// Copyright 2018 Developers of the Rand project. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. #[cfg(feature="serde1")] use serde::{Serialize, Deserialize}; use rand_core; use rand_core::le::read_u64_into; use rand_core::impls::fill_bytes_via_next; use rand_core::{RngCore, SeedableRng}; /// A xoroshiro128+ random number generator. /// /// The xoroshiro128+ algorithm is not suitable for cryptographic purposes, but /// is very fast and has good statistical properties, besides a low linear /// complexity in the lowest bits. /// /// The algorithm used here is translated from [the `xoroshiro128plus.c` /// reference source code](http://xoshiro.di.unimi.it/xoroshiro128plus.c) by /// David Blackman and Sebastiano Vigna. #[allow(missing_copy_implementations)] #[derive(Debug, Clone)] #[cfg_attr(feature="serde1", derive(Serialize, Deserialize))] pub struct Xoroshiro128Plus { s0: u64, s1: u64, } impl Xoroshiro128Plus { /// Jump forward, equivalently to 2^64 calls to `next_u64()`. /// /// This can be used to generate 2^64 non-overlapping subsequences for /// parallel computations. /// /// ``` /// use rand_xoshiro::rand_core::SeedableRng; /// use rand_xoshiro::Xoroshiro128Plus; /// /// let rng1 = Xoroshiro128Plus::seed_from_u64(0); /// let mut rng2 = rng1.clone(); /// rng2.jump(); /// let mut rng3 = rng2.clone(); /// rng3.jump(); /// ``` pub fn jump(&mut self) { impl_jump!(u64, self, [0xdf900294d8f554a5, 0x170865df4b3201fc]); } /// Jump forward, equivalently to 2^96 calls to `next_u64()`. /// /// This can be used to generate 2^32 starting points, from each of which /// `jump()` will generate 2^32 non-overlapping subsequences for parallel /// distributed computations. pub fn long_jump(&mut self) { impl_jump!(u64, self, [0xd2a98b26625eee7b, 0xdddf9b1090aa7ac1]); } } impl RngCore for Xoroshiro128Plus { #[inline] fn next_u32(&mut self) -> u32 { // The two lowest bits have some linear dependencies, so we use the // upper bits instead. (self.next_u64() >> 32) as u32 } #[inline] fn next_u64(&mut self) -> u64 { let r = self.s0.wrapping_add(self.s1); impl_xoroshiro_u64!(self); r } #[inline] fn fill_bytes(&mut self, dest: &mut [u8]) { fill_bytes_via_next(self, dest); } #[inline] fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), rand_core::Error> { self.fill_bytes(dest); Ok(()) } } impl SeedableRng for Xoroshiro128Plus { type Seed = [u8; 16]; /// Create a new `Xoroshiro128Plus`. If `seed` is entirely 0, it will be /// mapped to a different seed. fn from_seed(seed: [u8; 16]) -> Xoroshiro128Plus { deal_with_zero_seed!(seed, Self); let mut s = [0; 2]; read_u64_into(&seed, &mut s); Xoroshiro128Plus { s0: s[0], s1: s[1], } } /// Seed a `Xoroshiro128Plus` from a `u64` using `SplitMix64`. fn seed_from_u64(seed: u64) -> Xoroshiro128Plus { from_splitmix!(seed) } } #[cfg(test)] mod tests { use super::*; #[test] fn reference() { let mut rng = Xoroshiro128Plus::from_seed( [1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0]); // These values were produced with the reference implementation: // http://xoshiro.di.unimi.it/xoshiro128starstar.c let expected = [ 3, 412333834243, 2360170716294286339, 9295852285959843169, 2797080929874688578, 6019711933173041966, 3076529664176959358, 3521761819100106140, 7493067640054542992, 920801338098114767, ]; for &e in &expected { assert_eq!(rng.next_u64(), e); } } }