// args.rs
// *************************************************************************
// * Copyright (C) 2018-2020 Daniel Mueller (deso@posteo.net) *
// * *
// * This program is free software: you can redistribute it and/or modify *
// * it under the terms of the GNU General Public License as published by *
// * the Free Software Foundation, either version 3 of the License, or *
// * (at your option) any later version. *
// * *
// * This program is distributed in the hope that it will be useful, *
// * but WITHOUT ANY WARRANTY; without even the implied warranty of *
// * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
// * GNU General Public License for more details. *
// * *
// * You should have received a copy of the GNU General Public License *
// * along with this program. If not, see . *
// *************************************************************************
use std::ffi;
use std::io;
use std::result;
use std::str;
use crate::commands;
use crate::error::Error;
use crate::pinentry;
use crate::RunCtx;
type Result = result::Result;
/// Wraps a writer and buffers its output.
///
/// This implementation is similar to `io::BufWriter`, but:
/// - The inner writer is only written to if `flush` is called.
/// - The buffer may grow infinitely large.
struct BufWriter<'w, W: io::Write + ?Sized> {
buf: Vec,
inner: &'w mut W,
}
impl<'w, W: io::Write + ?Sized> BufWriter<'w, W> {
pub fn new(inner: &'w mut W) -> Self {
BufWriter {
buf: Vec::with_capacity(128),
inner,
}
}
}
impl<'w, W: io::Write + ?Sized> io::Write for BufWriter<'w, W> {
fn write(&mut self, buf: &[u8]) -> io::Result {
self.buf.extend_from_slice(buf);
Ok(buf.len())
}
fn flush(&mut self) -> io::Result<()> {
self.inner.write_all(&self.buf)?;
self.buf.clear();
self.inner.flush()
}
}
trait Stdio {
fn stdio(&mut self) -> (&mut dyn io::Write, &mut dyn io::Write);
}
impl<'io> Stdio for RunCtx<'io> {
fn stdio(&mut self) -> (&mut dyn io::Write, &mut dyn io::Write) {
(self.stdout, self.stderr)
}
}
impl Stdio for (&mut W, &mut W)
where
W: io::Write,
{
fn stdio(&mut self) -> (&mut dyn io::Write, &mut dyn io::Write) {
(self.0, self.1)
}
}
/// A command execution context that captures additional data pertaining
/// the command execution.
pub struct ExecCtx<'io> {
pub model: Option,
pub stdout: &'io mut dyn io::Write,
pub stderr: &'io mut dyn io::Write,
pub admin_pin: Option,
pub user_pin: Option,
pub new_admin_pin: Option,
pub new_user_pin: Option,
pub password: Option,
pub no_cache: bool,
pub verbosity: u64,
}
impl<'io> Stdio for ExecCtx<'io> {
fn stdio(&mut self) -> (&mut dyn io::Write, &mut dyn io::Write) {
(self.stdout, self.stderr)
}
}
/// The available Nitrokey models.
#[allow(unused_doc_comments)]
Enum! {DeviceModel, [
Pro => "pro",
Storage => "storage",
]}
impl DeviceModel {
pub fn as_user_facing_str(&self) -> &str {
match self {
DeviceModel::Pro => "Pro",
DeviceModel::Storage => "Storage",
}
}
}
impl From for nitrokey::Model {
fn from(model: DeviceModel) -> nitrokey::Model {
match model {
DeviceModel::Pro => nitrokey::Model::Pro,
DeviceModel::Storage => nitrokey::Model::Storage,
}
}
}
/// A top-level command for nitrocli.
