// Copyright 2018 Developers of the Rand project. // Copyright 2014 The Rust Project Developers. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! The ChaCha random number generator. use core::fmt; use rand_core::{CryptoRng, RngCore, SeedableRng, Error, le}; use rand_core::block::{BlockRngCore, BlockRng}; const SEED_WORDS: usize = 8; // 8 words for the 256-bit key const STATE_WORDS: usize = 16; /// A cryptographically secure random number generator that uses the ChaCha /// algorithm. /// /// ChaCha is a stream cipher designed by Daniel J. Bernstein[^1], that we use /// as an RNG. It is an improved variant of the Salsa20 cipher family, which was /// selected as one of the "stream ciphers suitable for widespread adoption" by /// eSTREAM[^2]. /// /// ChaCha uses add-rotate-xor (ARX) operations as its basis. These are safe /// against timing attacks, although that is mostly a concern for ciphers and /// not for RNGs. Also it is very suitable for SIMD implementation. /// Here we do not provide a SIMD implementation yet, except for what is /// provided by auto-vectorisation. /// /// With the ChaCha algorithm it is possible to choose the number of rounds the /// core algorithm should run. The number of rounds is a tradeoff between /// performance and security, where 8 rounds is the minimum potentially /// secure configuration, and 20 rounds is widely used as a conservative choice. /// We use 20 rounds in this implementation, but hope to allow type-level /// configuration in the future. /// /// We use a 64-bit counter and 64-bit stream identifier as in Bernstein's /// implementation[^1] except that we use a stream identifier in place of a /// nonce. A 64-bit counter over 64-byte (16 word) blocks allows 1 ZiB of output /// before cycling, and the stream identifier allows 264 unique /// streams of output per seed. Both counter and stream are initialized to zero /// but may be set via [`set_word_pos`] and [`set_stream`]. /// /// The word layout is: /// /// ```text /// constant constant constant constant /// seed seed seed seed /// seed seed seed seed /// counter counter stream_id stream_id /// ``` /// /// This implementation uses an output buffer of sixteen `u32` words, and uses /// [`BlockRng`] to implement the [`RngCore`] methods. /// /// [^1]: D. J. Bernstein, [*ChaCha, a variant of Salsa20*]( /// https://cr.yp.to/chacha.html) /// /// [^2]: [eSTREAM: the ECRYPT Stream Cipher Project]( /// http://www.ecrypt.eu.org/stream/) /// /// [`set_word_pos`]: #method.set_word_pos /// [`set_stream`]: #method.set_stream /// [`BlockRng`]: ../rand_core/block/struct.BlockRng.html /// [`RngCore`]: ../rand_core/trait.RngCore.html #[derive(Clone, Debug)] pub struct ChaChaRng(BlockRng); impl RngCore for ChaChaRng { #[inline] fn next_u32(&mut self) -> u32 { self.0.next_u32() } #[inline] fn next_u64(&mut self) -> u64 { self.0.next_u64() } #[inline] fn fill_bytes(&mut self, dest: &mut [u8]) { self.0.fill_bytes(dest) } #[inline] fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { self.0.try_fill_bytes(dest) } } impl SeedableRng for ChaChaRng { type Seed = ::Seed; fn from_seed(seed: Self::Seed) -> Self { ChaChaRng(BlockRng::::from_seed(seed)) } fn from_rng(rng: R) -> Result { BlockRng::::from_rng(rng).map(ChaChaRng) } } impl CryptoRng for ChaChaRng {} impl ChaChaRng { /// Get the offset from the start of the stream, in 32-bit words. /// /// Since the