result<()> { with_device(ctx, |ctx, mut device| { let pin_entry = pinentry::PinEntry::from(arg_defs::PinType::Admin, &device)?; // To force the user to enter the admin PIN before performing a // factory reset, we clear the pinentry cache for the admin PIN. pinentry::clear(&pin_entry)?; try_with_pin(ctx, &pin_entry, "Factory reset failed", |pin| { device.factory_reset(&pin)?; // Work around for a timing issue between factory_reset and // build_aes_key, see // https://github.com/Nitrokey/nitrokey-storage-firmware/issues/80 thread::sleep(time::Duration::from_secs(3)); // Another work around for spurious WrongPassword returns of // build_aes_key after a factory reset on Pro devices. // https://github.com/Nitrokey/nitrokey-pro-firmware/issues/57 let _ = device.get_user_retry_count(); device.build_aes_key(nitrokey::DEFAULT_ADMIN_PIN) }) }) } /// Change the configuration of the unencrypted volume. pub fn unencrypted_set( ctx: &mut args::ExecCtx<'_>, mode: arg_defs::UnencryptedVolumeMode, ) -> Result<()> { with_storage_device(ctx, |ctx, mut device| { let pin_entry = pinentry::PinEntry::from(arg_defs::PinType::Admin, &device)?; let mode = match mode { arg_defs::UnencryptedVolumeMode::ReadWrite => nitrokey::VolumeMode::ReadWrite, arg_defs::UnencryptedVolumeMode::ReadOnly => nitrokey::VolumeMode::ReadOnly, }; // The unencrypted volume may reconnect, so be sure to flush caches to // disk. unsafe { sync() }; try_with_pin( ctx, &pin_entry, "Changing unencrypted volume mode failed", |pin| device.set_unencrypted_volume_mode(&pin, mode), ) }) } /// Open the encrypted volume on the Nitrokey. pub fn encrypted_open(ctx: &mut args::ExecCtx<'_>) -> Result<()> { with_storage_device(ctx, |ctx, mut device| { let pin_entry = pinentry::PinEntry::from(arg_defs::PinType::User, &device)?; // We may forcefully close a hidden volume, if active, so be sure to // flush caches to disk. unsafe { sync() }; try_with_pin(ctx, &pin_entry, "Opening encrypted volume failed", |pin| { device.enable_encrypted_volume(&pin) }) }) } /// Close the previously opened encrypted volume. pub fn encrypted_close(ctx: &mut args::ExecCtx<'_>) -> Result<()> { with_storage_device(ctx, |_ctx, mut device| { // Flush all filesystem caches to disk. We are mostly interested in // making sure that the encrypted volume on the Nitrokey we are // about to close is not closed while not all data was written to // it. unsafe { sync() }; device .disable_encrypted_volume() .map_err(|err| get_error("Closing encrypted volume failed", err)) }) } /// Create a hidden volume. pub fn hidden_create(ctx: &mut args::ExecCtx<'_>, slot: u8, start: u8, end: u8) -> Result<()> { with_storage_device(ctx, |ctx, mut device| { let pwd_entry = pinentry::PwdEntry::from(&device)?; let pwd = if let Some(pwd) = &ctx.password { pwd .to_str() .ok_or_else(|| Error::from("Failed to read password: invalid Unicode data found")) .map(ToOwned::to_owned) } else { pinentry::choose(ctx, &pwd_entry) }?; device .create_hidden_volume(slot, start, end, &pwd) .map_err(|err| get_error("Creating hidden volume failed", err)) }) } /// Open a hidden volume. pub fn hidden_open(ctx: &mut args::ExecCtx<'_>) -> Result<()> { with_storage_device(ctx, |ctx, mut device| { let pwd_entry = pinentry::PwdEntry::from(&device)?; let pwd = if let Some(pwd) = &ctx.password { pwd .to_str() .ok_or_else(|| Error::from("Failed to read password: invalid Unicode data found")) .map(ToOwned::to_owned) } else { pinentry::inquire(ctx, &pwd_entry, pinentry::Mode::Query, None) }?; // We may forcefully close an encrypted volume, if active, so be sure // to flush caches to disk. unsafe { sync() }; device .enable_hidden_volume(&pwd) .map_err(|err| get_error("Opening hidden volume failed", err)) }) } /// Close a previously opened hidden volume. pub fn hidden_close(ctx: &mut args::ExecCtx<'_>) -> Result<()> { with_storage_device(ctx, |_ctx, mut device| { unsafe { sync() }; device .disable_hidden_volume() .map_err(|err| get_error("Closing hidden volume failed", err)) }) } /// Return a String representation of the given Option. fn format_option(option: Option) -> String { match option { Some(value) => format!