#[allow(unused_doc_comments)]
Command! {Command, [
Config => ("config", config),
Encrypted => ("encrypted", encrypted),
Hidden => ("hidden", hidden),
Lock => ("lock", lock),
Otp => ("otp", otp),
Pin => ("pin", pin),
Pws => ("pws", pws),
Reset => ("reset", reset),
Status => ("status", status),
Unencrypted => ("unencrypted", unencrypted),
]}
Command! {ConfigCommand, [
Get => ("get", config_get),
Set => ("set", config_set),
]}
#[derive(Clone, Copy, Debug)]
pub enum ConfigOption {
Enable(T),
Disable,
Ignore,
}
impl ConfigOption {
fn try_from(disable: bool, value: Option, name: &'static str) -> Result {
if disable {
if value.is_some() {
Err(Error::Error(format!(
"--{name} and --no-{name} are mutually exclusive",
name = name
)))
} else {
Ok(ConfigOption::Disable)
}
} else {
match value {
Some(value) => Ok(ConfigOption::Enable(value)),
None => Ok(ConfigOption::Ignore),
}
}
}
pub fn or(self, default: Option) -> Option {
match self {
ConfigOption::Enable(value) => Some(value),
ConfigOption::Disable => None,
ConfigOption::Ignore => default,
}
}
}
Command! {OtpCommand, [
Clear => ("clear", otp_clear),
Get => ("get", otp_get),
Set => ("set", otp_set),
Status => ("status", otp_status),
]}
Enum! {OtpAlgorithm, [
Hotp => "hotp",
Totp => "totp",
]}
Enum! {OtpMode, [
SixDigits => "6",
EightDigits => "8",
]}
impl From for nitrokey::OtpMode {
fn from(mode: OtpMode) -> Self {
match mode {
OtpMode::SixDigits => nitrokey::OtpMode::SixDigits,
OtpMode::EightDigits => nitrokey::OtpMode::EightDigits,
}
}
}
Enum! {OtpSecretFormat, [
Ascii => "ascii",
Base32 => "base32",
Hex => "hex",
]}
Command! {PinCommand, [
Clear => ("clear", pin_clear),
Set => ("set", pin_set),
Unblock => ("unblock", pin_unblock),
]}
Command! {PwsCommand, [
Clear => ("clear", pws_clear),
Get => ("get", pws_get),
Set => ("set", pws_set),
Status => ("status", pws_status),
]}
fn parse(
ctx: &mut impl Stdio,
parser: argparse::ArgumentParser<'_>,
args: Vec,
) -> Result<()> {
let (stdout, stderr) = ctx.stdio();
let result = parser
.parse(args, stdout, stderr)
.map_err(Error::ArgparseError);
drop(parser);
result
}
/// Inquire the status of the Nitrokey.
fn status(ctx: &mut ExecCtx<'_>, args: Vec) -> Result<()> {
let mut parser = argparse::ArgumentParser::new();
parser.set_description("Prints the status of the connected Nitrokey device");
parse(ctx, parser, args)?;
commands::status(ctx)
}
/// Perform a factory reset.
fn reset(ctx: &mut ExecCtx<'_>, args: Vec) -> Result<()> {
let mut parser = argparse::ArgumentParser::new();
parser.set_description("Performs a factory reset");
parse(ctx, parser, args)?;
commands::reset(ctx)
}
Command! {UnencryptedCommand, [
Set => ("set", unencrypted_set),
]}
Enum! {UnencryptedVolumeMode, [
ReadWrite => "read-write",
ReadOnly => "read-only",
]}
/// Execute an unencrypted subcommand.
fn unencrypted(ctx: &mut ExecCtx<'_>, args: Vec) -> Result<()> {
let mut subcommand = UnencryptedCommand::Set;
let help = cmd_help!(subcommand);
let mut subargs = vec![];
let mut parser = argparse::ArgumentParser::new();
parser.set_description("Interacts with the device's unencrypted volume");
let _ =
parser
.refer(&mut subcommand)
.required()
.add_argument("subcommand", argparse::Store, &help);
let _ = parser.refer(&mut subargs).add_argument(
"arguments",
argparse::List,
"The arguments for the subcommand",
);
parser.stop_on_first_argument(true);
parse(ctx, parser, args)?;
subargs.insert(
0,
format!(
"{} {} {}",
crate::NITROCLI,
Command::Unencrypted,
subcommand,
),
);
subcommand.execute(ctx, subargs)
}
/// Change the configuration of the unencrypted volume.
fn unencrypted_set(ctx: &mut ExecCtx<'_>, args: Vec) -> Result<()> {
let mut mode = UnencryptedVolumeMode::ReadWrite;
let help = format!("The mode to change to ({})", fmt_enum!(mode));
let mut parser = argparse::ArgumentParser::new();
parser
.set_description("Changes the configuration of the unencrypted volume on a Nitrokey Storage");
let _ = parser
.refer(&mut mode)
.required()
.add_argument("type", argparse::Store, &help);
parse(ctx, parser, args)?;
commands::unencrypted_set(ctx, mode)
}
Command! {EncryptedCommand, [
Close => ("close", encrypted_close),
Open => ("open", encrypted_open),
]}
/// Execute an encrypted subcommand.