generated blocks are 16 words (24) long and the /// counter is 64-bits, the offset is a 68-bit number. Sub-word offsets are /// not supported, hence the result can simply be multiplied by 4 to get a /// byte-offset. /// /// Note: this function is currently only available with Rust 1.26 or later. #[cfg(all(rustc_1_26, not(target_os = "emscripten")))] pub fn get_word_pos(&self) -> u128 { let mut c = (self.0.core.state[13] as u64) << 32 | (self.0.core.state[12] as u64); let mut index = self.0.index(); // c is the end of the last block generated, unless index is at end if index >= STATE_WORDS { index = 0; } else { c = c.wrapping_sub(1); } ((c as u128) << 4) | (index as u128) } /// Set the offset from the start of the stream, in 32-bit words. /// /// As with `get_word_pos`, we use a 68-bit number. Since the generator /// simply cycles at the end of its period (1 ZiB), we ignore the upper /// 60 bits. /// /// Note: this function is currently only available with Rust 1.26 or later. #[cfg(all(rustc_1_26, not(target_os = "emscripten")))] pub fn set_word_pos(&mut self, word_offset: u128) { let index = (word_offset as usize) & 0xF; let counter = (word_offset >> 4) as u64; self.0.core.state[12] = counter as u32; self.0.core.state[13] = (counter >> 32) as u32; if index != 0 { self.0.generate_and_set(index); // also increments counter } else { self.0.reset(); } } /// Set the stream number. /// /// This is initialized to zero; 264 unique streams of output /// are available per seed/key. /// /// Note that in order to reproduce ChaCha output with a specific 64-bit /// nonce, one can convert that nonce to a `u64` in little-endian fashion /// and pass to this function. In theory a 96-bit nonce can be used by /// passing the last 64-bits to this function and using the first 32-bits as /// the most significant half of the 64-bit counter (which may be set /// indirectly via `set_word_pos`), but this is not directly supported. pub fn set_stream(&mut self, stream: u64) { let index = self.0.index(); self.0.core.state[14] = stream as u32; self.0.core.state[15] = (stream >> 32) as u32; if index < STATE_WORDS { // we need to regenerate a partial result buffer { // reverse of counter adjustment in generate() if self.0.core.state[12] == 0 { self.0.core.state[13] = self.0.core.state[13].wrapping_sub(1); } self.0.core.state[12] = self.0.core.state[12].wrapping_sub(1); } self.0.generate_and_set(index); } } } /// The core of `ChaChaRng`, used with `BlockRng`. #[derive(Clone)] pub struct ChaChaCore { state: [u32; STATE_WORDS], } // Custom Debug implementation that does not expose the internal state impl fmt::Debug for ChaChaCore { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "ChaChaCore {{}}") } } macro_rules! quarter_round{ ($a: expr, $b: expr, $c: expr, $d: expr) => {{ $a = $a.wrapping_add($b); $d ^= $a; $d = $d.rotate_left(16); $c = $c.wrapping_add($d); $b ^= $c; $b = $b.rotate_left(12); $a = $a.wrapping_add($b); $d ^= $a; $d = $d.rotate_left( 8); $c = $c.wrapping_add($d); $b ^= $c; $b = $b.rotate_left( 7); }} } macro_rules! double_round{ ($x: expr) => {{ // Column round quarter_round!($x[ 0], $x[ 4], $x[ 8], $x[12]); quarter_round!($x[ 1], $x[ 5], $x[ 9], $x[13]); quarter_round!($x[ 2], $x[ 6], $x[10], $x[14]); quarter_round!($x[ 3], $x[ 7], $x[11], $x[15]); // Diagonal round quarter_round!($x[ 0], $x[ 5], $x[10], $x[15]); quarter_round!