("{}", value), None => "not set".to_string(), } } /// Read the Nitrokey configuration. pub fn config_get(ctx: &mut args::ExecCtx<'_>) -> Result<()> { with_device(ctx, |ctx, device| { let config = device .get_config() .map_err(|err| get_error("Could not get configuration", err))?; println!( ctx, r#"Config: numlock binding: {nl} capslock binding: {cl} scrollock binding: {sl} require user PIN for OTP: {otp}"#, nl = format_option(config.numlock), cl = format_option(config.capslock), sl = format_option(config.scrollock), otp = config.user_password, )?; Ok(()) }) } /// Write the Nitrokey configuration. pub fn config_set( ctx: &mut args::ExecCtx<'_>, numlock: arg_defs::ConfigOption, capslock: arg_defs::ConfigOption, scrollock: arg_defs::ConfigOption, user_password: Option, ) -> Result<()> { with_device(ctx, |ctx, device| { let mut device = authenticate_admin(ctx, device)?; let config = device .get_config() .map_err(|err| get_error("Could not get configuration", err))?; let config = nitrokey::Config { numlock: numlock.or(config.numlock), capslock: capslock.or(config.capslock), scrollock: scrollock.or(config.scrollock), user_password: user_password.unwrap_or(config.user_password), }; device .write_config(config) .map_err(|err| get_error("Could not set configuration", err)) }) } /// Lock the Nitrokey device. pub fn lock(ctx: &mut args::ExecCtx<'_>) -> Result<()> { with_device(ctx, |_ctx, mut device| { device .lock() .map_err(|err| get_error("Could not lock the device", err)) }) } fn get_otp(slot: u8, algorithm: arg_defs::OtpAlgorithm, device: &mut T) -> Result where T: GenerateOtp, { match algorithm { arg_defs::OtpAlgorithm::Hotp => device.get_hotp_code(slot), arg_defs::OtpAlgorithm::Totp => device.get_totp_code(slot), } .map_err(|err| get_error("Could not generate OTP", err)) } fn get_unix_timestamp() -> Result { time::SystemTime::now() .duration_since(time::UNIX_EPOCH) .map_err(|_| Error::from("Current system time is before the Unix epoch")) .map(|duration| duration.as_secs()) } /// Generate a one-time password on the Nitrokey device. pub fn otp_get( ctx: &mut args::ExecCtx<'_>, slot: u8, algorithm: arg_defs::OtpAlgorithm, time: Option, ) -> Result<()> { with_device(ctx, |ctx, mut device| { if algorithm == arg_defs::OtpAlgorithm::Totp { device .set_time( match time { Some(time) => time, None => get_unix_timestamp()?, }, true, ) .map_err(|err| get_error("Could not set time", err))?; } let config = device .get_config() .map_err(|err| get_error("Could not get device configuration", err))?; let otp = if config.user_password { let mut user = authenticate_user(ctx, device)?; get_otp(slot, algorithm, &mut user) } else { get_otp(slot, algorithm, &mut device) }?; println!(ctx, "{}", otp)?; Ok(()) }) } /// Format a byte vector as a hex string. fn format_bytes(bytes: &[u8]) -> String { bytes .iter() .map(|c| format!("{:02x}", c)) .collect::>() .join("") } /// Prepare an ASCII secret string for libnitrokey. /// /// libnitrokey expects secrets as hexadecimal strings. This function transforms an ASCII string /// into a hexadecimal string or returns an error if the given string contains non-ASCII /// characters. fn prepare_ascii_secret(secret: &str) -> Result { if secret.is_ascii() { Ok(format_bytes(&secret.as_bytes())) } else { Err(Error::from( "The given secret is not an ASCII string despite --format ascii being set", )) } } /// Prepare a base32 secret string for libnitrokey. fn prepare_base32_secret(secret: &str) -> Result { base32::decode(base32::Alphabet::RFC4648 { padding: false }, secret) .map(|vec| format_bytes(&vec)) .ok_or_else(|| Error::from("Could not parse base32 secret")) } /// Configure a one-time password slot on the Nitrokey device. pub fn otp_set(ctx: &mut args::ExecCtx<'_>, mut args: arg_defs::OtpSetArgs) -> Result<()> { let mut data = nitrokey::OtpSlotData { number: args.slot, name: mem::take(&mut args.name), secret: mem::take(&mut args.secret), mode: args.digits.into(), use_enter: