// Copyright 2018 Developers of the Rand project. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Helper functions for implementing `RngCore` functions. //! //! For cross-platform reproducibility, these functions all use Little Endian: //! least-significant part first. For example, `next_u64_via_u32` takes `u32` //! values `x, y`, then outputs `(y << 32) | x`. To implement `next_u32` //! from `next_u64` in little-endian order, one should use `next_u64() as u32`. //! //! Byte-swapping (like the std `to_le` functions) is only needed to convert //! to/from byte sequences, and since its purpose is reproducibility, //! non-reproducible sources (e.g. `OsRng`) need not bother with it. use core::ptr::copy_nonoverlapping; use core::slice; use core::cmp::min; use core::mem::size_of; use crate::RngCore; /// Implement `next_u64` via `next_u32`, little-endian order. pub fn next_u64_via_u32(rng: &mut R) -> u64 { // Use LE; we explicitly generate one value before the next. let x = u64::from(rng.next_u32()); let y = u64::from(rng.next_u32()); (y << 32) | x } /// Implement `fill_bytes` via `next_u64` and `next_u32`, little-endian order. /// /// The fastest way to fill a slice is usually to work as long as possible with /// integers. That is why this method mostly uses `next_u64`, and only when /// there are 4 or less bytes remaining at the end of the slice it uses /// `next_u32` once. pub fn fill_bytes_via_next(rng: &mut R, dest: &mut [u8]) { let mut left = dest; while left.len() >= 8 { let (l, r) = {left}.split_at_mut(8); left = r; let chunk: [u8; 8] = rng.next_u64().to_le_bytes(); l.copy_from_slice(&chunk); } let n = left.len(); if n > 4 { let chunk: [u8; 8] = rng.next_u64().to_le_bytes(); left.copy_from_slice(&chunk[..n]); } else if n > 0 { let chunk: [u8; 4] = rng.next_u32().to_le_bytes(); left.copy_from_slice(&chunk[..n]); } } macro_rules! impl_uint_from_fill { ($rng:expr, $ty:ty, $N:expr) => ({ debug_assert!($N == size_of::<$ty>()); let mut int: $ty = 0; unsafe { let ptr = &mut int as *mut $ty as *mut u8; let slice = slice::from_raw_parts_mut(ptr, $N); $rng.fill_bytes(slice); } int }); } macro_rules! fill_via_chunks { ($src:expr, $dst:expr, $ty:ty, $size:expr) => ({ let chunk_size_u8 = min($src.len() * $size, $dst.len()); let chunk_size = (chunk_size_u8 + $size - 1) / $size; if cfg!(target_endian="little") { unsafe { copy_nonoverlapping( $src.as_ptr() as *const u8, $dst.as_mut_ptr(), chunk_size_u8); } } else { for (&n, chunk) in $src.iter().zip($dst.chunks_mut($size)) { let tmp = n.to_le(); let src_ptr = &tmp as *const $ty as *const u8; unsafe { copy_nonoverlapping(src_ptr, chunk.as_mut_ptr(), chunk.len()); } } } (chunk_size, chunk_size_u8) }); } /// Implement `fill_bytes` by reading chunks from the output buffer of a block /// based RNG. /// /// The return values are `(consumed_u32, filled_u8)`. /// /// `filled_u8` is the number of filled bytes in `dest`, which may be less than /// the length of `dest`. /// `consumed_u32` is the number of words consumed from `src`, which is the same /// as `filled_u8 / 4` rounded up. /// /// # Example /// (from `IsaacRng`) /// /// ```ignore /// fn fill_bytes(&mut self, dest: &mut [u8]) { /// let mut read_len = 0; /// while read_len < dest.len() { /// if self.index >= self.rsl.len() { /// self.isaac(); /// } /// /// let (consumed_u32, filled_u8) = /// impls::fill_via_u32_chunks(&mut self.rsl[self.index..], /// &mut dest[read_len..]); /// /// self.index += consumed_u32; /// read_len += filled_u8; /// } /// } /// ``` pub fn fill_via_u32_chunks(src: &[u32], dest: &mut [u8]) -> (usize, usize) { fill_via_chunks!(src, dest, u32, 4) } /// Implement `fill_bytes` by reading chunks from the output buffer of a block /// based RNG. /// /// The return values are `(consumed_u64, filled_u8)`. /// `filled_u8` is the number of filled bytes in `dest`, which may be less than /// the length of `dest`. /// `consumed_u64` is the number of words consumed from `src`, which is the same /// as `filled_u8 / 8` rounded up. /// /// See `fill_via_u32_chunks` for an example. pub fn fill_via_u64_chunks(src: &[u64], dest: &mut [u8]) -> (usize, usize) { fill_via_chunks!(src, dest, u64, 8) } /// Implement `next_u32` via `fill_bytes`, little-endian order. pub fn next_u32_via_fill(rng: &mut R) -> u32 { impl_uint_from_fill!(rng, u32, 4) } /// Implement `next_u64` via `fill_bytes`, little-endian order. pub fn next_u64_via_fill(rng: &mut R) -> u64 { impl_uint_from_fill!(rng, u64, 8) } // TODO: implement tests for the above