($x[ 1], $x[ 6], $x[11], $x[12]); quarter_round!($x[ 2], $x[ 7], $x[ 8], $x[13]); quarter_round!($x[ 3], $x[ 4], $x[ 9], $x[14]); }} } impl BlockRngCore for ChaChaCore { type Item = u32; type Results = [u32; STATE_WORDS]; fn generate(&mut self, results: &mut Self::Results) { // For some reason extracting this part into a separate function // improves performance by 50%. fn core(results: &mut [u32; STATE_WORDS], state: &[u32; STATE_WORDS]) { let mut tmp = *state; let rounds = 20; for _ in 0..rounds / 2 { double_round!(tmp); } for i in 0..STATE_WORDS { results[i] = tmp[i].wrapping_add(state[i]); } } core(results, &self.state); // update 64-bit counter self.state[12] = self.state[12].wrapping_add(1); if self.state[12] != 0 { return; }; self.state[13] = self.state[13].wrapping_add(1); } } impl SeedableRng for ChaChaCore { type Seed = [u8; SEED_WORDS*4]; fn from_seed(seed: Self::Seed) -> Self { let mut seed_le = [0u32; SEED_WORDS]; le::read_u32_into(&seed, &mut seed_le); Self { state: [0x61707865, 0x3320646E, 0x79622D32, 0x6B206574, // constants seed_le[0], seed_le[1], seed_le[2], seed_le[3], // seed seed_le[4], seed_le[5], seed_le[6], seed_le[7], // seed 0, 0, 0, 0], // counter } } } impl CryptoRng for ChaChaCore {} impl From for ChaChaRng { fn from(core: ChaChaCore) -> Self { ChaChaRng(BlockRng::new(core)) } } #[cfg(test)] mod test { use ::rand_core::{RngCore, SeedableRng}; use super::ChaChaRng; #[test] fn test_chacha_construction() { let seed = [0,0,0,0,0,0,0,0, 1,0,0,0,0,0,0,0, 2,0,0,0,0,0,0,0, 3,0,0,0,0,0,0,0]; let mut rng1 = ChaChaRng::from_seed(seed); assert_eq!(rng1.next_u32(), 137206642); let mut rng2 = ChaChaRng::from_rng(rng1).unwrap(); assert_eq!(rng2.next_u32(), 1325750369); } #[test] fn test_chacha_true_values_a() { // Test vectors 1 and 2 from // https://tools.ietf.org/html/draft-nir-cfrg-chacha20-poly1305-04 let seed = [0u8; 32]; let mut rng = ChaChaRng::from_seed(seed); let mut results = [0u32; 16]; for i in results.iter_mut() { *i = rng.next_u32(); } let expected = [0xade0b876, 0x903df1a0, 0xe56a5d40, 0x28bd8653, 0xb819d2bd, 0x1aed8da0, 0xccef36a8, 0xc70d778b, 0x7c5941da, 0x8d485751, 0x3fe02477, 0x374ad8b8, 0xf4b8436a, 0x1ca11815, 0x69b687c3, 0x8665eeb2]; assert_eq!(results, expected); for i in results.iter_mut() { *i = rng.next_u32(); } let expected = [0xbee7079f, 0x7a385155, 0x7c97ba98, 0x0d082d73, 0xa0290fcb, 0x6965e348, 0x3e53c612, 0xed7aee32, 0x7621b729, 0x434ee69c, 0xb03371d5, 0xd539d874, 0x281fed31, 0x45fb0a51, 0x1f0ae1ac, 0x6f4d794b]; assert_eq!(results, expected); } #[test] fn test_chacha_true_values_b() { // Test vector 3 from // https://tools.ietf.org/html/draft-nir-cfrg-chacha20-poly1305-04 let seed = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]; let mut rng = ChaChaRng::from_seed(seed); // Skip block 0 for _ in 0..16 { rng.next_u32(); } let mut results = [0u32; 16]; for i in results.iter_mut() { *i = rng.next_u32(); } let expected = [0x2452eb3a, 0x9249f8ec, 0x8d829d9b, 0xddd4ceb1, 0xe8252083, 0x60818b01, 0xf38422b8, 0x5aaa49c9, 0xbb00ca8e, 0xda3ba7b4, 0xc4b592d1, 0xfdf2732f, 0x4436274e, 0x2561b3c8, 0xebdd4aa6, 0xa0136c00]; assert_eq!