false, token_id: None, }; with_device(ctx, |ctx, device| { let secret = match args.format { arg_defs::OtpSecretFormat::Ascii => prepare_ascii_secret(&data.secret)?, arg_defs::OtpSecretFormat::Base32 => prepare_base32_secret(&data.secret)?, arg_defs::OtpSecretFormat::Hex => { // We need to ensure to provide a string with an even number of // characters in it, just because that's what libnitrokey // expects. So prepend a '0' if that is not the case. // TODO: This code can be removed once upstream issue #164 // (https://github.com/Nitrokey/libnitrokey/issues/164) is // addressed. if data.secret.len() % 2 != 0 { data.secret.insert(0, '0') } data.secret } }; let data = nitrokey::OtpSlotData { secret, ..data }; let mut device = authenticate_admin(ctx, device)?; match args.algorithm { arg_defs::OtpAlgorithm::Hotp => device.write_hotp_slot(data, args.counter), arg_defs::OtpAlgorithm::Totp => device.write_totp_slot(data, args.time_window), } .map_err(|err| get_error("Could not write OTP slot", err))?; Ok(()) }) } /// Clear an OTP slot. pub fn otp_clear( ctx: &mut args::ExecCtx<'_>, slot: u8, algorithm: arg_defs::OtpAlgorithm, ) -> Result<()> { with_device(ctx, |ctx, device| { let mut device = authenticate_admin(ctx, device)?; match algorithm { arg_defs::OtpAlgorithm::Hotp => device.erase_hotp_slot(slot), arg_defs::OtpAlgorithm::Totp => device.erase_totp_slot(slot), } .map_err(|err| get_error("Could not clear OTP slot", err))?; Ok(()) }) } fn print_otp_status( ctx: &mut args::ExecCtx<'_>, algorithm: arg_defs::OtpAlgorithm, device: &nitrokey::DeviceWrapper<'_>, all: bool, ) -> Result<()> { let mut slot: u8 = 0; loop { let result = match algorithm { arg_defs::OtpAlgorithm::Hotp => device.get_hotp_slot_name(slot), arg_defs::OtpAlgorithm::Totp => device.get_totp_slot_name(slot), }; slot = match slot.checked_add(1) { Some(slot) => slot, None => { return Err(Error::from("Integer overflow when iterating OTP slots")); } }; let name = match result { Ok(name) => name, Err(nitrokey::Error::LibraryError(nitrokey::LibraryError::InvalidSlot)) => return Ok(()), Err(nitrokey::Error::CommandError(nitrokey::CommandError::SlotNotProgrammed)) => { if all { "[not programmed]".to_string() } else { continue; } } Err(err) => return Err(get_error("Could not check OTP slot", err)), }; println!(ctx, "{}\t{}\t{}", algorithm, slot - 1, name)?; } } /// Print the status of the OTP slots. pub fn otp_status(ctx: &mut args::ExecCtx<'_>, all: bool) -> Result<()> { with_device(ctx, |ctx, device| { println!(ctx, "alg\tslot\tname")?; print_otp_status(ctx, arg_defs::OtpAlgorithm::Hotp, &device, all)?; print_otp_status(ctx, arg_defs::OtpAlgorithm::Totp, &device, all)?; Ok(()) }) } /// Clear the PIN stored by various operations. pub fn pin_clear(ctx: &mut args::ExecCtx<'_>) -> Result<()> { with_device(ctx, |_ctx, device| { pinentry::clear(&pinentry::PinEntry::from( arg_defs::PinType::Admin, &device, )?)?; pinentry::clear(&pinentry::PinEntry::from(arg_defs::PinType::User, &device)?)?; Ok(()) }) } /// Choose a PIN of the given type. /// /// If the user has set the respective environment variable for the /// given PIN type, it will be used. fn choose_pin( ctx: &mut args::ExecCtx<'_>, pin_entry: &pinentry::PinEntry, new: bool, ) -> Result { let new_pin = match pin_entry.pin_type() { arg_defs::PinType::Admin => { if new { &ctx.new_admin_pin } else { &ctx.admin_pin } } arg_defs::PinType::User => { if new { &ctx.new_user_pin } else { &ctx.user_pin } } }; if let Some(new_pin) = new_pin { new_pin .to_str() .ok_or_else(|| Error::from("Failed to read PIN: invalid Unicode data found")) .map(ToOwned::to_owned) } else { pinentry::choose(ctx, pin_entry) } } /// Change a PIN. pub fn pin_set(ctx: &mut args::ExecCtx<'_>, pin_type: arg_defs::PinType) -> Result<()> { with_device(ctx, |ctx, mut device| { let pin_entry = pinentry::PinEntry::from(pin_type, &device)?; let new_pin = choose_pin(ctx, &pin_entry, true)?; try_with_pin( ctx, &pin_entry, "Could not change the PIN", |current_pin| match pin_type { arg_defs::PinType::Admin => device.change_admin_pin(¤t_pin, &new_pin), arg_defs::PinType::User => device.change_user_pin(¤t_pin, &new_pin), }, )?; // We just changed the PIN but confirmed the action with the old PIN, // which may have caused it to be cached. Since it no longer applies, // make sure to evict the corresponding entry from the cache. pinentry::clear(&pin_entry) }) } /// Unblock and reset the user PIN. pub fn pin_unblock(ctx: &mut args::ExecCtx<'_>) -> Result<()> { with_device(ctx, |ctx, mut device| { let pin_entry = pinentry::PinEntry::from(arg_defs::PinType::User, &device)?; let user_pin = choose_pin(ctx, &pin_entry, false)?; let pin_entry = pinentry::PinEntry::from(arg_defs::PinType::Admin, &device)?; try_with_pin( ctx, &pin_entry, "Could not unblock the user PIN", |admin_pin| device.unlock_user_pin(&admin_pin, &user_pin), ) }) } fn print_pws_data( ctx: &mut args::ExecCtx<'_>, description: &'static str, result: result::Result, quiet: bool, ) -> Result<()> { let value = result.map_err(|err| get_error("Could not access PWS slot", err))?; if quiet { println!(ctx, "{}", value)?; } else { println!(ctx, "{} {}", description, value)?; } Ok(()) } fn check_slot(pws: &nitrokey::PasswordSafe<'_, '_>, slot: u8) -> Result<()> { if slot >= nitrokey::SLOT_COUNT { return Err(nitrokey::Error::from(nitrokey::LibraryError::InvalidSlot).into()); } let status = pws .get_slot_status() .map_err(|err| get_error("Could not read PWS slot status", err))?; if status[slot as usize] { Ok(()) } else { Err(get_error( "Could not access PWS slot", nitrokey::CommandError::SlotNotProgrammed.into(), )) } } /// Read a PWS slot. pub fn pws_get( ctx: &mut args::ExecCtx<'_>, slot: u8, show_name: bool, show_login: bool, show_password: bool, quiet: bool, ) -> Result<()> { with_password_safe(ctx, |ctx, pws| { check_slot(&pws, slot)?; let show_all = !show_name && !show_login && !show_password; if show_all || show_name { print_pws_data(ctx, "name: ", pws.get_slot_name(slot), quiet)?; } if show_all || show_login { print_pws_data(ctx, "login: ", pws.get_slot_login(slot), quiet)?; } if show_all || show_password { print_pws_data(ctx, "password:", pws.get_slot_password(slot), quiet)?; } Ok(()) }) } /// Write a PWS slot. pub fn pws_set( ctx: &mut args::ExecCtx<'_>, slot: u8, name: &str, login: &str, password: &str, ) -> Result<()> { with_password_safe(ctx, |_ctx, mut pws| { pws .write_slot(slot, name, login, password) .map_err(|err| get_error("Could not write PWS slot", err)) }) } /// Clear a PWS slot. pub fn pws_clear(ctx: &mut args::ExecCtx<'_>, slot: u8) -> Result<()> { with_password_safe(ctx, |_ctx, mut pws| { pws .erase_slot(slot) .map_err(|err| get_error("Could not clear PWS slot", err)) }) } fn print_pws_slot( ctx: &mut args::ExecCtx<'_>, pws: &nitrokey::PasswordSafe<'_, '_>, slot: usize, programmed: bool, ) -> Result<()> { if slot > u8::MAX as usize { return Err(Error::from("Invalid PWS slot number")); } let slot = slot as u8; let name = if programmed { pws .get_slot_name(slot) .map_err(|err| get_error("Could not read PWS slot", err))? } else { "[not programmed]".to_string() }; println!(ctx, "{}\t{}", slot, name)?; Ok(()) } /// Print the status of all PWS slots. pub fn pws_status(ctx: &mut args::ExecCtx<'_>, all: bool) -> Result<()> { with_password_safe(ctx, |ctx, pws| { let slots = pws .get_slot_status() .map_err(|err| get_error("Could not read PWS slot status", err))?; println!(ctx, "slot\tname")?; for (i, &value) in slots.iter().enumerate().filter(|(_, &value)| all || value) { print_pws_slot(ctx, &pws, i, value)?; } Ok(()) }) } #[cfg(test)] mod tests { use super::*; #[test] fn prepare_secret_ascii() { let result = prepare_ascii_secret("12345678901234567890"); assert_eq!( "3132333435363738393031323334353637383930".to_string(), result.unwrap() ); } #[test] fn prepare_secret_non_ascii() { let result = prepare_ascii_secret("Österreich"); assert!(result.is_err()); } #[test] fn hex_string() { assert_eq!(format_bytes(&[b' ']), "20"); assert_eq!(format_bytes(&[b' ', b' ']), "2020"); assert_eq!(format_bytes(&[b'\n', b'\n']), "0a0a"); } }