fn encrypted(ctx: &mut ExecCtx<'_>, args: Vec) -> Result<()> {
let mut subcommand = EncryptedCommand::Open;
let help = cmd_help!(subcommand);
let mut subargs = vec![];
let mut parser = argparse::ArgumentParser::new();
parser.set_description("Interacts with the device's encrypted volume");
let _ =
parser
.refer(&mut subcommand)
.required()
.add_argument("subcommand", argparse::Store, &help);
let _ = parser.refer(&mut subargs).add_argument(
"arguments",
argparse::List,
"The arguments for the subcommand",
);
parser.stop_on_first_argument(true);
parse(ctx, parser, args)?;
subargs.insert(
0,
format!("{} {} {}", crate::NITROCLI, Command::Encrypted, subcommand),
);
subcommand.execute(ctx, subargs)
}
/// Open the encrypted volume on the Nitrokey.
fn encrypted_open(ctx: &mut ExecCtx<'_>, args: Vec) -> Result<()> {
let mut parser = argparse::ArgumentParser::new();
parser.set_description("Opens the encrypted volume on a Nitrokey Storage");
parse(ctx, parser, args)?;
commands::encrypted_open(ctx)
}
/// Close the previously opened encrypted volume.
fn encrypted_close(ctx: &mut ExecCtx<'_>, args: Vec) -> Result<()> {
let mut parser = argparse::ArgumentParser::new();
parser.set_description("Closes the encrypted volume on a Nitrokey Storage");
parse(ctx, parser, args)?;
commands::encrypted_close(ctx)
}
Command! {HiddenCommand, [
Close => ("close", hidden_close),
Create => ("create", hidden_create),
Open => ("open", hidden_open),
]}
/// Execute a hidden subcommand.
fn hidden(ctx: &mut ExecCtx<'_>, args: Vec) -> Result<()> {
let mut subcommand = HiddenCommand::Open;
let help = cmd_help!(subcommand);
let mut subargs = vec![];
let mut parser = argparse::ArgumentParser::new();
parser.set_description("Interacts with the device's hidden volume");
let _ =
parser
.refer(&mut subcommand)
.required()
.add_argument("subcommand", argparse::Store, &help);
let _ = parser.refer(&mut subargs).add_argument(
"arguments",
argparse::List,
"The arguments for the subcommand",
);
parser.stop_on_first_argument(true);
parse(ctx, parser, args)?;
subargs.insert(
0,
format!("{} {} {}", crate::NITROCLI, Command::Hidden, subcommand),
);
subcommand.execute(ctx, subargs)
}
fn hidden_create(ctx: &mut ExecCtx<'_>, args: Vec) -> Result<()> {
let mut slot: u8 = 0;
let mut start: u8 = 0;
let mut end: u8 = 0;
let mut parser = argparse::ArgumentParser::new();
parser.set_description("Creates a hidden volume on a Nitrokey Storage");
let _ = parser.refer(&mut slot).required().add_argument(
"slot",
argparse::Store,
"The hidden volume slot to use",
);
let _ = parser.refer(&mut start).required().add_argument(
"start",
argparse::Store,
"The start location of the hidden volume as percentage of the \
encrypted volume's size (0-99)",
);
let _ = parser.refer(&mut end).required().add_argument(
"end",
argparse::Store,
"The end location of the hidden volume as percentage of the \
encrypted volume's size (1-100)",
);
parse(ctx, parser, args)?;
commands::hidden_create(ctx, slot, start, end)
}
fn hidden_open(ctx: &mut ExecCtx<'_>, args: Vec) -> Result<()> {
let mut parser = argparse::ArgumentParser::new();
parser.set_description("Opens a hidden volume on a Nitrokey Storage");
parse(ctx, parser, args)?;
commands::hidden_open(ctx)
}
fn hidden_close(ctx: &mut ExecCtx<'_>, args: Vec) -> Result<()> {
let mut parser = argparse::ArgumentParser::new();
parser.set_description("Closes the hidden volume on a Nitrokey Storage");
parse(ctx, parser, args)?;
commands::hidden_close(ctx)
}
/// Execute a config subcommand.
