// Copyright 2018 Developers of the Rand project. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Functions for randomly accessing and sampling sequences. //! //! TODO: module doc #[cfg(feature="alloc")] pub mod index; #[cfg(feature="alloc")] use core::ops::Index; #[cfg(all(feature="alloc", not(feature="std")))] use alloc::vec::Vec; use Rng; #[cfg(feature="alloc")] use distributions::WeightedError; #[cfg(feature="alloc")] use distributions::uniform::{SampleUniform, SampleBorrow}; /// Extension trait on slices, providing random mutation and sampling methods. /// /// An implementation is provided for slices. This may also be implementable for /// other types. pub trait SliceRandom { /// The element type. type Item; /// Returns a reference to one random element of the slice, or `None` if the /// slice is empty. /// /// Depending on the implementation, complexity is expected to be `O(1)`. /// /// # Example /// /// ``` /// use rand::thread_rng; /// use rand::seq::SliceRandom; /// /// let choices = [1, 2, 4, 8, 16, 32]; /// let mut rng = thread_rng(); /// println!("{:?}", choices.choose(&mut rng)); /// assert_eq!(choices[..0].choose(&mut rng), None); /// ``` fn choose(&self, rng: &mut R) -> Option<&Self::Item> where R: Rng + ?Sized; /// Returns a mutable reference to one random element of the slice, or /// `None` if the slice is empty. /// /// Depending on the implementation, complexity is expected to be `O(1)`. fn choose_mut(&mut self, rng: &mut R) -> Option<&mut Self::Item> where R: Rng + ?Sized; /// Produces an iterator that chooses `amount` elements from the slice at /// random without repeating any, and returns them in random order. /// /// In case this API is not sufficiently flexible, use `index::sample` then /// apply the indices to the slice. /// /// Complexity is expected to be the same as `index::sample`. /// /// # Example /// ``` /// use rand::seq::SliceRandom; /// /// let mut rng = &mut rand::thread_rng(); /// let sample = "Hello, audience!".as_bytes(); /// /// // collect the results into a vector: /// let v: Vec = sample.choose_multiple(&mut rng, 3).cloned().collect(); /// /// // store in a buffer: /// let mut buf = [0u8; 5]; /// for (b, slot) in sample.choose_multiple(&mut rng, buf.len()).zip(buf.iter_mut()) { /// *slot = *b; /// } /// ``` #[cfg(feature = "alloc")] fn choose_multiple(&self, rng: &mut R, amount: usize) -> SliceChooseIter where R: Rng + ?Sized; /// Similar to [`choose`], where the likelihood of each outcome may be /// specified. The specified function `weight` maps items `x` to a relative /// likelihood `weight(x)`. The probability of each item being selected is /// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`. /// /// # Example /// /// ``` /// use rand::prelude::*; /// /// let choices = [('a', 2), ('b', 1), ('c', 1)]; /// let mut rng = thread_rng(); /// // 50% chance to print 'a', 25% chance to print 'b', 25% chance to print 'c' /// println!("{:?}", choices.choose_weighted(&mut rng, |item| item.1).unwrap().0); /// ``` /// [`choose`]: trait.SliceRandom.html#method.choose #[cfg(feature = "alloc")] fn choose_weighted(&self, rng: &mut R, weight: F) -> Result<&Self::Item, WeightedError> where R: Rng + ?Sized, F: Fn(&Self::Item) -> B, B: SampleBorrow, X: SampleUniform + for<'a> ::core::ops::AddAssign<&'a X> + ::core::cmp::PartialOrd + Clone + Default; /// Similar to [`choose_mut`], where the likelihood of each outcome may be /// specified. The specified function `weight` maps items `x` to a relative /// likelihood `weight(x)`. The probability of each item being selected is /// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`. /// /// See also [`choose_weighted`]. /// /// [`choose_mut`]: trait.SliceRandom.html#method.choose_mut /// [`choose_weighted`]: trait.SliceRandom.html#method.choose_weighted #[cfg(feature = "alloc")] fn choose_weighted_mut(&mut self, rng: &mut R, weight: F) -> Result<&mut Self::Item, WeightedError> where R: Rng + ?Sized, F: Fn(&Self::Item) -> B, B: SampleBorrow, X: SampleUniform + for<'a> ::core::ops::AddAssign<&'a X> + ::core::cmp::PartialOrd + Clone + Default; /// Shuffle a mutable slice in place. /// /// Depending on the implementation, complexity is expected to be `O(1)`. /// /// # Example /// /// ``` /// use rand::thread_rng; /// use rand::seq::SliceRandom; /// /// let mut rng = thread_rng(); /// let mut y = [1, 2, 3, 4, 5]; /// println!