use rand_core::{RngCore, SeedableRng}; use rand_pcg::{Lcg64Xsh32, Pcg32}; #[test] fn test_lcg64xsh32_construction() { // Test that various construction techniques produce a working RNG. let seed = [1,2,3,4, 5,6,7,8, 9,10,11,12, 13,14,15,16]; let mut rng1 = Lcg64Xsh32::from_seed(seed); assert_eq!(rng1.next_u64(), 1204678643940597513); let mut rng2 = Lcg64Xsh32::from_rng(&mut rng1).unwrap(); assert_eq!(rng2.next_u64(), 12384929573776311845); let mut rng3 = Lcg64Xsh32::seed_from_u64(0); assert_eq!(rng3.next_u64(), 18195738587432868099); // This is the same as Lcg64Xsh32, so we only have a single test: let mut rng4 = Pcg32::seed_from_u64(0); assert_eq!(rng4.next_u64(), 18195738587432868099); } #[test] fn test_lcg64xsh32_true_values() { // Numbers copied from official test suite. let mut rng = Lcg64Xsh32::new(42, 54); let mut results = [0u32; 6]; for i in results.iter_mut() { *i = rng.next_u32(); } let expected: [u32; 6] = [0xa15c02b7, 0x7b47f409, 0xba1d3330, 0x83d2f293, 0xbfa4784b, 0xcbed606e]; assert_eq!(results, expected); } #[cfg(feature="serde1")] #[test] fn test_lcg64xsh32_serde() { use bincode; use std::io::{BufWriter, BufReader}; let mut rng = Lcg64Xsh32::seed_from_u64(0); let buf: Vec = Vec::new(); let mut buf = BufWriter::new(buf); bincode::serialize_into(&mut buf, &rng).expect("Could not serialize"); let buf = buf.into_inner().unwrap(); let mut read = BufReader::new(&buf[..]); let mut deserialized: Lcg64Xsh32 = bincode::deserialize_from(&mut read) .expect("Could not deserialize"); for _ in 0..16 { assert_eq!(rng.next_u64(), deserialized.next_u64()); } }