fn config(ctx: &mut ExecCtx<'_>, args: Vec) -> Result<()> {
let mut subcommand = ConfigCommand::Get;
let help = cmd_help!(subcommand);
let mut subargs = vec![];
let mut parser = argparse::ArgumentParser::new();
parser.set_description("Reads or writes the device configuration");
let _ =
parser
.refer(&mut subcommand)
.required()
.add_argument("subcommand", argparse::Store, &help);
let _ = parser.refer(&mut subargs).add_argument(
"arguments",
argparse::List,
"The arguments for the subcommand",
);
parser.stop_on_first_argument(true);
parse(ctx, parser, args)?;
subargs.insert(
0,
format!("{} {} {}", crate::NITROCLI, Command::Config, subcommand),
);
subcommand.execute(ctx, subargs)
}
/// Read the Nitrokey configuration.
fn config_get(ctx: &mut ExecCtx<'_>, args: Vec) -> Result<()> {
let mut parser = argparse::ArgumentParser::new();
parser.set_description("Prints the Nitrokey configuration");
parse(ctx, parser, args)?;
commands::config_get(ctx)
}
/// Write the Nitrokey configuration.
fn config_set(ctx: &mut ExecCtx<'_>, args: Vec) -> Result<()> {
let mut numlock = None;
let mut no_numlock = false;
let mut capslock = None;
let mut no_capslock = false;
let mut scrollock = None;
let mut no_scrollock = false;
let mut otp_pin = false;
let mut no_otp_pin = false;
let mut parser = argparse::ArgumentParser::new();
parser.set_description("Changes the Nitrokey configuration");
let _ = parser.refer(&mut numlock).add_option(
&["-n", "--numlock"],
argparse::StoreOption,
"Set the numlock option to the given HOTP slot",
);
let _ = parser.refer(&mut no_numlock).add_option(
&["-N", "--no-numlock"],
argparse::StoreTrue,
"Unset the numlock option",
);
let _ = parser.refer(&mut capslock).add_option(
&["-c", "--capslock"],
argparse::StoreOption,
"Set the capslock option to the given HOTP slot",
);
let _ = parser.refer(&mut no_capslock).add_option(
&["-C", "--no-capslock"],
argparse::StoreTrue,
"Unset the capslock option",
);
let _ = parser.refer(&mut scrollock).add_option(
&["-s", "--scrollock"],
argparse::StoreOption,
"Set the scrollock option to the given HOTP slot",
);
let _ = parser.refer(&mut no_scrollock).add_option(
&["-S", "--no-scrollock"],
argparse::StoreTrue,
"Unset the scrollock option",
);
let _ = parser.refer(&mut otp_pin).add_option(
&["-o", "--otp-pin"],
argparse::StoreTrue,
"Require the user PIN to generate one-time passwords",
);
let _ = parser.refer(&mut no_otp_pin).add_option(
&["-O", "--no-otp-pin"],
argparse::StoreTrue,
"Allow one-time password generation without PIN",
);
parse(ctx, parser, args)?;
let numlock = ConfigOption::try_from(no_numlock, numlock, "numlock")?;
let capslock = ConfigOption::try_from(no_capslock, capslock, "capslock")?;
let scrollock = ConfigOption::try_from(no_scrollock, scrollock, "scrollock")?;
let otp_pin = if otp_pin {
Some(true)
} else if no_otp_pin {
Some(false)
} else {
None
};
commands::config_set(ctx, numlock, capslock, scrollock, otp_pin)
}
/// Lock the Nitrokey.
fn lock(ctx: &mut ExecCtx<'_>, args: Vec) -> Result<()> {
let mut parser = argparse::ArgumentParser::new();
parser.set_description("Locks the connected Nitrokey device");
parse(ctx, parser, args)?;
commands::lock(ctx)
}
/// Execute an OTP subcommand.
fn otp(ctx: &mut ExecCtx<'_>, args: Vec) -> Result<()> {
let mut subcommand = OtpCommand::Get;
let help = cmd_help!(subcommand);
let mut subargs = vec![];
let mut parser = argparse::ArgumentParser::new();
parser.set_description("Accesses one-time passwords");
let _ =
parser
.refer(&mut subcommand)
.required()
.add_argument("subcommand", argparse::Store, &help);
let _ = parser.refer(&mut subargs).add_argument(
"arguments",
argparse::List,
"The arguments for the subcommand",
);
parser.stop_on_first_argument(true);
parse(ctx, parser, args)?;
subargs.insert(
0,
format!("{} {} {}", crate::NITROCLI, Command::Otp, subcommand),
);
subcommand.execute(ctx, subargs)
}
/// Generate a one-time password on the Nitrokey device.