("Unshuffled: {:?}", y); /// y.shuffle(&mut rng); /// println!("Shuffled: {:?}", y); /// ``` fn shuffle(&mut self, rng: &mut R) where R: Rng + ?Sized; /// Shuffle a slice in place, but exit early. /// /// Returns two mutable slices from the source slice. The first contains /// `amount` elements randomly permuted. The second has the remaining /// elements that are not fully shuffled. /// /// This is an efficient method to select `amount` elements at random from /// the slice, provided the slice may be mutated. /// /// If you only need to choose elements randomly and `amount > self.len()/2` /// then you may improve performance by taking /// `amount = values.len() - amount` and using only the second slice. /// /// If `amount` is greater than the number of elements in the slice, this /// will perform a full shuffle. /// /// Complexity is expected to be `O(m)` where `m = amount`. fn partial_shuffle(&mut self, rng: &mut R, amount: usize) -> (&mut [Self::Item], &mut [Self::Item]) where R: Rng + ?Sized; } /// Extension trait on iterators, providing random sampling methods. pub trait IteratorRandom: Iterator + Sized { /// Choose one element at random from the iterator. If you have a slice, /// it's significantly faster to call the [`choose`] or [`choose_mut`] /// functions using the slice instead. /// /// Returns `None` if and only if the iterator is empty. /// /// Complexity is `O(n)`, where `n` is the length of the iterator. /// This likely consumes multiple random numbers, but the exact number /// is unspecified. /// /// [`choose`]: trait.SliceRandom.html#method.choose /// [`choose_mut`]: trait.SliceRandom.html#method.choose_mut fn choose(mut self, rng: &mut R) -> Option where R: Rng + ?Sized { let (mut lower, mut upper) = self.size_hint(); let mut consumed = 0; let mut result = None; if upper == Some(lower) { return if lower == 0 { None } else { self.nth(rng.gen_range(0, lower)) }; } // Continue until the iterator is exhausted loop { if lower > 1 { let ix = rng.gen_range(0, lower + consumed); let skip; if ix < lower { result = self.nth(ix); skip = lower - (ix + 1); } else { skip = lower; } if upper == Some(lower) { return result; } consumed += lower; if skip > 0 { self.nth(skip - 1); } } else { let elem = self.next(); if elem.is_none() { return result; } consumed += 1; let denom = consumed as f64; // accurate to 2^53 elements if rng.gen_bool(1.0 / denom) { result = elem; } } let hint = self.size_hint(); lower = hint.0; upper = hint.1; } } /// Collects `amount` values at random from the iterator into a supplied /// buffer. /// /// Although the elements are selected randomly, the order of elements in /// the buffer is neither stable nor fully random. If random ordering is /// desired, shuffle the result. /// /// Returns the number of elements added to the buffer. This equals `amount` /// unless the iterator contains insufficient elements, in which case this /// equals the number of elements available. /// /// Complexity is `O(n)` where `n` is the length of the iterator. fn choose_multiple_fill(mut self, rng: &mut R, buf: &mut [Self::Item]) -> usize where R: Rng + ?Sized { let amount = buf.len(); let mut len = 0; while len < amount { if let Some(elem) = self.next() { buf[len] = elem; len += 1; } else { // Iterator exhausted; stop early return len; } } // Continue, since the iterator was not exhausted for (i, elem) in