(results, expected); } #[test] #[cfg(all(rustc_1_26, not(target_os = "emscripten")))] fn test_chacha_true_values_c() { // Test vector 4 from // https://tools.ietf.org/html/draft-nir-cfrg-chacha20-poly1305-04 let seed = [0, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; let expected = [0xfb4dd572, 0x4bc42ef1, 0xdf922636, 0x327f1394, 0xa78dea8f, 0x5e269039, 0xa1bebbc1, 0xcaf09aae, 0xa25ab213, 0x48a6b46c, 0x1b9d9bcb, 0x092c5be6, 0x546ca624, 0x1bec45d5, 0x87f47473, 0x96f0992e]; let expected_end = 3 * 16; let mut results = [0u32; 16]; // Test block 2 by skipping block 0 and 1 let mut rng1 = ChaChaRng::from_seed(seed); for _ in 0..32 { rng1.next_u32(); } for i in results.iter_mut() { *i = rng1.next_u32(); } assert_eq!(results, expected); assert_eq!(rng1.get_word_pos(), expected_end); // Test block 2 by using `set_word_pos` let mut rng2 = ChaChaRng::from_seed(seed); rng2.set_word_pos(2 * 16); for i in results.iter_mut() { *i = rng2.next_u32(); } assert_eq!(results, expected); assert_eq!(rng2.get_word_pos(), expected_end); // Test skipping behaviour with other types let mut buf = [0u8; 32]; rng2.fill_bytes(&mut buf[..]); assert_eq!(rng2.get_word_pos(), expected_end + 8); rng2.fill_bytes(&mut buf[0..25]); assert_eq!(rng2.get_word_pos(), expected_end + 15); rng2.next_u64(); assert_eq!(rng2.get_word_pos(), expected_end + 17); rng2.next_u32(); rng2.next_u64(); assert_eq!(rng2.get_word_pos(), expected_end + 20); rng2.fill_bytes(&mut buf[0..1]); assert_eq!(rng2.get_word_pos(), expected_end + 21); } #[test] fn test_chacha_multiple_blocks() { let seed = [0,0,0,0, 1,0,0,0, 2,0,0,0, 3,0,0,0, 4,0,0,0, 5,0,0,0, 6,0,0,0, 7,0,0,0]; let mut rng = ChaChaRng::from_seed(seed); // Store the 17*i-th 32-bit word, // i.e., the i-th word of the i-th 16-word block let mut results = [0u32; 16]; for i in results.iter_mut() { *i = rng.next_u32(); for _ in 0..16 { rng.next_u32(); } } let expected = [0xf225c81a, 0x6ab1be57, 0x04d42951, 0x70858036, 0x49884684, 0x64efec72, 0x4be2d186, 0x3615b384, 0x11cfa18e, 0xd3c50049, 0x75c775f6, 0x434c6530, 0x2c5bad8f, 0x898881dc, 0x5f1c86d9, 0xc1f8e7f4]; assert_eq!(results, expected); } #[test] fn test_chacha_true_bytes() { let seed = [0u8; 32]; let mut rng = ChaChaRng::from_seed(seed); let mut results = [0u8; 32]; rng.fill_bytes(&mut results); let expected = [118, 184, 224, 173, 160, 241, 61, 144, 64, 93, 106, 229, 83, 134, 189, 40, 189, 210, 25, 184, 160, 141, 237, 26, 168, 54, 239, 204, 139, 119, 13, 199]; assert_eq!(results, expected); } #[test] fn test_chacha_nonce() { // Test vector 5 from // https://tools.ietf.org/html/draft-nir-cfrg-chacha20-poly1305-04 // Although we do not support setting a nonce, we try it here anyway so // we can use this test vector. let seed = [0u8; 32]; let mut rng = ChaChaRng::from_seed(seed); // 96-bit nonce in LE order is: 0,0,0,0, 0,0,0,0, 0,0,0,2 rng.set_stream(2u64 << (24 + 32)); let mut results = [0u32; 16]; for i in results.iter_mut() { *i = rng.next_u32(); } let expected = [0x374dc6c2, 0x3736d58c, 0xb904e24a, 0xcd3f93ef, 0x88228b1a, 0x96a4dfb3, 0x5b76ab72, 0xc727ee54, 0x0e0e978a, 0xf3145c95, 0x1b748ea8, 0xf786c297, 0x99c28f5f, 0x628314e8, 0x398a19fa, 0x6ded1b53]; assert_eq!(results, expected); } #[test] fn test_chacha_clone_streams() { let seed = [0,0,0,0, 1,0,0,0, 2,0,0,0, 3,0,0,0, 4,0,0,0, 5,0,0,0, 6,0,0,0, 7,0,0,0]; let mut rng = ChaChaRng::from_seed(seed); let mut clone = rng.clone(); for _ in 0..16 { assert_eq!(rng.next_u64(), clone.next_u64()); } rng.set_stream(51); for _ in 0..7 { assert!(rng.next_u32() != clone.next_u32()); } clone.set_stream(51); // switch part way through block for _ in 7..16 { assert_eq!(rng.next_u32(), clone.next_u32()); } } }