fn otp_get(ctx: &mut ExecCtx<'_>, args: Vec) -> Result<()> {
let mut slot: u8 = 0;
let mut algorithm = OtpAlgorithm::Totp;
let help = format!(
"The OTP algorithm to use ({}, default: {})",
fmt_enum!(algorithm),
algorithm
);
let mut time: Option = None;
let mut parser = argparse::ArgumentParser::new();
parser.set_description("Generates a one-time password");
let _ =
parser
.refer(&mut slot)
.required()
.add_argument("slot", argparse::Store, "The OTP slot to use");
let _ = parser
.refer(&mut algorithm)
.add_option(&["-a", "--algorithm"], argparse::Store, &help);
let _ = parser.refer(&mut time).add_option(
&["-t", "--time"],
argparse::StoreOption,
"The time to use for TOTP generation (Unix timestamp, default: system time)",
);
parse(ctx, parser, args)?;
commands::otp_get(ctx, slot, algorithm, time)
}
/// Configure a one-time password slot on the Nitrokey device.
pub fn otp_set(ctx: &mut ExecCtx<'_>, args: Vec) -> Result<()> {
let mut slot: u8 = 0;
let mut algorithm = OtpAlgorithm::Totp;
let algo_help = format!(
"The OTP algorithm to use ({}, default: {})",
fmt_enum!(algorithm),
algorithm
);
let mut name = "".to_owned();
let mut secret = "".to_owned();
let mut digits = OtpMode::SixDigits;
let mut counter: u64 = 0;
let mut time_window: u16 = 30;
let mut secret_format = OtpSecretFormat::Hex;
let fmt_help = format!(
"The format of the secret ({}, default: {})",
fmt_enum!(OtpSecretFormat::all_variants()),
secret_format,
);
let mut parser = argparse::ArgumentParser::new();
parser.set_description("Configures a one-time password slot");
let _ =
parser
.refer(&mut slot)
.required()
.add_argument("slot", argparse::Store, "The OTP slot to use");
let _ =
parser
.refer(&mut algorithm)
.add_option(&["-a", "--algorithm"], argparse::Store, &algo_help);
let _ = parser.refer(&mut name).required().add_argument(
"name",
argparse::Store,
"The name of the slot",
);
let _ = parser.refer(&mut secret).required().add_argument(
"secret",
argparse::Store,
"The secret to store on the slot as a hexadecimal string (unless overwritten by --format)",
);
let _ = parser.refer(&mut digits).add_option(
&["-d", "--digits"],
argparse::Store,
"The number of digits to use for the one-time password (6 or 8, default: 6)",
);
let _ = parser.refer(&mut counter).add_option(
&["-c", "--counter"],
argparse::Store,
"The counter value for HOTP (default: 0)",
);
let _ = parser.refer(&mut time_window).add_option(
&["-t", "--time-window"],
argparse::Store,
"The time window for TOTP (default: 30)",
);
let _ =
parser
.refer(&mut secret_format)
.add_option(&["-f", "--format"], argparse::Store, &fmt_help);
parse(ctx, parser, args)?;
let data = nitrokey::OtpSlotData {
number: slot,
name,
secret,
mode: nitrokey::OtpMode::from(digits),
use_enter: false,
token_id: None,
};
commands::otp_set(ctx, data, algorithm, counter, time_window, secret_format)
}
/// Clear an OTP slot.
fn otp_clear(ctx: &mut ExecCtx<'_>, args: Vec) -> Result<()> {
let mut slot: u8 = 0;
let mut algorithm = OtpAlgorithm::Totp;
let help = format!(
"The OTP algorithm to use ({}, default: {})",
fmt_enum!(algorithm),
algorithm
);
let mut parser = argparse::ArgumentParser::new();
parser.set_description("Clears a one-time password slot");
let _ = parser.refer(&mut slot).required().add_argument(
"slot",
argparse::Store,
"The OTP slot to clear",
);
let _ = parser
.refer(&mut algorithm)
.add_option(&["-a", "--algorithm"], argparse::Store, &help);
parse(ctx, parser, args)?;
commands::otp_clear(ctx, slot, algorithm)
}
/// Print the status of the OTP slots.