self.enumerate() { let k = rng.gen_range(0, i + 1 + amount); if let Some(slot) = buf.get_mut(k) { *slot = elem; } } len } /// Collects `amount` values at random from the iterator into a vector. /// /// This is equivalent to `choose_multiple_fill` except for the result type. /// /// Although the elements are selected randomly, the order of elements in /// the buffer is neither stable nor fully random. If random ordering is /// desired, shuffle the result. /// /// The length of the returned vector equals `amount` unless the iterator /// contains insufficient elements, in which case it equals the number of /// elements available. /// /// Complexity is `O(n)` where `n` is the length of the iterator. #[cfg(feature = "alloc")] fn choose_multiple(mut self, rng: &mut R, amount: usize) -> Vec where R: Rng + ?Sized { let mut reservoir = Vec::with_capacity(amount); reservoir.extend(self.by_ref().take(amount)); // Continue unless the iterator was exhausted // // note: this prevents iterators that "restart" from causing problems. // If the iterator stops once, then so do we. if reservoir.len() == amount { for (i, elem) in self.enumerate() { let k = rng.gen_range(0, i + 1 + amount); if let Some(slot) = reservoir.get_mut(k) { *slot = elem; } } } else { // Don't hang onto extra memory. There is a corner case where // `amount` was much less than `self.len()`. reservoir.shrink_to_fit(); } reservoir } } impl SliceRandom for [T] { type Item = T; fn choose(&self, rng: &mut R) -> Option<&Self::Item> where R: Rng + ?Sized { if self.is_empty() { None } else { Some(&self[rng.gen_range(0, self.len())]) } } fn choose_mut(&mut self, rng: &mut R) -> Option<&mut Self::Item> where R: Rng + ?Sized { if self.is_empty() { None } else { let len = self.len(); Some(&mut self[rng.gen_range(0, len)]) } } #[cfg(feature = "alloc")] fn choose_multiple(&self, rng: &mut R, amount: usize) -> SliceChooseIter where R: Rng + ?Sized { let amount = ::core::cmp::min(amount, self.len()); SliceChooseIter { slice: self, _phantom: Default::default(), indices: index::sample(rng, self.len(), amount).into_iter(), } } #[cfg(feature = "alloc")] fn choose_weighted(&self, rng: &mut R, weight: F) -> Result<&Self::Item, WeightedError> where R: Rng + ?Sized, F: Fn(&Self::Item) -> B, B: SampleBorrow, X: SampleUniform + for<'a> ::core::ops::AddAssign<&'a X> + ::core::cmp::PartialOrd + Clone + Default { use distributions::{Distribution, WeightedIndex}; let distr = WeightedIndex::new(self.iter().map(weight))?; Ok(&self[distr.sample(rng)]) } #[cfg(feature = "alloc")] fn choose_weighted_mut(&mut self, rng: &mut R, weight: F) -> Result<&mut Self::Item, WeightedError> where R: Rng + ?Sized, F: Fn(&Self::Item) -> B, B: SampleBorrow, X: SampleUniform + for<'a> ::core::ops::AddAssign<&'a X> + ::core::cmp::PartialOrd + Clone + Default { use distributions::{Distribution, WeightedIndex}; let distr = WeightedIndex::new(self.iter().map(weight))?; Ok(&mut self[distr.sample(rng)]) } fn shuffle(&mut self, rng: &mut R) where R: Rng + ?Sized { for i in (1..self.len()).rev() { // invariant: elements with index > i have been locked in place. self.swap(i, rng.gen_range(0, i + 1)); } } fn partial_shuffle(&mut self, rng: &mut R, amount: usize) -> (&mut [Self::Item], &mut [Self::Item]) where R: Rng + ?Sized { // This applies Durstenfeld's algorithm for the // [Fisher–Yates shuffle](https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle#The_modern_algorithm) // for an unbiased permutation, but exits early after choosing `amount` // elements. let len = self.len(); let end = if amount >= len { 0 } else { len - amount }; for i in (end..len).rev() { // invariant: elements with index > i have been locked in place. self.swap(i, rng.gen_range(0, i + 1)); } let r = self.split_at_mut(end); (r.1, r.0) } } impl IteratorRandom for I where I: Iterator + Sized {} /// Iterator over multiple choices, as returned