// Copyright 2018 Developers of the Rand project. // Copyright 2017 Paul Dicker. // Copyright 2014-2017 Melissa O'Neill and PCG Project contributors // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! PCG random number generators // This is the default multiplier used by PCG for 64-bit state. const MULTIPLIER: u128 = 0x2360_ED05_1FC6_5DA4_4385_DF64_9FCC_F645; use core::fmt; use core::mem::transmute; use rand_core::{RngCore, SeedableRng, Error, le}; /// A PCG random number generator (XSL 128/64 (MCG) variant). /// /// Permuted Congruential Generator with 128-bit state, internal Multiplicative /// Congruential Generator, and 64-bit output via "xorshift low (bits), /// random rotation" output function. /// /// This is a 128-bit MCG with the PCG-XSL-RR output function. /// Note that compared to the standard `pcg64` (128-bit LCG with PCG-XSL-RR /// output function), this RNG is faster, also has a long cycle, and still has /// good performance on statistical tests. /// /// Note: this RNG is only available using Rust 1.26 or later. #[derive(Clone)] #[cfg_attr(feature="serde1", derive(Serialize,Deserialize))] pub struct Mcg128Xsl64 { state: u128, } /// A friendly name for `Mcg128Xsl64`. pub type Pcg64Mcg = Mcg128Xsl64; impl Mcg128Xsl64 { /// Construct an instance compatible with PCG seed. /// /// Note that PCG specifies a default value for the parameter: /// /// - `state = 0xcafef00dd15ea5e5` pub fn new(state: u128) -> Self { // Force low bit to 1, as in C version (C++ uses `state | 3` instead). Mcg128Xsl64 { state: state | 1 } } } // Custom Debug implementation that does not expose the internal state impl fmt::Debug for Mcg128Xsl64 { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "Mcg128Xsl64 {{}}") } } /// We use a single 126-bit seed to initialise the state and select a stream. /// Two `seed` bits (lowest order of last byte) are ignored. impl SeedableRng for Mcg128Xsl64 { type Seed = [u8; 16]; fn from_seed(seed: Self::Seed) -> Self { // Read as if a little-endian u128 value: let mut seed_u64 = [0u64; 2]; le::read_u64_into(&seed, &mut seed_u64); let state = (seed_u64[0] as u128) | (seed_u64[1] as u128) << 64; Mcg128Xsl64::new(state) } } impl RngCore for Mcg128Xsl64 { #[inline] fn next_u32(&mut self) -> u32 { self.next_u64() as u32 } #[inline] fn next_u64(&mut self) -> u64 { // prepare the LCG for the next round let state = self.state.wrapping_mul(MULTIPLIER); self.state = state; // Output function XSL RR ("xorshift low (bits), random rotation") // Constants are for 128-bit state, 64-bit output const XSHIFT: u32 = 64; // (128 - 64 + 64) / 2 const ROTATE: u32 = 122; // 128 - 6 let rot = (state >> ROTATE) as u32; let xsl = ((state >> XSHIFT) as u64) ^ (state as u64); xsl.rotate_right(rot) } #[inline] fn fill_bytes(&mut self, dest: &mut [u8]) { // specialisation of impls::fill_bytes_via_next; approx 3x faster let mut left = dest; while left.len() >= 8 { let (l, r) = {left}.split_at_mut(8); left = r; let chunk: [u8; 8] = unsafe { transmute(self.next_u64().to_le()) }; l.copy_from_slice(&chunk); } let n = left.len(); if n > 0 { let chunk: [u8; 8] = unsafe { transmute(self.next_u64().to_le()) }; left.copy_from_slice(&chunk[..n]); } } #[inline] fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { Ok(self.fill_bytes(dest)) } }