fn otp_status(ctx: &mut ExecCtx<'_>, args: Vec) -> Result<()> {
let mut all = false;
let mut parser = argparse::ArgumentParser::new();
parser.set_description("Prints the status of the OTP slots");
let _ = parser.refer(&mut all).add_option(
&["-a", "--all"],
argparse::StoreTrue,
"Show slots that are not programmed",
);
parse(ctx, parser, args)?;
commands::otp_status(ctx, all)
}
/// Execute a PIN subcommand.
fn pin(ctx: &mut ExecCtx<'_>, args: Vec) -> Result<()> {
let mut subcommand = PinCommand::Clear;
let help = cmd_help!(subcommand);
let mut subargs = vec![];
let mut parser = argparse::ArgumentParser::new();
parser.set_description("Manages the Nitrokey PINs");
let _ =
parser
.refer(&mut subcommand)
.required()
.add_argument("subcommand", argparse::Store, &help);
let _ = parser.refer(&mut subargs).add_argument(
"arguments",
argparse::List,
"The arguments for the subcommand",
);
parser.stop_on_first_argument(true);
parse(ctx, parser, args)?;
subargs.insert(
0,
format!("{} {} {}", crate::NITROCLI, Command::Pin, subcommand),
);
subcommand.execute(ctx, subargs)
}
/// Clear the PIN as cached by various other commands.
fn pin_clear(ctx: &mut ExecCtx<'_>, args: Vec) -> Result<()> {
let mut parser = argparse::ArgumentParser::new();
parser.set_description("Clears the cached PINs");
parse(ctx, parser, args)?;
commands::pin_clear(ctx)
}
/// Change a PIN.
fn pin_set(ctx: &mut ExecCtx<'_>, args: Vec) -> Result<()> {
let mut pintype = pinentry::PinType::User;
let help = format!("The PIN type to change ({})", fmt_enum!(pintype));
let mut parser = argparse::ArgumentParser::new();
parser.set_description("Changes a PIN");
let _ = parser
.refer(&mut pintype)
.required()
.add_argument("type", argparse::Store, &help);
parse(ctx, parser, args)?;
commands::pin_set(ctx, pintype)
}
/// Unblock and reset the user PIN.
fn pin_unblock(ctx: &mut ExecCtx<'_>, args: Vec) -> Result<()> {
let mut parser = argparse::ArgumentParser::new();
parser.set_description("Unblocks and resets the user PIN");
parse(ctx, parser, args)?;
commands::pin_unblock(ctx)
}
/// Execute a PWS subcommand.
fn pws(ctx: &mut ExecCtx<'_>, args: Vec) -> Result<()> {
let mut subcommand = PwsCommand::Get;
let mut subargs = vec![];
let help = cmd_help!(subcommand);
let mut parser = argparse::ArgumentParser::new();
parser.set_description("Accesses the password safe");
let _ =
parser
.refer(&mut subcommand)
.required()
.add_argument("subcommand", argparse::Store, &help);
let _ = parser.refer(&mut subargs).add_argument(
"arguments",
argparse::List,
"The arguments for the subcommand",
);
parser.stop_on_first_argument(true);
parse(ctx, parser, args)?;
subargs.insert(
0,
format!("{} {} {}", crate::NITROCLI, Command::Pws, subcommand),
);
subcommand.execute(ctx, subargs)
}
/// Access a slot of the password safe on the Nitrokey.
fn pws_get(ctx: &mut ExecCtx<'_>, args: Vec) -> Result<()> {
let mut slot: u8 = 0;
let mut name = false;
let mut login = false;
let mut password = false;
let mut quiet = false;
let mut parser = argparse::ArgumentParser::new();
parser.set_description("Reads a password safe slot");
let _ = parser.refer(&mut slot).required().add_argument(
"slot",
argparse::Store,
"The PWS slot to read",
);
let _ = parser.refer(&mut name).add_option(
&["-n", "--name"],
argparse::StoreTrue,
"Show the name stored on the slot",
);
let _ = parser.refer(&mut login).add_option(
&["-l", "--login"],
argparse::StoreTrue,
"Show the login stored on the slot",
);
let _ = parser.refer(&mut password).add_option(
&["-p", "--password"],
argparse::StoreTrue,
"Show the password stored on the slot",
);
let _ = parser.refer(&mut quiet).add_option(
&["-q", "--quiet"],
argparse::StoreTrue,
"Print the stored data without description",
);
parse(ctx, parser, args)?;
commands::pws_get(ctx, slot, name, login, password, quiet)
}
/// Set a slot of the password safe on the Nitrokey.