by [`SliceRandom::choose_multiple]( /// trait.SliceRandom.html#method.choose_multiple). #[cfg(feature = "alloc")] #[derive(Debug)] pub struct SliceChooseIter<'a, S: ?Sized + 'a, T: 'a> { slice: &'a S, _phantom: ::core::marker::PhantomData, indices: index::IndexVecIntoIter, } #[cfg(feature = "alloc")] impl<'a, S: Index + ?Sized + 'a, T: 'a> Iterator for SliceChooseIter<'a, S, T> { type Item = &'a T; fn next(&mut self) -> Option { // TODO: investigate using SliceIndex::get_unchecked when stable self.indices.next().map(|i| &self.slice[i as usize]) } fn size_hint(&self) -> (usize, Option) { (self.indices.len(), Some(self.indices.len())) } } #[cfg(feature = "alloc")] impl<'a, S: Index + ?Sized + 'a, T: 'a> ExactSizeIterator for SliceChooseIter<'a, S, T> { fn len(&self) -> usize { self.indices.len() } } /// Randomly sample `amount` elements from a finite iterator. /// /// Deprecated: use [`IteratorRandom::choose_multiple`] instead. /// /// [`IteratorRandom::choose_multiple`]: trait.IteratorRandom.html#method.choose_multiple #[cfg(feature = "alloc")] #[deprecated(since="0.6.0", note="use IteratorRandom::choose_multiple instead")] pub fn sample_iter(rng: &mut R, iterable: I, amount: usize) -> Result, Vec> where I: IntoIterator, R: Rng + ?Sized, { use seq::IteratorRandom; let iter = iterable.into_iter(); let result = iter.choose_multiple(rng, amount); if result.len() == amount { Ok(result) } else { Err(result) } } /// Randomly sample exactly `amount` values from `slice`. /// /// The values are non-repeating and in random order. /// /// This implementation uses `O(amount)` time and memory. /// /// Panics if `amount > slice.len()` /// /// Deprecated: use [`SliceRandom::choose_multiple`] instead. /// /// [`SliceRandom::choose_multiple`]: trait.SliceRandom.html#method.choose_multiple #[cfg(feature = "alloc")] #[deprecated(since="0.6.0", note="use SliceRandom::choose_multiple instead")] pub fn sample_slice(rng: &mut R, slice: &[T], amount: usize) -> Vec where R: Rng + ?Sized, T: Clone { let indices = index::sample(rng, slice.len(), amount).into_iter(); let mut out = Vec::with_capacity(amount); out.extend(indices.map(|i| slice[i].clone())); out } /// Randomly sample exactly `amount` references from `slice`. /// /// The references are non-repeating and in random order. /// /// This implementation uses `O(amount)` time and memory. /// /// Panics if `amount > slice.len()` /// /// Deprecated: use [`SliceRandom::choose_multiple`] instead. /// /// [`SliceRandom::choose_multiple`]: trait.SliceRandom.html#method.choose_multiple #[cfg(feature = "alloc")] #[deprecated(since="0.6.0", note="use SliceRandom::choose_multiple instead")] pub fn sample_slice_ref<'a, R, T>(rng: &mut R, slice: &'a [T], amount: usize) -> Vec<&'a T> where R: Rng + ?Sized { let indices = index::sample(rng, slice.len(), amount).into_iter(); let mut out = Vec::with_capacity(amount); out.extend(indices.map(|i| &slice[i])); out } #[cfg(test)] mod test { use super::*; #[cfg(feature = "alloc")] use {Rng, SeedableRng}; #[cfg(feature = "alloc")] use rngs::SmallRng; #[cfg(all(feature="alloc", not(feature="std")))] use alloc::vec::Vec; #[test] fn test_slice_choose() { let mut r = ::test::rng(107); let chars = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n']; let mut chosen = [0i32; 14]; for _ in 0..1000 { let picked = *chars.choose(&mut r).unwrap(); chosen[(picked as usize) - ('a' as usize)] += 1; } for count in chosen.iter() { let err = *count - (1000 / (chars.len() as i32)); assert!(-20 <= err && err <= 20); } chosen.iter_mut().for_each(|x| *x = 0); for _ in 0..1000 { *chosen.choose_mut(&mut r).unwrap() += 1; } for count in chosen.iter() { let err = *count - (1000 / (chosen.len() as i32)); assert!(-20 <= err && err <= 20); } let mut v: [isize; 0] = []; assert_eq!(v.choose(&mut r), None); assert_eq!(v.choose_mut(&mut r), None); } #[derive(Clone)] struct UnhintedIterator { iter: I, } impl Iterator for UnhintedIterator { type Item = I::Item; fn next(&mut self) -> Option { self.iter.next() } } #[derive(Clone)] struct ChunkHintedIterator { iter: I, chunk_remaining: usize, chunk_size: usize, hint_total_size: bool, } impl Iterator for ChunkHintedIterator { type Item = I::Item; fn next(&mut self) -> Option { if self.chunk_remaining == 0 { self.chunk_remaining = ::core::cmp::min(self.chunk_size, self.iter.len()); } self.chunk_remaining = self.chunk_remaining.saturating_sub(1); self.iter.next() } fn size_hint(&self) -> (usize, Option) { (self.chunk_remaining, if self.hint_total_size { Some(self.iter.len()) } else { None }) } } #[derive(Clone)] struct WindowHintedIterator { iter: I, window_size: usize, hint_total_size: bool, } impl Iterator for WindowHintedIterator { type Item = I::Item; fn next(&mut self) -> Option { self.iter.next() } fn size_hint(&self) -> (usize, Option) { (::core::cmp::min(self.iter.len(), self.window_size), if self.hint_total_size { Some(self.iter.len()) } else { None }) } } #[test] fn test_iterator_choose() { let r = &mut ::test::rng(109); fn test_iter + Clone>(r: &mut R, iter: Iter) { let mut chosen = [0i32; 9]; for _ in 0..1000 { let picked = iter.clone().choose(r).unwrap(); chosen[picked] += 1; } for count in chosen.iter() { // Samples should follow Binomial(1000, 1/9) // Octave: binopdf(x, 1000, 1/9) gives the prob of *count == x // Note: have seen 153, which is unlikely but not impossible. assert!(72 < *count && *count < 154, "count not close to 1000/9: {}", count); } } test_iter(r, 0..9); test_iter(r, [0, 1, 2, 3, 4, 5, 6, 7, 8].iter().cloned()); #[cfg(feature = "alloc")] test_iter(r, (0..9).collect::>().into_iter()); test_iter(r, UnhintedIterator { iter: 0..9 }); test_iter(r, ChunkHintedIterator { iter: 0..9, chunk_size: 4, chunk_remaining: 4, hint_total_size: false }); test_iter(r, ChunkHintedIterator { iter: 0..9, chunk_size: 4, chunk_remaining: 4, hint_total_size: true }); test_iter(r, WindowHintedIterator { iter: 0..9, window_size: 2, hint_total_size: false }); test_iter(r, WindowHintedIterator { iter: 0..9, window_size: 2, hint_total_size: true }); assert_eq!((0..0).choose(r), None); assert_eq!(UnhintedIterator{ iter: 0..0 }.choose(r), None); } #[test] fn test_shuffle() { let mut r = ::test::rng(108); let empty: &mut [isize] = &mut []; empty.shuffle(&mut r); let mut one = [1]; one.shuffle(&mut r); let b: &[_] = &[1]; assert_eq!(one, b); let mut two = [1, 2]; two.shuffle(&mut r); assert!(two == [1, 2] || two == [2, 1]); fn move_last(slice: &mut [usize], pos: usize) { // use slice[pos..].rotate_left(1); once we can use that let last_val = slice[pos]; for i in pos..slice.len() - 1 { slice[i] = slice[i + 1]; } *slice.last_mut().unwrap() = last_val; } let mut counts = [0i32; 24]; for _ in 0..10000 { let mut arr: [usize; 4] = [0, 1, 2, 3]; arr.shuffle(&mut r); let mut permutation = 0usize; let mut pos_value = counts.len(); for i in 0..4 { pos_value /= 4 - i; let pos = arr.iter().position(|&x| x == i).unwrap(); assert!(pos < (4 - i)); permutation += pos * pos_value; move_last(&mut arr, pos); assert_eq!(arr[3], i); } for i in 0..4 { assert_eq!(arr[i], i); } counts[permutation] += 1; } for count in counts.iter() { let err = *count - 10000i32 / 24; assert!(-50 <= err && err <= 50); } } #[test] fn test_partial_shuffle() { let mut r = ::test::rng(118); let mut empty: [u32; 0] = []; let res = empty.partial_shuffle(&mut r, 10); assert_eq!((res.0.len(), res.1.len()), (0, 0)); let mut v = [1, 2, 3, 4, 5]; let res = v.partial_shuffle(&mut r, 2); assert_eq!((res.0.len(), res.1.len()), (2, 3)); assert!(res.0[0] != res.0[1]); // First elements are only modified if selected, so at least one isn't modified: assert!