fn pws_set(ctx: &mut ExecCtx<'_>, args: Vec) -> Result<()> {
let mut slot: u8 = 0;
let mut name = String::new();
let mut login = String::new();
let mut password = String::new();
let mut parser = argparse::ArgumentParser::new();
parser.set_description("Writes a password safe slot");
let _ = parser.refer(&mut slot).required().add_argument(
"slot",
argparse::Store,
"The PWS slot to write",
);
let _ = parser.refer(&mut name).required().add_argument(
"name",
argparse::Store,
"The name to store on the slot",
);
let _ = parser.refer(&mut login).required().add_argument(
"login",
argparse::Store,
"The login to store on the slot",
);
let _ = parser.refer(&mut password).required().add_argument(
"password",
argparse::Store,
"The password to store on the slot",
);
parse(ctx, parser, args)?;
commands::pws_set(ctx, slot, &name, &login, &password)
}
/// Clear a PWS slot.
fn pws_clear(ctx: &mut ExecCtx<'_>, args: Vec) -> Result<()> {
let mut slot: u8 = 0;
let mut parser = argparse::ArgumentParser::new();
parser.set_description("Clears a password safe slot");
let _ = parser.refer(&mut slot).required().add_argument(
"slot",
argparse::Store,
"The PWS slot to clear",
);
parse(ctx, parser, args)?;
commands::pws_clear(ctx, slot)
}
/// Print the status of the PWS slots.
fn pws_status(ctx: &mut ExecCtx<'_>, args: Vec) -> Result<()> {
let mut all = false;
let mut parser = argparse::ArgumentParser::new();
parser.set_description("Prints the status of the PWS slots");
let _ = parser.refer(&mut all).add_option(
&["-a", "--all"],
argparse::StoreTrue,
"Show slots that are not programmed",
);
parse(ctx, parser, args)?;
commands::pws_status(ctx, all)
}
/// Parse the command-line arguments and execute the selected command.
pub(crate) fn handle_arguments(ctx: &mut RunCtx<'_>, args: Vec) -> Result<()> {
use std::io::Write;
let mut version = false;
let mut model: Option = None;
let model_help = format!(
"Select the device model to connect to ({})",
fmt_enum!(DeviceModel::all_variants())
);
let mut verbosity = 0;
let mut command = Command::Status;
let cmd_help = cmd_help!(command);
let mut subargs = vec![];
let mut parser = argparse::ArgumentParser::new();
let _ = parser.refer(&mut version).add_option(
&["-V", "--version"],
argparse::StoreTrue,
"Print version information and exit",
);
let _ = parser.refer(&mut verbosity).add_option(
&["-v", "--verbose"],
argparse::IncrBy::(1),
"Increase the log level (can be supplied multiple times)",
);
let _ =
parser
.refer(&mut model)
.add_option(&["-m", "--model"], argparse::StoreOption, &model_help);
parser.set_description("Provides access to a Nitrokey device");
let _ = parser
.refer(&mut command)
.required()
.add_argument("command", argparse::Store, &cmd_help);
let _ = parser.refer(&mut subargs).add_argument(
"arguments",
argparse::List,
"The arguments for the command",
);
parser.stop_on_first_argument(true);
let mut stdout_buf = BufWriter::new(ctx.stdout);
let mut stderr_buf = BufWriter::new(ctx.stderr);
let mut stdio_buf = (&mut stdout_buf, &mut stderr_buf);
let result = parse(&mut stdio_buf, parser, args);
if version {
println!(ctx, "{} {}", crate::NITROCLI, env!("CARGO_PKG_VERSION"))?;
Ok(())
} else {
stdout_buf.flush()?;
stderr_buf.flush()?;
result?;
subargs.insert(0, format!("{} {}", crate::NITROCLI, command));
let mut ctx = ExecCtx {
model,
stdout: ctx.stdout,
stderr: ctx.stderr,
admin_pin: ctx.admin_pin.take(),
user_pin: ctx.user_pin.take(),
new_admin_pin: ctx.new_admin_pin.take(),
new_user_pin: ctx.new_user_pin.take(),
password: ctx.password.take(),
no_cache: ctx.no_cache,
verbosity,
};
command.execute(&mut ctx, subargs)
}
}