(res.1[0] == 1 || res.1[1] == 2 || res.1[2] == 3); } #[test] #[cfg(feature = "alloc")] fn test_sample_iter() { let min_val = 1; let max_val = 100; let mut r = ::test::rng(401); let vals = (min_val..max_val).collect::>(); let small_sample = vals.iter().choose_multiple(&mut r, 5); let large_sample = vals.iter().choose_multiple(&mut r, vals.len() + 5); assert_eq!(small_sample.len(), 5); assert_eq!(large_sample.len(), vals.len()); // no randomization happens when amount >= len assert_eq!(large_sample, vals.iter().collect::>()); assert!(small_sample.iter().all(|e| { **e >= min_val && **e <= max_val })); } #[test] #[cfg(feature = "alloc")] #[allow(deprecated)] fn test_sample_slice_boundaries() { let empty: &[u8] = &[]; let mut r = ::test::rng(402); // sample 0 items assert_eq!(&sample_slice(&mut r, empty, 0)[..], [0u8; 0]); assert_eq!(&sample_slice(&mut r, &[42, 2, 42], 0)[..], [0u8; 0]); // sample 1 item assert_eq!(&sample_slice(&mut r, &[42], 1)[..], [42]); let v = sample_slice(&mut r, &[1, 42], 1)[0]; assert!(v == 1 || v == 42); // sample "all" the items let v = sample_slice(&mut r, &[42, 133], 2); assert!(&v[..] == [42, 133] || v[..] == [133, 42]); // Make sure lucky 777's aren't lucky let slice = &[42, 777]; let mut num_42 = 0; let total = 1000; for _ in 0..total { let v = sample_slice(&mut r, slice, 1); assert_eq!(v.len(), 1); let v = v[0]; assert!(v == 42 || v == 777); if v == 42 { num_42 += 1; } } let ratio_42 = num_42 as f64 / 1000 as f64; assert!(0.4 <= ratio_42 || ratio_42 <= 0.6, "{}", ratio_42); } #[test] #[cfg(feature = "alloc")] #[allow(deprecated)] fn test_sample_slice() { let seeded_rng = SmallRng::from_seed; let mut r = ::test::rng(403); for n in 1..20 { let length = 5*n - 4; // 1, 6, ... let amount = r.gen_range(0, length); let mut seed = [0u8; 16]; r.fill(&mut seed); // assert the basics work let regular = index::sample(&mut seeded_rng(seed), length, amount); assert_eq!(regular.len(), amount); assert!(regular.iter().all(|e| e < length)); // also test that sampling the slice works let vec: Vec = (0..(length as u32)).collect(); let result = sample_slice(&mut seeded_rng(seed), &vec, amount); assert_eq!(result, regular.iter().map(|i| i as u32).collect::>()); let result = sample_slice_ref(&mut seeded_rng(seed), &vec, amount); assert!(result.iter().zip(regular.iter()).all(|(i,j)| **i == j as u32)); } } #[test] #[cfg(feature = "alloc")] fn test_weighted() { let mut r = ::test::rng(406); const N_REPS: u32 = 3000; let weights = [1u32, 2, 3, 0, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7]; let total_weight = weights.iter().sum::() as f32; let verify = |result: [i32; 14]| { for (i, count) in result.iter().enumerate() { let exp = (weights[i] * N_REPS) as f32 / total_weight; let mut err = (*count as f32 - exp).abs(); if err != 0.0 { err /= exp; } assert!(err <= 0.25); } }; // choose_weighted fn get_weight(item: &(u32, T)) -> u32 { item.0 } let mut chosen = [0i32; 14]; let mut items = [(0u32, 0usize); 14]; // (weight, index) for (i, item) in items.iter_mut().enumerate() { *item = (weights[i], i); } for _ in 0..N_REPS { let item = items.choose_weighted(&mut r, get_weight).unwrap(); chosen[item.1] += 1; } verify(chosen); // choose_weighted_mut let mut items = [(0u32, 0i32); 14]; // (weight, count) for (i, item) in items.iter_mut().enumerate() { *item = (weights[i], 0); } for _ in 0..N_REPS { items.choose_weighted_mut(&mut r, get_weight).unwrap().1 += 1; } for (ch, item) in chosen.iter_mut().zip(items.iter()) { *ch = item.1; } verify(chosen); // Check error cases let empty_slice = &mut [10][0..0]; assert_eq!(empty_slice.choose_weighted(&mut r, |_| 1), Err(WeightedError::NoItem)); assert_eq!(empty_slice.choose_weighted_mut(&mut r, |_| 1), Err(WeightedError::NoItem)); assert_eq!(['x'].choose_weighted_mut(&mut r, |_| 0), Err(WeightedError::AllWeightsZero)); assert_eq!([0, -1].choose_weighted_mut(&mut r, |x| *x), Err(WeightedError::NegativeWeight)); assert_eq!([-1, 0].choose_weighted_mut(&mut r, |x| *x), Err(WeightedError::NegativeWeight)); } }